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Introduction

Suppose you wanted to prove the equation 3x2+2y2+z2 = 0 has no nontrivial so-
lutions in the rationals. You could say that because every square of a real number
is nonnegative, the only solution is (0, 0, 0). But what about 3x2 + 2y2 − z2 = 0?
For this you could instead show that the equation has no nontrivial solutions in
Q3, which implies no nontrivial solutions in the rationals. What does this mean??

Given a prime number p, the p-adic numbers form a unique numbering sys-
tem that represents numbers as a possibly infinite base-p expansion of powers of
p. The p-adics in general are completions of the rational numbers with an unusual
distance metric, which gives rise to unique geometric properties. Together with
tools like Hensel’s lemma, the local-global principle, and quadratic reciprocity,
the p-adics are incredibly useful in solving many problems in number theory,
particularly in finding integer and rational solutions to Diophantine equations.

Defining the p-Adics

The p-Adic Valuation on Z and Q

Given a prime p, we can write any nonzero integer n ∈ Z as n = pkn′,
where p ∤ n′. Then we define the p-adic valuation as the function

vp : Z− {0} → R, vp(n) = k.

We extend vp to the field of rationals by defining

vp(
a

b
) = vp(a)− vp(b),

a

b
∈ Q, with vp(0) = ∞.

Now we define the p-adic absolute value function | |p : Q → R as

|x|p = p−vp(x), |0|p = 0.

In other words, the p-adic absolute value is the largest (by magnitude) integer
power of p which divides a number x.

The Distance Function using | |p

Define a distance function d(a, b) = |a − b|p. We can confirm that all four
conditions of a distance function hold when using the p-adic absolute value:

1. d(a, b) ≥ 0

2. d(a, b) = d(b, a)

3. d(a, a) = 0

4. d(a, c) ≤ d(a, b) + d(b, c)

More interesting is the fact that p-adic absolute value satisfies the ultrametric
inequality (this will come in handy later!):

5. d(a, c) ≤ max{d(a, b), d(b, c)}

The Field of p-Adic Numbers

Let Qp be the completion of Q using the p-adic metric defined above. Next,
let Zp = {x ∈ Qp : |x|p ≤ 1}, such that Zp is the completion of Z using the p-adic
metric. Then we have Q ⊂ Qp and Z ⊂ Zp.

The p-Adic Units
For a given p, the p-adic units are the invertible elements of Zp, defined as

Z×
p = {x ∈ Qp : |x|p = 1}.

Thus for any prime p, its p-adic units are the set of rationals {ab ∈ Q : p ∤ ab}.

Geometry of Qp

A fun result of the distance function on the p-adics is that "closeness" between two numbers
is defined by similar divisibility by pk. Larger numbers may be "closer" than consecutive
integers, as shown below:

Visualization of the geometry of Q3 up to 31 and 32. Images by Heiko Knopse.

Interesting Results in Qp

Every Triangle in Qp is Isosceles

Proof. First we will prove that vp(a) ̸= vp(b) → vp(a−b) = min{vp(a), vp(b)}. Since |a−b|p =
|b− a|p implies vp(a− b) = vp(b− a), we will only consider the case where vp(a) > vp(b).

vp(a− b) = vp(p
ma′ − pnb′), p ∤ a′, p ∤ b′

= vp(p
n(pm−na′ − b′)), p ∤ b′

= n = vp(b).

Similarly, vp(a− b) = vp(a) when vp(a) < vp(b). Thus vp(a− b) = min{vp(a), vp(b)}.

Now we will prove that every triangle in Qp is isosceles. Let ∆abc be a triangle in
Qp. Then it has sides of length d(a − c) = |a − c|p, d(a − b) = |a − b|p, d(b − c) = |b − c|p.
Assume |a− b|p ̸= |b− c|p, that is, vp(a− b) ̸= vp(b− c). Then, by the result above, we have

vp(a− c) = vp(a− b + b− c) = min{vp(a− b), vp(b− c)}.

This implies at least two sides of ∆abc must be of equal length. Thus every triangle in Qp is
isosceles.

Every Point in an Open Ball is a Center of that Ball

Proof. For this proof we will rely on the ultrametric inequality in Qp. Consider an open ball
B(a, r) = {b ∈ Qp : |b− a|p < r}. Then for b, x ∈ B(a, r), we have

|x− b|p ≤ max{|x− a|p, |b− a|p} < r,

which implies x ∈ B(b, r). Thus B(a, r) ⊂ B(b, r). Conversely, since b ∈ B(a, r) implies
a ∈ B(b, r), we have

x ∈ B(b, r) ⇒ |x− a|p ≤ max{|x− b|p, |a− b|p} < r,

which implies B(b, r) ⊂ B(a, r). Thus for b ∈ B(a, r), we have B(b, r) = B(a, r).

Any Two Open Balls are Either Disjoint or Contained in One Another

Proof. This follows from the above result. Suppose r1 ≤ r2. If B(a, r1) ∩ B(b, r2) ̸= ∅, then
there exists a point c such that c ∈ B(a, r1) ∩ B(b, r2). Then we have B(c, r1) = B(a, r1)
and B(c, r2) = B(b, r2), which implies B(a, r1) ⊂ B(b, r2).

(A similar method can be used to prove this and the above result with closed balls. The
proof is left as an exercise to the reader.)

Legendre’s Three Squares Theorem

We will now use these results to outline a basic proof of a well-known Diophan-
tine problem, Legendre’s three-square theorem:

n can be written as the sum of three squares if and only if n ̸≡ 4a(8b + 7).

Proof. The sufficient direction can be easily proven with modular arithmetic.
First, consider n = 8b + 7. Since any integer squared has the form 0, 1, or 4
(mod 8), no combination of three integer squares can add to 7 (mod 8). Then,
for n = 4a(8b + 7) with a ≥ 1, taking the equation n = x2 + y2 + z2 modulo
4 tells us x2, y2, z2 are all even. Setting x = 2x1, y = 2y1, z = 2z1, we get
4a−1(8b+ 7) = x21 + y21 + z21. Repeat this step until the exponent is reduced to 0,
and we once again have 8b+ 7 = x2a + y2a + z2a, which as we know is impossible.
Thus no integer of the form 4a(8b+7) can be written as the sum of three squares.

The necessary direction is more difficult and requires using advanced strategies
in p-adic analysis. To start, we will prove that every square in Q2 is of the form
4a(8b + 1). We first note that every d ∈ Q2 is of the form 2a(d′), where a ≥ 0
and d′ ∈ Z×

2 is a 2-adic unit (in other words, d′ ≡ 1 mod 2). As this implies
d′2 ≡ 1 mod 8, it follows that every square in Q2 is of the form 4a(d′2) which is
congruent to 4a(1 mod 8).

Now suppose n is not of the form 4a(8b + 7). Then, −n is not a square in
Q2. One fundamental property commonly used to solve Diophantine equa-
tions in the p-adics is the Hasse-Minkowski theorem, which is one of many
local-global principles: a quadratic form (any polynomial where every term
is of degree 2) has solutions in Q if and only if it has solutions in all Qp,
including Q∞ = R. Using results by Kurt Hensel and David Hilbert, we find
that for any n > 0, n = x2 + y2 + z2 has solutions in Qp for all odd primes
p ≥ 3 as well as the real numbers, but this does not hold for all n ∈ Q2.
Particularly, the equation holds in Q2 if and only if −n is not a square in
Q2. From our earlier results we see that when −n is a square, we have
n ≡ −4a(1 mod 8) ≡ 4a(−1 mod 8) ≡ 4a(7 mod 8) = 4a(8b + 7). Thus:

n ̸= x2 + y2 + z2 ⇒ −n is a square in Q2 ⇒ n = 4a(8b + 7).

Now we have proven the necessary condition. Thus any positive integer n can
be expressed as the sum of three squares if and only if n is not of the form
4a(8b + 7).
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Subobjects

A subobject of A is an (equivalence class of) monomorphisms into A. Two sub-

objects X
m−→ A and Y

m′
−−→ A are equivalent if there is an isomorphism X

ϕ−→ Y
such that the below commutes.

X Y

A

m

ϕ

m′

We will conflate a subobject, its source, and its equivalence class. In Set, a
subobject of A can be identified with its image, i.e. a subset of A.
The characteristic function of a subset X ⊆ A is the function χA : A → {0, 1}
defined by χX(a) = 0 if and only if a ∈ X. The association X ↔ χX is a bijection
between Sub(A) and Hom(A, {0, 1}).
In any category, a morphism 1

true−−→ Ω is a subobject classifier if, for any subobject

X
m−→ A, there is exactly one A

f−→ Ω such that the following is a pullback

X 1

A Ω

m true
f

In Set, if we set Ω = {0, 1} and let true : {0} → {0, 1} send 0 to 0, then Ω is a
subobject classifier and f is the characteristic function of X.
Thus, true classifies subsets in two senses: 1. Sub(A) ∼= Hom(A,Ω), naturally in
A; 2. Ω is a subobject classifier in Set. These conditions turn out to be equivalent.

Elementary Topoi

A topos E is a category that has all finite limits and is equipped with an object Ω
and a functor P : Eop → E (the "powerset functor") , such that

SubE A ∼= HomE(A,Ω) (1)

HomE(B × A,Ω) ∼= HomE(A,PB) (2)

naturally in A. Recall Equation 1 asserts that E has a subobject classifier. An
example is the category of sets, where Ω = 2 (corresponding to true/false), and
P is simply the powerset function.
A topos gives a way to define logical predicates on A as a subobject A′ → A, its
truth value being a characteristic morphism χ : A → Ω. For instance in A = N ∈
Set, the statement “n is even” corresponds to a morphism that sends all even
numbers to 0.
In a more general topos, Ω can have more than two elements which gives rise to
more truth values than True/False.
Other logical connectives can be modeled as well: the conjunction P ∧ Q is rep-
resented by the pull back of χP and χQ, and the implication =⇒ is constructed
with ΩΩ.

Exponentials

Given A,B in a category, BA is the exponential object of B and A if Hom(X ×
A,B) ∼= Hom(X,BA) natuarlly in X. We will show that exponential of any object
exists in a topos. The construction is similar to the construction of BA in sets: it
is a subset of A×B. We consider P (A×B). Using Set as an example, a subset
S of A × B is a function only when for all a ∈ A, {b : (a, b) ∈ S} is a singleton
for all a. The predicate of “being a singleton" can be formulated as a morphism to
Ω. Thus we let ϕ : P (A× B) → Ω be the morphism that asserts that a subobject
represents a function. Then BA is the pull back of ϕ along true : 1 → Ω.

Heyting Algebras

A lattice is a poset with all binary products (greatest lower bounds) and binary coproducts
(least upper bounds). A Heyting algebra is a Cartesian closed poset with all finite products
and coproducts, i.e., a lattice with 0,1, and all exponentials yx = (x ⇒ y) for elements x, y
of the lattice. These exponentials satisfy the identities (x ⇒ x) = 1, x ∧ (x ⇒ y) = x ∧ y,
y ∧ (x ⇒ y) = y, and x ⇒ (y ∧ z) = (x ⇒ y) ∧ (x ⇒ z); negation may be defined
in a Heyting algebra as x ⇒ 0. For any small category C and any contravariant functor
P into C, the poset SubĈ(P ) of subfunctors of P is a Heyting algebra, where Ĉ denotes

SetsCop
. In any category C with finite limits, an internal Heyting algebra is an object L

equipped with morphisms ∧,∨,⇒: L × L → L satisfying the identities which define a
Heyting algebra, i.e., an object whose subobjects form a Heyting algebra. These equations
may be diagrammatized in order to define the operations as morphisms of C. For example,

letting ⇒L3 denote (⇒ × ⇒)◦ (1L× τ × 1L)◦ (π1× 1L×L×L),
L× L× L L× L

L× L L

1L×∧

⇒
L3 ⇒

∧
commutes when x ⇒ (y ∧ z) = (x ⇒ y) ∧ (x ⇒ z).

Direct Image

We can extend the notion of the direct image of a subset under a morphism of sets to
general topoi. In particular, we consider an arbitrary monomorphism k : B′ → B in a topos
E . We can define a morphism ∃k : PB′ → PB between the power objects of B′ and B.
The construction of ∃k is contained in the diagram below:

U 1 1

B′ × PB′ Ω

B × PB′ Ω

PB′ PB

uB′ true

true
∈B′

k×1

ek

∃k

The Beck-Chevalley Condition for ∃: if m is the pullback of a monomorphism k along an
arbitrary arrow g in a topos, as in the left-hand square, then the right-hand square will
commute:

C ′ B′ PB′ PC ′

C B PB PC

g′

m k ∃k

Pg′

∃m
g Pg

For all monomorphisms k, the composite

PB′ PB PB′∃k Pk

is the identity. This is because the commutative diagram

B′ B′

B′ B

1

1 k

k

is a pullback, ∃1 = 1, and P1 = 1. Applying the Beck-Chevalley condition completes the
proof that this composition of morphisms is the identity.
Furthermore, there exists another "direct image" k! : SubE B

′ → SubE B which is to SubE B
′

what ∃k is to PB′. For any monomorphism k′ : B′′ → B′ and k : B′ → B, k ◦ k′, treated as
a subobject of B, is the "direct image" under k of k′ treated as a subobject.

Factoring morphisms

We can factor any function as a surjection followed by an injection

A imf B

f

e m

where m is the inclusion map. In any category with finite limits and colimits, we
can factorize f = me, where m is a monomorphism and e is an epimorphism.
(Many authors define topos to have finite colimits. This is not strictly necessary;
see [1], p. 176.) We will give a categorical construction in Set and merely assert
that it works in general. (For details, see [1], p. 184.)
Let C be the pushout of f and f . Explicitly, C contains two copies of B, where
the elements in imf are identified with one another. x sends B to the first copy,
and y sends B to the second. Let M m−→ B be the equalizer of x and y. Explicitly,
M ∼= imf . From the pushout diagram defining C, we see that f also equalizes
x and y. By the universal property of equalizer, there is a unique A

e−→ M such
that the following commutes

M B C

A

m

y

x

f
e

f = me is the desired factorization.

Heyting Algebra Structure of Topoi

For any object A of a topos E , the poset SubE(A) is a Heyting algebra, and for
any morphism k : A → B, the induced map k−1 : SubE B → SubE A, defined
pointwise by the pullback along k of any subobject inclusion map of A, is a
homomorphism of Heyting algebras.
To show that SubE(A) is a poset, it suffices to consider that for any monomor-
phism U, V :↣ 1, UV is also monomorphism, so that the lattice SubE(1) has
exponentials, and so is a Heyting algebra. The result follows from the fact that
the slice category of a topos over any of its objects A is also a topos, and
SubE(A) ∼= SubE/A(1) in any topos. Furthermore, the pullback functor along
k preserves the subobject classifier and exponentials, and commutes with the
morphisms ιA, ιB identifying subobjects of A with their inclusion maps to A, so
the following diagram demonstrates that k−1 preserves Heyting algebra struc-
ture:

SubE(B) SubE(A)

E/B E/A

k−1

ιB ιB

k∗

Likewise, for any object A of a topos E , the exponential object PA is an internal
Heyting algebra, with the property that for any morphism k : A → B, the induced
map Pk : PA → PB is a homomorphism of Heyting algebras.
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What Are Elliptic Curves?

An elliptic curve over Q is a smooth cubic projective curve E defined over Q, with
at least one rational point O ∈ E(Q) that we call the origin. For simplicity, we
concentrate on trying to find all rational points on a curve

E(Q) : y2 = x3 + ax + b, a, b ∈ Q

with discriminant ∆ = −16(4a3 + 27b2) ̸= 0 to ensure non-singularity. The set of
rational points E(Q), defined as

{(x, y) ∈ E | x, y ∈ Q} ∪ {O}

where O = [0,1,0] is the point at infinity. This set forms a finite generated abelian
group:

E(Q) ∼= Zr ⊕ E(Q)tors

where r is the rank (infinite-order points) and E(Q)tors is the finite torsion sub-
group.
Elliptic curves play a central role in number theory, cryptography, and algebraic
geometry.

How Does Point Addition Work?

Point addition and doubling gives elliptic curves their group structure:
Point Addition: Given two distinct points P and Q on an elliptic curve, their sum
P +Q is defined as follows:

• Draw the straight line that intersects P and Q.

• This line will generally intersect the curve at a third point, say R.

• Reflect R across the x-axis to get P +Q.
Point Doubling (2P ): If P = Q, we take the tangent line at P and repeat the
same process:

• Compute where the tangent at P intersects the curve again.

• Reflect that intersection point across the x-axis to obtain 2P .

Why Rank and Torsion Matter

When the Rank is zero, there are only a few rational points. On the other hand,
if the rank is at least one, there are infinitely many, and these can be added
together to create new points. The rank is at the center of the famous Birch and
Swinnerton-Dyer Conjecture, which predicts how the rank connects to deeper
properties of the curve.
Torsion subgroup is the part of the curve that contains points that eventually
“loop back” to the identity when added to themselves a finite number of times (
finite-order points). Over the rational numbers, the torsion subgroup is always
one of just 15 possible types, thanks to a result called Mazur’s Theorem. Both
rank and torsion give us insight into the curve’s structure. We explored patterns
in torsion and discriminant values and their relation to rank.

Our Data Science Approach

Goal: Explore statistical and predictive relationships among rank, torsion, and discriminant.
Data Source: Sample of 1 million elliptic curves from the 3.8 million available in the LMFDB
(L-Functions and Modular Forms Database), queried using the lmfdb-lite Python library.
Key Fields:

Rank (r), Discriminant (∆), Torsion structure, Conductor (N ), Maximal Rank

Workflow:

1. Connect to LMFDB mirror via ‘psycopg2‘

2. Extract and clean data using ‘pandas‘

3. Apply log-scaling to |∆|, one-hot encode torsion types

4. Build regression and classification models (Random Forest, Logistic Regression)

Statistical Modeling

Graph Note: The “1” column appears only in the top two graphs and represents
curves that don’t satisfy the max rank condition. It’s included for reference.

Model classification performance on elliptic curve rank prediction

Logistic Regression
Class Precision Recall Support

0 (rank 0) 0.45 0.57 119,633

1 (rank > 0) 0.65 0.53 180,367

Accuracy 0.56 300,000

Weighted avg 0.57 0.55 300,000

Decision Tree
Class Precision Recall Support

0 (rank 0) 0.44 0.64 119,633

1 (rank > 0) 0.66 0.46 180,367

Accuracy 0.53 300,000

Weighted avg 0.57 0.53 300,000

Max Rank

The rank is one of the most important properties describing the structure of an
elliptic curve. There isn’t a method or formula that computes the rank for elliptic
curves due to its complexity. However, we can compute the max rank under
certain conditions to create an interval given by:

0 ≤ rank(E) ≤ max rank(E).

This allows us to narrow down our understanding of the elliptic curves rank. The
bound is found by using the following statement. Let E/Q be any elliptic curve
with a non-trivial point of 2-torsion, and let a (resp. m) be the number of primes
of additive (resp. multiplicative) bad reduction of E/Q. Then:

rankZ(E(Q)) ≤ m + 2a− 1.

The max rank used in the graphs was calculated using an algorithm we devel-
oped that involved the curves’ numerical properties found in the database.

Findings and Discussion

Graph Discussion
Figure 1: We can see the majority of the curves in our sample fall in the "-1"
column, further demonstrating how difficult obtaining knowledge about the rank
can be. Interestingly, rank 0 and 1 curves had the highest frequency of bounded
ranks in our sample, specifically a max range of 3, 4 or 5.
Figure 2: We can see the size of the "-1" column’s ∆ stretches the entire y-axis,
exhibiting no apparent trend. However, the interval where the discriminant lies
increases in size and value-wise as the max rank bound increases.
Figure 3: Here we see the graph exhibits a downwards trend. Large ∆ tend to
trigger more primes of bad reduction, the variables used in computing the max
rank bound. This appears to overestimate their rank significantly.
Figure 4: This table illustrates the tremendous unlikelihood of an elliptic curves
rank being equal to their bound. This refers to the percentage of curves in the
sample whose actual rank matches their bound.
Table Insights
We applied several models that classified an elliptic curve as having rank 0 or
greater than 0 based on the discriminant, max rank, and the torsion order. We
chose to display the 2 most efficient models, a logistic regression and a binary
decision tree. Advanced methods such as Support Vector Machines were not
very effective as they require heavy computing power and smaller sample sizes
were ineffective. The imbalance of curves with rank 0/rank above 0, limited us
to methods that were efficient with large samples and accounted for imbalanced
data. To facilitate table interpretation, we’ve included some definitions. Preci-
sion: out of the predictive positives, how many were actually correct. Recall:
out of the actual positives, how many did the model guess correctly.
Limitations: Rank is difficult to predict precisely; the BSD conjecture remains
unsolved.
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Formal Intro to Knots and Links

A link diagram is a 4-valent plane graph with extra structure associated to its ver-
tices. We call a vertex in a link diagram a crossing, and the additional structure
associated to it indicates the manner in which we represent the crossings in the
diagram as an “over” or “under” crossing.

Formally, a link diagram is a triple (D, V, σ) where D is a 4-valent graph embedded
in the plane, V is the set of vertices (crossings) of D, and σ is a function on V
specifying the crossing information (i.e. which strands are the over and under
strand).

Figure 1: The three most basic knots

Reidemeister moves are local transformations of a link diagram. There are three
types of moves:

Figure 2: Reidemeister moves

A link is defined as an equivalence class of link diagrams under the Reidemeister
moves. Each disjoint circle represented in the link diagram is called a compo-
nent. A link with one component is called a knot.

The simplest link is the class of the empty graph 0 := (∅, ∅, σ), which is known as
the unknot and traditionally drawn as a plane circle, as shown in Figure 1.

A link orientation is a choice of direction in which the link is traversed on each
component. An oriented link diagram is a link diagram D together with a consis-
tent direction assigned to each edge of the graph, forming closed directed loops.
Orientation allows us to define operations such as the connected sum, where the
joining of arcs must respect the orientation.

The connected sum K1#K2 of two oriented knots is formed by removing a small
open arc from each knot, and connecting the resulting endpoints with two new
arcs that join them smoothly and preserve orientation. This operation results in a
new knot diagram that locally looks like the two knots joined end-to-end.

Figure 3: Connected sum of two trefoils

The operation of connect sum makes the set of knots into a monoid. In fact, it is
a free monoid isomorphic to (N,×). Hence, it makes sense to define prime and
composite knots: a knot is called composite if there exist nontrivial knots K1 and
K2 such that K = K1#K2. Otherwise, K is called prime.

The Jones Polynomial

A link invariant is a quantity that remains unchanged under the Reidemeister moves. Invari-
ants are essential for distinguishing non-equivalent knots and links and organizing tabulated
data.

Laurent polynomials are polynomials that allow for both positive and negative powers:

f (q) = anq
n + · · · + a0 + · · · + a−mq−m.

The Kauffman bracket polynomial associates a Laurent polynomial to a link diagram D,
and is defined recursively by the following rules:

1. ⟨ ⟩ = 1.

2. ⟨ ⟩ = A ⟨ ⟩ + A−1 ⟨ ⟩.

3. ⟨D ∪ ⟩ = (−A2 − A−2)⟨D⟩.

A

A−1

A2

A−2

+ +

+

+

Figure 4: Kauffman bracket polynomial computation for the Hopf link

The Kauffman bracket is not invariant under the first Redeimeister move. To fix this, we
define the writhe w(D) of an oriented link diagram D is the sum of the signs of its crossings:

w(D) =
∑
c∈V

sign(c).

Each crossing is assigned +1 if it is a positive (right-handed) crossing, or −1 if it is a negative
(left-handed) crossing.

The Jones polynomial VL(q) is a Laurent polynomial in Z[q±1/2] assigned to an oriented
link L. It is a powerful invariant that can distinguish many (but not all) links.

We define VL(q) from an oriented diagram D of the link L, using its Kauffman bracket and
writhe:

VL(q) = (−A3)−w(D)⟨D⟩ where q = A−4.

This normalization ensures invariance under the first Reidemeister moves, making VL(q) a
true link invariant.

Based on Figure 4, the Kauffman bracket polynomial of the Hopf link is ⟨D⟩ = −A4 − A−4,
and the writhe is w(D) = 2. So, the Jones polynomial of the Hopf link is:

VL(q) = (−A3)−w(D) ⟨D⟩ = (−A3)−2(−A4 − A−4) = A−2 − A−10 = −q
1
2 − q

5
2.

The Jones polynomial is multiplicative under connected sum:

VK1#K2
(q) = VK1

(q) · VK2
(q).

The Jones polynomial respects the structure of knots under connected sum.

Planar Diagram Notation

The planar diagram (PD) notation represents a knot as a list of vertices along
with a numbering for each of the four incident edges. Each vertex (denoted X)
can be positive or negative, depending on whether the crossing is right-handed
or left-handed. The edges are written counterclockwise.

i

jk

li

jk

l

Xijkl −Xijkl

Figure 5: Right-Handedness and Left-Handedness for PD Notation

The right-handed trefoil knot can be represented in PD notation as follows:

1

2

3

4

5

6

X3146X5362X1524

Figure 6: PD Code for a right-handed trefoil

To reconstruct a knot from PD notation, draw all the positive and negative ver-
tices and label its four edges counterclockwise. Then connect like numbers,
respecting the orientation of the edges (i.e. outbound edges connect to inbound
edges).

PD notation allows us to more easily calculate the Kauffman bracket polynomial
(and therefore the Jones polynomial).

Knot Tabulation

Based on [1], we implemented a Python script to generate a nearly complete
tabulation of prime knots up to 10 crossings. For alternating knots, we adapted
code from [2]. For non-alternating knots, our program computes the Jones poly-
nomial for each knot diagram, distinguishing knots based on their PD notation.
See our code here: https://github.com/awaang/knottery.

We generated a total of 248 distinct prime knots: 165 alternating and 83 non-
alternating. This is two fewer than the 250 listed in Khesin’s tabulation because
two pairs of non-alternating knots share the same Jones polynomial. This con-
firms that the Jones polynomial is not a complete knot invariant.
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Introduction

Algebraic K-theory studies a family of functors that associate rings and algebraic vari-

eties (or more generally exact categories) to abelian groups, known as algebraic K-groups

and denoted Kn. The classical theory originated in the 1950s and 1960s through the

foundational work of Grothendieck on K0, followed by Bass and Whitehead on K1, and
Milnor on K2, establishing the lower K-groups.

A major advancement came in the 1970s when Quillen defined higher K-groups Kn

for all natural n, unifying and vastly extending the scope of algebraic K-theory. These
groups capture deep arithmetic and geometric information about rings and, more gen-

erally, algebraic varieties.

Over time, the theory has revealed deep connections across diverse mathematical dis-

ciplines, particularly serving as conceptual bridges amongst algebraic number theory, al-

gebraic geometry, arithmetic geometry, and algebraic topology. This poster outlines the

definition of K-groups, their properties, some explicit computations, and their significant

connections to number theory and arithmetic geometry.

In this poster, R is a commutative ring with unity and all modules are finitely generated,
although the former is not usually necessary.

K0 (Grothendieck group)

A projective module is a summand of a free-module. Projective modules form a

monoid P via P + P ′ := P ⊕ P ′. Over PIDs or local rings, projective modules are
free (i.e. have a basis). The group K0 is defined to be formal group closure of P.

Example. Consider R = Z. Because Z is a PID, finitely generated projective modules
overR are free. Thus, P ∼= {Zn|n ∈ N} ∼= N, where the isomorphisms are as monoids.
The group closure is thus Z, and thus K0(R) ∼= Z.

Likewise, the K0 of any PID or local ring is Z. Additionally, the tensor product ⊗ dis-

tributes over ⊕, and thus gives K0 the structure of an commutative ring with unity
1 := R. By examining the above definition, K0 can be seen as a functor from commu-
tative rings with unity to abelian groups.

Proposition. The functorK0 respects binary products. That is, K0(R × R′) ∼= K0(R) ×
K0(R′).
Example. We haveK0(Z[ζp]) ∼= K0(Z[µp]), where the right side denotes the group ring,
and µp is the pth roots of unity.

K0 of a Dedekind domain

A Dedekind domain R is a domain such that for any I ⊂ J ideals there is some ideal
J ′ ⊆ R with I = JJ ′. In a Dedekind domain, any non-zero fractional ideal (R modules

I ⊂ Frac(R) = K with rI ⊆ R for some nonzero r ∈ R) is invertible; that is, there is
some J with IJ = R. Let IK be the set of non-zero fractional ideals. It can be given an

abelian group structure by I +G J := IJ and contains as a subgroup the principal ideals
PK . The quotient Cl(K) := IK/PK is the class group, which measures lack of unique

factorization. The size of the class group is called the class number.

Theorem. R is a PID if and only if R is a UFD if and only if Cl(K) ∼= 1.

Example. IfK is a number field (i.e. [K : Q] < ∞) thenOK (the elements which are roots

of monic polynomials over Z) is a Dedekind domain. We get an exact sequence
0 → O×

K → K× → IK → Cl(K) → 0.

Lemma. A finitely generated R-moduleM is projective if and only if it is isomorphic to a

direct sum of ideals.

Theorem. (Steinitz) The map I1 ⊕ · · · ⊕ Ik → (k, I1 · · · Ik) ∈ N×Cl(K) induces an isomor-
phism K0(R) ∼= Z ⊕ Cl(K).
Example. We have K0(Z[(1 +

√
−5)/2]) ∼= Z ⊕ Z/2Z, K0(Z[ζ37]) ∼= Z ⊕ Z/37Z, and

K0(Z[ζ29]) ∼= Z ⊕ (Z/2Z)⊗3.

K1 (Whitehead Group)

Consider the map GLn(R) ↪→ GLn+1(R) via A 7→
[
A 0
0 1

]
. This is a directed system

with limit GL(R), which inherits a group structure. Informally, this is the set of infinite
matrices with only finitely many differences from the identity. Let En(R) denote the
subgroup of GLn(R) generated by elementary matrices eij(r) (i.e. identity with the ij
entry changed to be r for i 6= j). We likewise have En(R) ↪→ En+1(R) and thus some
limit E(R) ⊆ GL(R).
Definition. The K1 of a ring R is defined to be GL(R)/E(R).
Proposition. We have E(R) = [GL(R),GL(R)], the commutator subgroup of GL(R).
Corollary. We have K1(R) ∼= H1(GL(R),Z), where Hi denotes group homology.

Observation. The determinant of every element of En(R) is 1, and thus the unit group
R× of R will be a direct summand of K1. Consequently, we have K1(R) ∼= R× ⊕
(SL(R)/E(R)), where the second summand is denoted SK1.

Theorem. Let R be a local ring or a Euclidean domain. Then K1(R) ∼= R×.

Example. Let R = Z/15Z ∼= Z/3Z × Z/5Z. Then K1(R) ∼= (Z/3Z)× × (Z/5Z)× ∼=
Z/2Z × Z/4Z.We also have K1(Z) ∼= {±1} and K1(R) ∼= R× ∼= R × Z/2Z.

Connection to Algebraic Topology. (Mayer-Vietoris) For I ⊆ R an ideal mapped isomor-
phically via f : R → S such that quotienting and mapping to S commute, we have the
following exact sequence

K1(R) → K1(S) ⊕ K1(R/I) ±−→ K1(S/I) ∂−→ K0(R) → K0(S) ⊕ K0(R/I) ±−→ K0(S/I).

K2 (Milnor Group)

For n ≥ 3, consider the group Stn(R) defined by generators xij(r) for r ∈ R with the

relations

xij(r)xij(s) = xij(r + s), [xij(r), xkl(s)] =


1 i 6= l, j 6= k

xkj(−rs) i = l, j 6= k

xil(rs) i 6= l, j = k.

There is a natural homomorphism φn via xij(r) 7→ eij(r) ⊆ En(R). Now put St(R) as the
direct limit of Stn(R). The φ define a surjective map St(R) → E(R).
Definition. K2(R) := Ker(φ). Consequently, the following is exact

0 → K2(R) → St(R) φ−→ GL(R) → K1(R) → 0.

Theorem. (Steinberg) The center of St(R) is preciselyK2(R).
Corollary. We have K2(R) ∼= H2(E(R),Z).
For R = Z, we can compute K2(Z) ∼= Z/2Z, but this is a unwieldy definition in general.
However, for R = F , a field, it reduces by the following theorem.

Theorem. (Matsumoto) The group K2(F ) is isomorphic to the group generated by {x, y}
with x, y ∈ F × that is linear on each coordinate and satisfies {x, 1 − x} = 1 for x 6= 0, 1.

This can be naturally seen via {r, s} = [x12(r), x13(s)] and checking the identities.
Computation. We have −r = (1 − r)/(1 − r−1), so

{r, −r} = {r, 1 − r}{r, 1 − r−1}−1 = {r−1, 1 − r−1} = 1.

{r, s}{s, r} = {r, (−r)s}{s, (−s)r} = {rs, −rs} = 1.

Corollary. We have K2(Fq) = 1, where Fq denotes the finite field on q elements.

Proof. Consider some generator x of F×
q . Then {x, x} generates K2(Fq). For q even, we

have {x, x} = {x, −x} = 1. For q odd, find some u non-square such that 1 − u is not a
square by the pigeon hole principle. Then for some odd numbers n, m, we have

1 = {u, 1 − u} = {xn, xm} = {x, x}nm = {x, x},

where the last equality is since {x, x}2 = 1.

Higher K-groups

For any group G, we write BG to denote the classifying space of G.

Quillen + construction. Given a topological space X and perfect H � G = π1(X), we
say that f : X → X+ is the + construction if H is the kernel of f∗ : π1(X) → π1(X+)
and induces isomorphisms on all homology groups (this is possible since H1 = πab1 ).

Definition. Consider the perfect normal subgroup E(R) ⊆ GL(R). Then for n > 0,
Kn(R) = πn(BGL(R)+).

Proposition. The functorKn from rings to abelian groups respects biproducts.

Theorem. We have K3(R) = H3(St(R),Z).
Proof. K3(R) := π3(BGL(R)+) ∼= π3(BSt(R)+)

?∼= H3(BSt(R)+) ∼= H3(St(R)), where
the ? isomorphism is due to lower homology groups vanishing.

Computation. K3(Z) ∼= Z/48Z, and Kn(Z) are related to the Bernoulli numbers for

n ≡ 2, 3 (mod 4).

Milnor K-Theory

When trying to generalize K-theory, Milnor observed that for fields R = F , we have
K1(F ) = F ×. The following ad-hoc definition for n > 0 turned out to be surprisingly
close to Kn, and is now known as Milnor’s K-theory.

KM
n (F ) = F × ⊗ F × ⊗ · · · ⊗ F ×

〈a1 ⊗ a2 · · · ⊗ an : ai + ai+1 = 1〉
.

There exists a natural map KM
n (F ) → Kn(F ) that is an isomorphism for n ≤ 2. For

n > 2 this map is no longer necessarily an isomorphism. For example, for n ≥ 2 we have
KM

2n−1(Fq) ∼= 1, but K2n−1(Fq) ∼= Z/(qn − 1)Z.

Example. One can compute

KM
2 (Q) ∼= K2(Q) ∼= Z/2Z ⊕

⊕
p

Z/(p − 1)Z.

MilnorK-theory (KM
n (F )) is deeply related to arithmetic objects such as the Brauer group

Br(F ) via the Merkurjev-Suslin Theorem (n = 2), the abelianized Galois group GabF (via

Kato’s higher dimensional class field theory), and more generally ètale cohomology via

the Bloch-Kato conjecture (n arbitrary), proved by Voevodsky, which says that

KM
n (F )/` ∼= Hn

et(F, µ⊗n
` )

for some ` invertible in F .

K-theory and Number Theory

ComputingK-groups in general is very difficult. For example, we can currently classify
Kn(Z) for n = 0, 4 or n 6≡ 0 (mod 4). It is conjectured to be trivial for 4n > 0.
In 1992, Kurihara showed that this statement is equivalent to p not dividing the class
number of the maximal real subfield of Q(ζp), which is equal to Q(ζp + ζ−1

p ).
In this way, K-theory provides a way to relate purely algebraic results to number the-
oretic results. Indeed, the K-theory of rings of integers of number fields is always a
finitely generated abelian group, and is related to special values of L-functions.
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Introduction

The Primes problem is formally defined as: given an integer n, determine whether n is
prime. This fundamental decision problem has been of significant interest, with implica‐
tions for number theory and cryptography.

The complexity of an algorithm is measured in terms of input size. For Primes, this is the
log n bits needed to represent the number n (note we use log n to represent log2 n). Many
simple algorithms for Primes, such as trial division, take O(

√
n) = O(2log n/2) time, which

is exponential in input size. This is impractical for 1024‐bit primes used in cryptography,
and motivated the search for a polynomial‐time algorithm running in O(logk n) for k ∈ N
In this poster, we trace the evolution from polynomial‐time certificates to deterministic
polynomial‐time algorithms for primality testing.

Complexity Classes: P and NP

The complexity class P contains problems solvable in polynomial time.
Primes is in P if and only if there exists a O(logk n) algorithm for some constant k.

The complexity class NP contains problems verifiable in polynomial time using certifi‐
cates, which can be thought of as proofs.
Primes is in NP if and only if there exists an O(logk n) algorithm for some constant k
that takes as input a number n, a decision d and a certificate c and outputs if the
decision is correct.

A certificate enables verification without solving the original problem. For primality, a
certificate allows Bob to verify Alice’s claim that n is prime/composite without indepen‐
dently determining primality. We start with showing that primality testing is in NP.

Primes is in NP (1975)

To prove Primes ∈ NP, we need certificates for two cases:
n is composite: let c be any non‐trivial factor of n (to verify, check if n is divisible by c)
n is prime: More complex certificate based on primitive roots

Theorem 1 (Fermat’s Little Theorem Converse).
For all n ∈ N, n is prime if and only if there exists a witness a < n such that

1. an−1 ≡ 1 (mod n)

2. a
n−1

q ̸≡ 1 (mod n) for all prime factors q of n − 1

Note a is a primitive root modulo n.

We inductively construct a certificate for n > 3 being prime as follows. As n is prime,
there is some primitive root a modulo n. Let the certificate for n be the pair (a, n) along‐
side the factorization of n−1 = q1 · · · qk, where each qi is prime. We attach the certificate
of primality of each qi to the certificate for n.

if we inductively assume the number of the integers in the certificate for each qi is at
most 5⌈log qi⌉ − 5, then the number of integers of the certificate for n

2 + k +
k∑

i=1
(5⌈log qi⌉ − 5) ≤ 2 + 5⌈log n⌉ − 3k ≤ 5⌈log n⌉ − 5

so the inductive hypothesis holds. Note the size of the certificate is bounded above by
(5⌈log n⌉ − 5)⌈log n⌉ = O(log2 n), and the constants are chosen to satisfy the base case.

Bob can verify this certificate in polynomial time by:

1. Verifying that
∏k

i=1 qi = n − 1 (polynomial in log n)
2. Verifying an−1 (mod n) ≡ 1 (polytime by repeated squaring)
3. For each qi, verifying a(n−1)/qi (mod n) ̸≡ 1 (polytime by repeated squaring)
4. Verifying the primality of each qi

The certificate size is O(log2 n) bits. With a similar induction, we can show verification
takes O(log4 n) time. Bob can verify primality of n in polynomial time, so Primes ∈ NP.

Probabilistic Primality Tests

Monte Carlo algorithms offer efficient primality testing with one‐sided error: always
correctly identify primes, but may misclassify composites as primes with bounded prob‐
ability. The key insight involves randomly selecting witnesses that reveal compositeness.
Multiple iterations exponentially reduce error probability, enabling testing of numbers
far beyond deterministic methods’ capabilities.

Solovay-Strassen Algorithm (1977)

The Solovay‐Strassen test uses the Jacobi symbol and the Euler criterion for primality
testing. We define

(·
·
)
to be the Jacobi symbol, where

(a

n

)
=


0 if gcd(a, n) > 1
1 if n is prime and a ≡ x2 (mod n) for some x ̸= 0
−1 if n is prime and a ̸≡ x2 (mod n) for all x∏k

i=1
(

a
pi

)ei
if n =

∏k
i=1 p

ei
i is composite

Theorem 2 (Euler Criterion). Let p be a prime. Then a(p−1)/2 ≡
(

a
p

)
(mod p) for all a < p.

Algorithm 1 Solovay‐Strassen (n, k)
1: for i = 1 to k do
2: Choose random a ∈ [2, n − 1]
3: if gcd(a, n) > 1 then
4: return composite
5: if a(n−1)/2 ≡

(a
n

)
(mod n) then

6: return probably prime
7: return composite

Proof Sketch. For prime n, the algorithm always returns ”probably prime” by Euler’s crite‐
rion. For composite n, let G = {a ∈ Z×

n | a(n−1)/2 ≡
(a

n

)
(mod n)}. Note G is a group,

and the probability of returning prime when composite is at most |G|/|Z×
n |. So, if we

show G ̸= Z×
n , then the probability of error is at most |G|/|Z×

n | ≤ 1/2.
For the general case, assume for contradiction that n is composite (but not a prime power
nor a perfect square) and G = Z×

n . Then for all a ∈ Z×
n , a(n−1)/2 ≡ ±1 (mod n). Let

n = r · s, with (r, s) = 1. If a(n−1)/2 ≡ −1 (mod n) for some a, then we can find b such
that b ≡ 1 (mod r) and b ≡ a (mod s). Then b(n−1)/2 ≡ 1 (mod r) and b(n−1)/2 ≡ −1
(mod s), a contradiction. So, a(n−1)/2 ≡ 1 (mod n) for all a ∈ Z×

n . Yet, this means
(a

n

)
= 1

for all a ∈ Z×
n , which implies n must be a perfect square, a contradiction.

Using repeated squaring, each iteration of the algorithm runs in time O(log2 n) time, and
after k iterations, the one‐sided error probability is at most 1/2k.

Miller-Rabin Algorithm (1980)

Miller‐Rabin improves on Solovay‐Strassen with a 1/4 error probability per iteration. The
key insight is that if n is prime, ±1 are the only square roots of 1 modulo n. If we let
n − 1 = 2s · d (where d is odd), for all a < n, either ad ≡ 1 (mod n) or a2jd ≡ −1 (mod n)
for some j ∈ [0, s − 1]. For composite numbers, this condition fails for 3/4 of possible
choices of a.
Algorithm 2 Miller‐Rabin (n, k)
1: Write n − 1 = 2s · d where d is odd
2: for i = 1 to k do
3: Choose random a ∈ [2, n − 1]
4: if ad ≡ 1 (mod n) then continue to next iteration
5: for j = 1 to s − 1 do
6: if a2jd ≡ −1 (mod n) then continue to next iteration
7: ▷ If we reach here, then ad ̸≡ 1 (mod n) and a2jd ̸≡ −1 (mod n) for all j ∈ [0, s − 1]
8: return composite
9: return probably prime

Using repeated squaring, each iteration runs in O(log3 n) time, and after k iterations, the
error probability is at most 1/4k.

AKS Algorithm: Primes is in P (2002)

The AKS algorithm places primality testing in P with a deterministic polynomial‐time
algorithm running in O(log11 n). It uses a key insight about polynomial identities over
finite rings.

Notice for any n ∈ N, a coprime to n, the binomial expansion (X +a)n ≡ Xn+a (mod n)
if and only if n is prime. So, we can test if n is prime by checking if (X + a)n ≡ Xn + a
(mod n) for our favorite a < n. Yet, this takes O(n) time, evaluating every coefficient of
the binomial expansion. Instead, we try to evaluate if

(X + a)n ≡ Xn + a (mod Xr−1, n)
where r is carefully chosen to be polynomial in log n, and large enough to ensure n is
composite if and only if the above identity fails.

We define the order ordr(a) to be the smallest positive integer k where ak ≡ 1 (mod r).
Algorithm 3 AKS Primality Test (n)
1: if n is a perfect power then return composite
2: Find smallest r such that ordr(n) > 4 log2 n
3: for a = 1 to r do
4: if gcd(a, n) > 1 then return composite
5: for a = 1 to ⌊

√
ϕ(r) log n⌋ do

6: if (X + a)n ≠ Xn + a (mod Xr − 1, n) then return composite (∗)
7: return prime

Proof Sketch. If n is prime, then (X + a)n ≡ Xn + a (mod n) for all a < n, thus the
algorithm returns prime.

The challenge is proving that composite numbers always fail the test. Let n be a number
which passes all the congruences (∗) and reaches the end of the algorithm. For sake of
contradiction, say n is composite. Let prime p | n. As (r, n) = 1, we define the group

I = {nipj (mod r) | i, j ≥ 0}.

We have t := |I| ≥ ordr(n) > 4 log2 n. As p is prime, (X + a)nipj ≡ Xnipj + a (mod Xr −
1, p) for all i, j ≥ 0. So, let h(X) be an irreducible factor of (Xr − 1)/(X − 1) over Fp. Let
ℓ = ⌊

√
ϕ(r) log n⌋. We define the group

J = ⟨(X + 1), (X + 2), · · · , (X + ℓ) (mod h(X), p)⟩

As n passes (∗) for all a < ℓ, for all f (X) ∈ J , f (X)n ≡ f (XN ) (mod h(X), p). Further
analysis using the congruences of I above with the elements of J shows that |J | ≥
2min ℓ,t > n2

√
t (hint, compare elements of J with degree ≤ t). Yet, with some more work,

we can show that |J | ≤ n
√

t (hint: find m1 > m2 such that each f (X) ∈ J is a root of
Q(Y ) = Y m1 − Y m2 (mod h(X), p), then compare |J | to m1). This is a contradiction, so
n must be prime.

Conclusions

A solution can be theoretically elegant yet impractical. Though AKS definitively showed
that primality testing is in P, its O(log11 n) (later improved to O(log6 n)) complexity means
it’s still too slow for most applications. In practice, Miller‐Rabin dominates. Other ap‐
proaches include Goldwasser‐Kilian’s elliptic curve primality proving, which creates pri‐
mality certificates running in expected polynomial time. This method constructs elliptic
curves over finite fields whose orders can be factored to recursively prove primality.

Moving forward, similar to how primality testing was not known to be in P for a long
time, prime factorization is still believed to be outside P, and still remains open.
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Turing Machines

Definition
• A Turing machine (TM) is a model proposed by Alan Turing in 1936. Similar

to a general purpose computer but with unlimited and unrestricted memory.
An infinite tape is used to represent the infinite memory of a Turing machine.
It has a tape head that can read and write symbols and move left and right
on the tape. The initial state of the tape is the input string and is blank
everywhere else.

• A configuration is defined as the current state, current tape contents, and
current head location. The information in the configuration is needed to un-
derstand how our state machine should behave.

• Each Turing machine has a corresponding state machine and given an input
string, it will continue transitioning from configuration to configuration until it
reaches an accept or reject state. Otherwise it may never halt.

Example
• Using the diagram below we see an example of a Turing machine that ac-

cepts palindromes using the alphabet {a,b}. The circles represent states,
the arrows represent transitions, the tape contains the current contents, and
the boxed letter is the current head location. The transitions can be defined
as Q × Γ → Q × Γ × {L,R} st Γ is the tape alphabet and Q is the set of
states. We can take the transition if the first Γ contains the symbol at the
current head. The second Γ represents the symbol we replace the current
head with. And the L,R at the end represents whether we should move the
tape head left or right.

• Let us consider what would happen on the current configuration. We would
take the a,→ ⊔, R transition. This means we would update our current state
to the state "haveA", replace the current head symbol with a blank and move
the tape head right.

Decidable versus Recognizable
• The collection of strings that a Turing machine M accepts is defined as the

language of M, denoted as L(M).
• A language is A decidable if there exists a Turing machine that accepts all

strings in A and rejects all strings not in A.
• A language A is recognizable if there exists a Turing machine that accepts

all strings in A and if the string is not in A, the Turing machine might either
reject or loop forever.

Nondeterministic Turing Machine (NTM)
• The transition function for an NTM maps to a set of possible moves:
δ : Q × Γ → P(Q × Γ × {L,R}), where Q is the set of states, Γ the tape
alphabet, and P denotes the power set.

• A computation forms a tree of branches, where each branch follows one
sequence of nondeterministic choices.

• The machine accepts if any computation branch reaches the accept state.

Time and Space Complexity of Turing Machines

Big ’O’ Notation
Let f, g : N → R+. We say:

f (n) = O(g(n)) ⇐⇒ ∃ c > 0, n0 ∈ N, ∀n ≥ n0, f (n) ≤ c · g(n)

This means that g(n) is an asymptotic upper bound for f (n). Constants and lower-order
terms are ignored. Little-’o’ notation:

f (n) = o(g(n)) ⇐⇒ lim
n→∞

f (n)

g(n)
= 0

This means f (n) grows strictly slower than g(n) asymptotically.
Time Complexity

• Let M be a deterministic Turing Machine that halts on all inputs. The time complexity
of M is the function f : N → N, where f (n) is the maximum number of steps M uses
on any input of length n.

• Let N be a nondeterministic Turing Machine that halts on all branches. Its time com-
plexity is also a function f : N → N, where f (n) is the maximum number of steps taken
on any branch of computation on inputs of length n.

Time complexity classes:
• TIME(t(n)) = {L | some TM decides L in O(t(n)) time}
• NTIME(t(n)) = {L | some NTM decides L in O(t(n)) time}

Space Complexity
• Let M be a deterministic Turing Machine that halts on all inputs. The space complexity

of M is the function f : N → N, where f (n) is the maximum number of distinct tape
cells that M scans on any input of length n.

• If M is a nondeterministic TM where all branches halt, then the space complexity is
also a function f : N → N, where f (n) is the maximum number of tape cells scanned
on any branch of computation for inputs of length n.

Space complexity classes:
• SPACE(f (n)) = {L | L is decided by a TM using O(f (n)) space}
• NSPACE(f (n)) = {L | L is decided by an NTM using O(f (n)) space}

Example Problem: Given a Boolean formula ϕ in conjunctive normal form (CNF) — that is,
an AND of OR-clauses over variables and their negations — with n variables and m clauses,
decide if there exists a satisfying assignment.
Deterministic TM:

• Time: O(2n ·m) — tries all 2n assignments and checks each.
• Space: O(n +m) — input + current assignment + working memory.

Nondeterministic TM:
• Time: O(n +m) — guesses one assignment and verifies in linear time.
• Space: O(n +m) — similar to DTM.

The P vs NP Problem
Definition: P is the class of languages that are decidable in polynomial time on a determin-
istic single-tape TM, i.e.

P =
⋃
k

TIME(nk).

Some examples of languages in P are:
• PATH = {⟨G, s, t⟩ | G is a directed graph that has a directed path from s to t}
• PRIMES = {⟨x⟩ | x is prime} is in P by the AKS algorithm [1], which is based on a

generalization of Fermat’s Little Theorem.
Definition: NP is the class of languages that are decidable in polynomial time on a non-
deterministic TM, i.e.

NP =
⋃
k

NTIME(nk).

• CLIQUE = {⟨G, k⟩ | G is an undirected graph with a k-clique}
• SAT = {⟨ϕ⟩ | ϕ is a satisfiable Boolean formula}

Does P = NP?
• P ⊆ NP because any problem that can be solved in polynomial time can also be verified

in polynomial time.

• Currently, we believe that P ̸= NP, but this hasn’t been proven using current
methods.

• If P = NP, every efficiently verifiable problem could also be efficiently solved.
This would break systems in many fields such as cryptography, since many
rely on problems in NP that are not believed to be in P.

Hierarchy Theorems: Separating Complexity
Classes

More Time, More Power?
• The Time Hierarchy Theorem proves that giving a Turing machine more

time allows it to solve strictly more problems, provided the extra time is
constructible.

• Here, "constructible" time simply means the machine can keep track of how
many steps it is taking, within that same time limit.

• Time Hierarchy Theorem:
For any time constructible function t(n), a language A exists that is

decidable in time O(t(n)) but not decidable in time o(
t(n)

log t(n)
).

• In an analogous way, the Space Hierarchy Theorem states that more us-
able space also leads to strictly greater computational power.

Ideas Behind the Proof of the Time Hierarchy Theorem
• Given a time constructible function t(n), we want to show the existence of

a language that is decidable in time O(t(n)) but not in time o(
t(n)

log t(n)
). To

do this, we define a TM D that, on input of the form <M>10∗ where M is
a Turing machine, simulates M on <M>10∗ for at most t(n)

log t(n)
steps. If M

halts within this time limit, D outputs the opposite of M ’s output. If not,
D rejects. This guarantees that D differs from every machine running in
o(

t(n)
log t(n)

) time. The language decided by D, call it A, is therefore decidable

in time O(t(n)) but not in time o(
t(n)

log t(n)
).

• Currently, when we simulate M using D, we incur an extra logarithmic
time overhead from keeping track of the time taken. If we had an algo-
rithm to simulate any Turing machine for a given number of steps with only
a constant-factor slowdown, then the theorem would be strengthened by
changing o(

t(n)
log t(n)

) to o(t(n)); but no such efficient simulation is known.

Class Separations from the Hierarchy Theorems

• As direct consequences of the Hierarchy theorems, we get that

P ⊊ EXPTIME and PSPACE ⊊ EXPSPACE
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Serre’s Problem

In 1955, Jean-Pierre Serre asked whether every finitely generated projective module over the ring
k[x1, . . . , xn], where k is a field, is free. The geometric motivation behind this question was
that the affine scheme underlying k[x1, . . . , xn] is the affine n-space An

k and algebraic vector
bundles over An

k correspond to finitely generated projective modules over k[x1, . . . , xn]. Since
the real affine space Rn is contractible, every topological (and even smooth) vector bundle over
it is trivial. A similar argument shows that Cn admits no non-trivial holomorphic vector bundles.
Thus, if Serre’s question had an affirmative answer, it would imply the analogous claim in the
algebraic setting. It took 21 years, but the statement was eventually proved by Daniel Quillen
and Andrei Suslin, independently of each other.

Projective Modules

Definition: Let A be a commutative ring with identity. An A-module P is called projective
if every short exact sequence

0 K V P 0φ

splits. In other words, every surjective morphism φ : V ↠ P admits a section map, i.e., a
homomorphism ψ : P → V such that φ ◦ ψ is the identity map on P .
A consequence of this definition is that projective modules are precisely those that arise as direct
summands of free modules. Indeed, if P is projective, the obvious surjection φ : A⊕x∈P ↠ P
induces the identification A⊕x∈P ∼= ker(φ) ⊕ P . The converse is apparent.

Stably Free

In 1957, Serre took the first step toward answering his question by showing that every finitely
generated projective module over k[x1, . . . , xn] is, in a sense, “almost” free.
Definition: An A-module U is stably free if U ⊕ An ∼= Am for some n,m ∈ Z≥0.
This definition resembles that of projective modules; however, it additionally requires that the
complement in the direct sum decomposition of the free module is itself free. By definition,
every stably free module is projective. To show that every projective module over k[x1, . . . , xn]
is stably free, we need to define the notion of finite free resolution.
Definition: We say that an A-module M admits a finite free resolution if there exists an
exact sequence of finite length

0 → En → · · · → E0 → M → 0
such that each Ei is free of finite rank.
Proposition: Let M be a projective A-module. Then M is stably free if and only if M admits
a finite free resolution.
The forward direction of this theorem is trivial. The idea of the converse is to induct on the
length of the finite free resolution, taking the kernel of the map E1 → E0 and constructing a
new exact sequence where the kernel has a shorter finite free resolution than M .
Theorem: Let R be a commutative noetherian ring. If every finite R-module admits a finite
free resolution, then every finite R [x ]-module admits a finite free resolution.
This proof is long, but once we have this result we can use induction to show that every projective
module over k[x1, . . . , xn] is stably free. See [1, Chapter XXI].
The question that now arises is when stably free modules are actually free. It turns out that if a
ring satisfies certain elementary matrix-theoretic conditions, which we will elaborate on shortly,
then all stably free modules over that ring are automatically free. Thus the challenge was to
prove that the polynomial ring k[x1, . . . , xn] satisfied such matrix-theoretic properties. While
such properties were known for polynomial rings over local domains, extending it to arbitrary
rings required new ideas.
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Quillen-Suslin & k[x1, ..., xn]

The jump from stably free to free took significantly more time and is by no means straightforward.
However, a completely elementary version of the proof of the Quillen–Suslin Theorem was given
by Leonid Vaserštĕın, and it is this proof that we will discuss. We follow the exposition given in
[1, Chapter XXI].
Definition: Let A be a commutative ring with identity. We call a vector (f1, . . . , fn) ∈ An

unimodular if its elements generate the unit ideal in A. Additionally, we say that the vector has
the unimodular extension property if there exists an invertible square matrix with entries in A
whose first column is (f1, . . . , fn)T . We say that two unimodular vectors f and g are equivalent
if there exists an invertible matrix M such that f = Mg and we write f ∼ g to denote this.
The first step in Vaserštĕın’s proof is to use a specific result about the unimodular extension
property for a polynomial ring over local domains. This is known as Horrocks’ theorem.
Theorem: Let ω be a local ring and let f be a unimodular vector in ω[x ]n such that some
component of f is monic. Then f has the unimodular extension property.
The proof uses the relation

∑
gi fi = 1 where gi ∈ ω[x ] and elementary row operations to induct

down on the highest degree of a monic entry in f to show that any unimodular vector in ω[x ]n
is equivalent to the first standard basis vector. An immediate corollary of this is that f ∼ f (0)
over ω[x ]. The next step is to globalize Horrocks’ result.
Proposition: Let R be an integral domain and let f be a unimodular vector in R [x ]n such that
some component of f is monic. Then f ∼ f (0) over R [x ].
This proof uses a lemma in which we go from the local result of Horrocks to two variables by
shifting x 7→ x + cy , where the set of all possible c ’s which we can shift turns out to be the
whole of R . We use this fact to get a global result that f ∼ f (0) over R [x ]. Finally, we have
the full Quillen-Suslin theorem.
Theorem: Let k be a field. Then every finitely generated projective module over the polynomial
ring k[x1, . . . , xn] is free.
This result follows by establishing that k[x1, . . . , xn] has the unimodular column extension prop-
erty for all unimodular vectors, not just those with some component monic. This is achieved
via a clever substitution of variables. More specifically, we make the substitution xn = yn, and
xi = yi − y rin for some collection of sufficiently large ri . This coupled with the fact that any
finitely generated projective module is stably free gives us the full result. To elaborate, every
finitely generated projective module M over A := k[x1, . . . , xn] is stably free by the work of Serre.
One now appeals to the unimodular extension property of A to show that if M ⊕ An ∼= Am for
some m, n ∈ Z≥0, then m ≥ n and M ∼= Am−n.

Spec(k[x1, . . . , xn]) & Affine Space

Suppose k is an algebraically closed field. Then the prime spectrum of the ring A :=
k[x1, . . . , xn] can be identified with a topological space that is essentially the affine space An

k ,
equipped with the so-called Zariski topology. This follows from Hilbert’s Nullstellensatz,
which shows that the maximal ideals of k[x1, . . . , xn] are all of the form (x1 − a1, . . . , xn − an)
for some a1, ..., an ∈ k . See [2, §15.3] for details. We can now identify the maximal ideal
(x1 − a1, . . . , xn − an) with the point (a1, . . . , an) in the affine n-space, i.e.,

kn ∼−→ MaxSpec(k[x1, . . . , xn]) ⊆ Spec(k[x1, . . . , xn]).
It can be shown that any finitely generated projective module M over A is finite locally free;
that is, for each p ∈ Spec(A), there exists an element f ∈ A\p such that Mf is free over Af of
fixed finite rank. This fact admits a geometric interpretation: M corresponds to an algebraic
vector bundle in the Zariski topology, and the freeness of Mf over Af reflects the property of
local triviality, which we now explain.
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Vector Bundles

Vector bundles generalize the idea of fam-
ilies of vector spaces. Formally, a vector bun-
dle is a map π : E → M , where E is the
“total space”, and M is a topological space
(e.g., the prime spectrum of a ring), called
the “base space”. The fiber π−1({m}) over
a point m ∈ M is the vector space associated
with m, denoted Em. The fibers over points
in M vary continuously. These collections are
locally trivial, which means that around every
point m ∈ M , there is some open set U con-
taining m such that the fibers π−1(U) look
locally like U × kn, for some field k and nat-
ural number n. See [3, §14.1] for details.

A trivial vector bundle

However, a vector bundle is not necessarily globally trivial. Typically, it is constructed by
taking locally trivial collections of fibers and gluing them together via transition functions
along overlaps of local trivializations. Take two trivial collections of fibers V ×kn, and U ×kn.
We define a transition function as a map gUV : U ∩ V → GLn(k). This function “glues” the
two collections together by enforcing agreement on their overlap. Moreover, this agreement is
consistent with any third such collection, provided the transition functions satisfy the so-called
cocycle condition. If the base space is an algebraic variety, then an algebraic vector bundle is
one whose local trivializations are glued together using algebraic transition functions.
Over affine spaces, all algebraic vector bundles are trivial, as classified by the Quillen–Suslin
theorem. The classification of algebraic vector bundles over other algebraic varieties, especially
over projective spaces, remains an active area of research. A projective space of dimension
n over k is the set of one dimensional subspaces of An+1

k . Intuitively, this is just the set of lines
through the origin of the vector space kn+1. A geometric interpretation of projective space is
just taking affine space and adding a "point at infinity".
One obvious way to define a one dimensional vector bundle (also called a line bundle) on
projective space is that of the tautological line bundle, OPn(−1). This bundle assigns to
each point in Pn the one-dimensional vector space it is associated with in An+1. See [4, §8.4]
Classifying general vector bundles over projective n-space is quite difficult. For projective space
of dimension one, a celebrated theorem of Alexander Grothendieck asserts that every vector
bundle splits as a direct sum of line bundles obtained by “twisting” the tautological bundle.
However, as the dimension increases, vector bundles become more intricate, and there exist
non-split vector bundles on Pn for all n ≥ 2. On the other hand, a famous conjecture of
Hartshorne from the 1970s asserts that all rank two vector bundles over Pn for n ≥ 7 split as
the direct sum of two line bundles. As of 2025, this conjecture remains open.

Example: To illustrate how non-trivial vector bundles can arise, let us consider the Möbius
strip as a line bundle on the real projective space RP1. This can be constructed by taking an
affine line, gluing its ends to shape it into a circle and inserting a twist in the middle.
More specifically, we take two local trivializations U × R and V × R. The globally trivial line
bundle is obtained by gluing these two charts using the identity transition function gUV = 1.
The Möbius strip, on the other hand, arises by using the transition function gUV = −1. This
construction is essentially that of the tautological line bundle O(−1) on RP1.

Construction of the Möbius strip
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1. Manifolds

An n-manifold is a space such that at every point, one can travel in n independent
directions. There are multiple ways to rigorously define manifolds.

A topological n-manifold M is a (Hausdorff and second countable) topologi-
cal space that is locally Euclidean of dimension n, i.e., each point in M has an
open neighborhood that is homeomorphic to Rn. A map between topological
manifolds is a continuous map between the underlying topological spaces. Two topo-
logical manifolds are considered equivalent if there is a homeomorphism between them.

Given an open set U ⊆ M and a homeomorphism φ : U → Rn, the pair
(U,φ) is called a chart for M . A collection {(Ui, φi)}i∈I of charts such that the
Ui cover M is called an atlas for M . Given two charts (U,φ) and (V, ψ), the map
ψ|U∩V ◦φ−1 : φ(U∩V ) ⊆ Rn → Rn is called the transition map from (U,φ) to (V, ψ).

A smooth n-manifold is a topological n-manifold with an atlas such that all
transition maps are differentiable as functions from open subsets of Rn to Rn. This
allows for a well-defined notion of differentiable maps between smooth manifolds.

There also exist piecewise linear (PL) n-manifolds with appropriately de-
fined PL maps. Their definition is combinatorial in nature.

Theorem (Moise, Bing, Hamilton): Every topological 3-manifold has a unique
PL structure. Theorem (Whitehead): Every PL 3-manifold has a unique smooth
structure. Together, this implies that the three categories of topological, smooth,
and PL manifolds are equivalent for 3-dimensional manifolds. Since manifolds are
topological spaces, we can require them to be compact or connected, and we can
combine them by taking products, disjoint unions, and gluing along specific maps.

2. Prime Decomposition

The connected sum M#N of two connected oriented n-manifolds is obtained by
removing an open n-ball from each manifold and gluing the resulting manifolds along
the (n− 1)-spheres in their boundaries via an orientation reversing homeomorphism.
The 3-sphere behaves as the identity element of this operations.

A 2-sphere embedded in a 3-manifold is called separating if M \ S2 has two
components. It is a non-separating 2-sphere if M \ S2 is connected. If X and Y are
the two components of M \ S2 for a separating 2-sphere, then M = X#Y .

A manifold is called prime if it cannot be written as the connected sum of two
manifolds that are not S3. A manifold is called irreducible if every embedded 2-sphere
bounds an embedded 3-ball. The only oriented 3-manifold that is prime but not
irreducible is S2 × S1 because it has a non-separating 2-sphere.

Theorem (Kneser, Haken): Every compact orientable 3-manifold factors uniquely
into a connected sum of prime 3-manifolds.

3. Handle Decomposition

For 0 ≤ p ≤ n, we can write Dn ∼= Dp ×Dn−p. This decomposes the boundary into

∂(Dp ×Dn−p) = (∂Dp ×Dn−p) ⊔ (Dp × ∂Dn−p)

∼= (Sp−1 ×Dn−p) ⊔ (Dp × Sn−p−1).

An n-ball with this decomposition is called a p-handle. The subset of the boundary
corresponding to Sp−1 ×Dn−p is called the attaching region.

Figure 1: All four types of handles for a 3-ball with their attaching regions shaded in red.

Given a 3-manifold M and an embedding f : Sp−1 × D3−p → M , we can add a
p-handle to M along f , giving M ∪Sp−1×D3−p D3, this is called p-handle addition.

Starting with an empty manifold, we can attach 0-handles (add disjoint 3-balls), then
attach 1-handles, then attach 2-handles, and attach 3-handles to create a 3-manifold
possibly with boundary. A manifold constructed from successive handle addition is
said to have a handle decomposition.

A handlebody Hg of genus g is the 3-manifold obtained from attaching g 1-
handles to one 0-handle. Note that ∂Hg is the surface of genus g.

Theorem (Smale): Every closed, oriented, smooth 3-manifold has a handle
decomposition. Notice that thickening a triangulation of a manifold obtains a handle
decomposition.

4. Lens Spaces

Lens spaces are a class of manifolds which can be easily described by their handle
decomposition. Start with a 0-handle and attach a 1-handle to form a solid torus X .
Given a simple closed curve γ in ∂X , attach a 2-handle to an annular neighborhood
of γ on ∂X . The resulting manifold has boundary S2, to which we attach a 3-handle
forming a closed 3-manifold.

This process is determined only by the homotopy type of γ in ∂X . Any such
γ can be written as pλ + qµ where λ is the longitude of X , µ is the meridian of X ,
and p and q are relatively prime integers. The lens space resulting from γ = pλ+ qµ
is called L(p, q).

Example: L(1, 0) ∼= S3, L(0, 1) ∼= S1 × S2, and L(2, 1) ∼= RP 3. Lens spaces
L(p1, q1) and L(p2, q2) are homeomorphic if and only if p1 = p2 and q1 ≡ ±q±1

2 mod p1.
They are homotopy equivalent if and only if p1 = p2 and q1q2 ≡ ±n2 mod p1 for
some n ∈ N. Lens spaces are a historic example showing that homotopy groups and
homology groups are insufficient for classifying 3-manifolds.

4. Heegaard Decomposition

The 3-sphere can be decomposed into two closed 3-balls which intersect only on their
boundary. This can be seen from the definition of S3 ⊂ R4:

S3 = {(x, y, z, w) ∈ R4 : x2 + y2 + z2 + w2 = 1}.
We can split this into two closed sets based on the values of w:

N = {(x, y, z, w) ∈ S3 : w ≥ 0}, S = {(x, y, z, w) ∈ S3 : w ≤ 0}
The sets N and S are homeomorphic to D3. In their intersection, w = 0 so
E = N ∩ S = {(x, y, z, w) : x2 + y2 + z2 = 1} ∼= S2.

The 3-sphere can also be split into two solid tori that overlap on their bound-
ary. Consider S3 ⊂ C2 as

S3 = {(z, w) ∈ C2 : |z|2 + |w|2 = 1}.
Then

X = {(z, w) ∈ S3 : |z| ≤ 1/2}, Y = {(z, w) ∈ S3 : |z| ≥ 1/2}
gives two solid tori which overlap on their boundary which is homeomorphic to S1×S1.

A Heegaard splitting of a 3-manifold M is a decomposition of M along an em-
bedded surface called the Heegaard surface into two handlebodies of neccesarily
equal genus. A manifold with a Heegaard splitting can be recreated by gluing two
disjoint handlebodies via an orientation-reversing homeomorphism of their boundaries.

The genus of a Heegaard splitting is defined to be the genus of the Heegaard
surface. The Heegaard genus of a manifold is the minimum Heegaard genus of all
Heegaard splittings of the manifold.

Theorem (Moise): Any 3-manifold can be given a Heegaard splitting using a
handle decomposition. The union of the 0 and 1 handles form one handlebody and
the union of the 2 and 3 handles form another handlebody.

5. Acknowledgements

Thank you to Rhea Palak Bakshi for mentoring me and my fellow students. Thank
you to Rhea Palak again and to Melody Molander for organizing the UCSB Topology
seminar. Thank you to the organizers of the Directed Reading Program.

6. References

1. A. T. Fomenko, S. V. Matveev, Algorithmic and Computer Methods for Three-
Manifolds, Springer Dordrecht.
2. J. H. Przytycki, R. P. Bakshi, D. Ibarra, G. Montoya-Vega and D. E. Weeks, Lec-
tures in Knot Theory: An Exploration of Contemporary Topics, Springer Universitext
(Springer International Publishing, 2024).
3. Jennifer Schultens, Introduction to 3-Manifolds, AMS Graduate Studies in Math-
ematics.



DATA ANALYSIS ON MANIFOLDS IN GEOMSTATS

Sneha Cheenath
University of California Santa Barbara

DATA ANALYSIS ON MANIFOLDS IN GEOMSTATS

Sneha Cheenath
University of California Santa Barbara

What is a manifold?

If any of the following three conditions are satisfied, a smooth surface can
be considered a manifold:

1. Local parametrization: At any point on the manifold, an open set centered
on that point can be mapped onto a cartesian plane. This is nicely illustrated
by a globe: the overall surface is curved, but it appears flat locally.

2. Implicit Function: All the points on the manifold verify an implicit function.
For example, the unit sphere in R3, which is a manifold, can be described as
the set {(x , y, z)|x2+ y2+ z2 = 1}

3. Local graph: Each region of the manifold can be described as a function
f (x1, ..., xd). In other words, xd+1 = f (x1, ..., xd). This function does not
have to be the same for the whole manifold, however, because manifolds do
not have the same properties as functions – in particular, the same set of
inputs can return several outputs.

Real-world data often falls on a manifold. If the shape of that manifold can be
determined and quantified, then discerning trends and making predictions about
data becomes much easier. For example, data about weather or location of cities
falls on a spherical manifold, because the Earth is a globe.

Figure 1: RCSB Protein
Bank’s molecule of the
month for May, 2025 [3]

There are also bioinformatic uses for data analysis
on manifolds [2]. For example, protein imaging can be
used to analyze the relationship between the physical
characteristics and the biological function of each protein.
This is a huge bank of three-dimensional data, there are
over 100,000 difference protein structures available on-
line. Protein structures would generally fulfill the first def-
inition of manifold because they are naturally occurring,
so they should be smooth without any sharp corners.

A great motivation for the data analysis on manifolds
is that it offers the ability to find a mean that lies on the
surface. If the mean is determined to be the center of
cartesian points, then it often will not lie on the surface,
which is less useful. For example, to find the midpoint

between two cities on the globe, it would not be helpful to find what location in
the core of the Earth is between them.

Analyzing Manifolds in Geomstats

Geomstats is a Python library that
provides tools to analyze data that lies
on a manifold [1]. It can’t help de-
termine what manifold the data is on,
but if the data’s shape is already de-
fined then it gives tools to analyze it.
The parent class, Manifold, is abstract
– because so many different surfaces
can be considered manifolds, there are
no universal functions to analyze them
all. Instead, it just contains a skele-
ton for the attributes and methods con-
sistent across the subclasses. For ex-
ample, the attribute dim defines how
many coordinates are necessary to fully
describe a point on the manifold. It
also has methods such as belongs(),
is_tangent(), random_point(), and ran-
dom_tangent_vector().

The Hypersphere subclass can be
used with matplotlib to display where a city is on the globe, as shown to the right [1].

Some of the subclasses directly correspond to one of the conditions of being a manifold.
The subclass VectorSpaceOpenSet corresponds with the first condition, as it is built for any
manifold that can be described as an open set. The subclass LevelSet is to analyze functions
where a function is set equal to a constant, which directly corresponds to the seconds con-
dition.

The data in the manifold can be described intrinsically or extrinsically, and it can switch
from one to the other. Extrinsic data is described with Euclidean coordinates, while intrinsic
data is from the manifold’s inherent topological space.

Class for Rotationally Symmetric Surfaces

A rotationally symmetric surface is one that is unchanged when rotated around an axis.
Any curve f rotated around the x-axis is rotationally symmetric and has the parametrization
g(x ,θ ) = (x , f (x) cos(θ ), f (x) sin(θ )). For example, below are visualizations of the func-
tions f (x) =
p

1− x3 and f (x) = cos(x) rotated around the x-axis on [-1,1].

These figures are smooth surfaces that can be locally mapped to a Euclidean grid, so they
are manifolds. Thus, we developed a new class to analyze three-dimensional rotationally
symmetric surfaces. Using the properties of these surfaces, we were able to write methods
that determine if a point belongs to a manifold, output a randomly generated point, output
a randomly generated tangent vector at a point, and project any vector onto the tangent
space of the surface. The class had two attributes: the function f (x) being rotated and the
domain [p,q].

Implementing the Methods

belongs(self, point): This function determines if a point (a, b, c) belongs
to the manifold. It first confirms that a is in the given domain of the function.
Then, since the parametric equation is g(x ,θ ) = (x , f (x) cos(θ ), f (x) sin(θ )), it
is possible to check if (a, b, c) is on the curve using the following:

b2+ c2 = ( f (x) cosθ )2+ ( f (x) sinθ )2 = f (x)2(sin2θ + cos2θ ) = f (x)2

Thus, the function returns true if f (a)2− (b2+ c2) is zero.
random_point(self): This

function randomly generates a
point on the manifold. It creates
temp, a random float value be-
tween [0,1], and maps it to the
entire domain [p,q] by using the
equation rand = (q-p)*temp+p.
Then, it multiplies another random
float across 2π to find a random θ ,
and plugs both those values into
a parametric equation to return
a final point. In the figure to the
right, the function outputs point
[-0.9903, -0.1379, 0.01873] to the

rotation of f (x) =
p

1− x2 around [-1,1].
random_tangent_vector(self, base_point): Similarly to random_point(),

this function generates a random tangent vector at the base point (a, b, c). First,
it ensures that the given point belongs on the surface – if it doesn’t the function
returns None. Then, it takes the derivative of the function and evaluates it at a.
It can then solve for θ because f (a) cosθ = b, and f (a), b are given by the base
point. Thus, θ = arccos( b

f (a)). However, this will invoke an error if f (a) = 0, so
before then it’s important to hard code that case. It is sufficient to make θ = 0
because if f (a) = 0, then any terms containing θ will come out to 0 regardless of
θ . Then, the function finds the partial derivative of g(x) with respect to a and θ .
These two vectors span the tangent vector space. Then, the function sums them
with random coefficients and returns the product – thereby returning a random
linear combination of the vectors in the basis. The above figure shows [8, -56.43,
7.525], a random vector tangent to the point outputted by random_point(self).

to_tangent(self, base_point, vector): This function projects any vector onto
the tangent space. Using the same method as random_tangent_vector(), this func-
tion finds θ . Then, it takes the partial derivative of g(x) with respect to a and
θ . It then projects the given vector onto each of these partial derivatives and
returns the pairwise sum of the two projections.
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Paths and Homotopies

Let X be a topological space, which moving forward we will simply call a
space for brevity. We define a path from x0 to x1 in X to be a continu-
ous map from the unit interval I to X, such that fp0q “ x0 and fp1q “ x1.

Loops f and g on the torus

If, perchance, x0 “ x1, then we call this a
loop based at x0. We call a space X path-
connected if there exists a path between
every pair of points in X. In the event we
are given two paths f and g in X who
miraculously satisfy the equation fp1q “

gp0q we define the product of paths f ¨ g,
as

f ¨ gpsq “

#

fp2sq 0 ď s ď 1{2

gp2s ´ 1q 1{2 ď s ď 1.

We call this the product path of f and g. Intuitively, the product path is the path
created by “adjoining” the paths f and g.

Figure 1: A homotopy from f0 to f1

A homotopy of paths is a
family ft : I Ñ X, for 0 ď

t ď 1, of paths from x0 to x1
such that the function
F : I ˆ I Ñ X defined by
F ps, tq “ ftpsq is continuous.
If two paths f0 and f1 are con-
nected by such a family we
call f and g homotopic, and
denote this by f0 » f1 . Being

homotopic is an equivalence relation on paths and we call the associated equiva-
lence class of any path f the homotopy class of f , denoted rf s. Using the product
of paths we let rf srgs :“ rf ¨ gs be the product of homotopy classes [1].

Fundamental Groups

The fundamental group of X based at x0, denoted π1pX, x0q, is the set of all
homotopy classes of loops in X with base point x0, equipped with the product of
homotopy classes as its operation. Algebraic topologists are often tasked with
distinguishing spaces from each other, and as such, keeping track of the invariants
of spaces is important. This gives us one of the main reasons we even care about
πpX, x0q, namely because it is a topological invariant of X! Beyond that, πpX, x0q
allows us to use algebraic tools to help shed light on various topological prop-
erties of spaces, giving us even greater insights of problems originating in topology.

Change of Basepoint:
If a space X is path-connected we can transform any loop based at x0 into
a loop with a base point x1, for any x1 in X. Using this one can show that
π1pX, x0q – π1pX, x1q. This means that for X path-connected, we usually omit
a base point from the notation and write π1pXq. We also say a space is simply
connected if it is path-connected and has a trivial fundamental group.[1].

Induced Homomorphisms:
Let X and Y be spaces and take φ : X Ñ Y to be a continuous map taking a
base point x0 P X to y0 P Y . Then we call the map

φ˚ :π1pX, x0q Ñ π1pY, y0q

rf s ÞÝÑ rφf s

the homomorphism induced by φ [1].

A Few Words on Free Products of Groups

Let X and Y be spaces with base points x0 and y0, respectively, and set G1 :“ π1pX, x0q and
G2 :“ π1pY, y0q. We define a word to be the empty tuple or any n-tuples whose coordinates
are non-trivial loops in either G1 or G2. A word pg1, . . . , gnq is said to be reduced, if it is the
empty word, which is the empty tuple, or if no two adjacent loops gj´1 and gj lie in the same
Gi. Define the concatenation of the words w “ pa1, . . . , anq and w1 “ pb1, . . . , bnq by

pw,w1
q ÞÑ pa1, . . . , an, b1, . . . , bnq

Given a word w “ pa1, . . . , anq and aj´1, aj P Gi, we put

w1 “

#

pa1, . . . , aj´1aj, . . . anq if aj´1aj ‰ 1

pa1, . . . , aj´2, aj`1, anq if aj´1aj “ 1

We call w Ñ w1 an elementary reduction and a sequence w Ñ w1 Ñ ¨ ¨ ¨ Ñ wr a reduction
if wr is reduced. The free product of G1 and G2, written G1 ˚ G2, is the set of all reduced
words endowed with concatenation followed by reduction as an operation. If, in addition,
G1 “ xay and G2 “ xby, then we call G1 ˚ G2 a free group with system of free generators a
and b [2][3].

Fundamental Group of the Circle

To help elucidate the ideas behind both fundamental and free groups, we will describe the
fundamental group of the unit circle, which we will denote S1. Since S1 is path-connected, we
really only need to consider the fundamental group of S1 at a single arbitrary point x0. For the
rest of the section all loops discussed will be assumed to have the base point x0. Begin by
noticing that any loop in with S1 is homotopic to a loop that winds around the circle n times,
for some n P Z, which gives rise to the following visualization:

We can therefore create a function that assigns every loop a unique integer corresponding to
it, called its winding number. Observe that the product of loops f and g, with winding numbers
n and m respectively, is homotopic to a loop with winding number n ` m. By this reasoning
the product of f with the constant loop must be homotopic to f and the product of f with a
loop with winding number ´n is homotopic to the constant loop. Thus, we see that π1pS1q is
isomorphic to the additive group Z and the free group on one generator a.

The Motivation for Seifert-van Kampen

Suppose you were tasked with computing the fundamental group of the following space:

You might notice that this infinity loop, which we will denote as R, is topologically equivalent
to taking two copies of S1 adjoined at a single point. However, instead of naively duplicating
your calculation of π1pS1q you remember that you are an algebraic topologist (in case you
forgot). Accordingly, you ruminate on possible generalizations of the problem at hand.

Pondering Time:
You think to yourself: “Spaces are often, in a sense, decomposable into smaller, well-studied,
simpler spaces, as is the case here. In these cases, it would be incredibly convenient if I could
use our knowledge about the fundamental groups of the simpler spaces to help us compute
the fundamental group of the larger space at hand." Well-done! You have found your way to
the essence of the Seifert–van Kampen theorem.

The Seifert-van Kampen Theorem

Theorem 1 (Classical Formulation). Let X “ U Y V , where U and V are open in
X; assume U , V , and U X V are path connected; let x0 P U X V . Set i1 : π1pU X

V, x0q Ñ π1pU, x0q, i2 : π1pU X V, x0q Ñ π1pV, x0q, j1 : π1pU, x0q Ñ π1pX, x0q, j2 :
π1pV, x0q Ñ π1pX, x0q to be the homomorphisms induced by inclusion. Let

φ : π1pU, x0q ˚ π1pV, x0q ÝÑ π1pX, x0q

be the homomorphism defined by the natural extension of j1 and j2. Then φ is
surjective, and its kernel is the least normal subgroup N of the free product that
contains all elements represented by words of the form

i1pgq
´1i2pgq

for g P π1pU X V, x0q[2].

This theorem tells us that if two path-connected spaces with path-connected in-
tersection, U and V form a space X, then together π1pU, x0q and π1pV, x0q can
recover important algebraic data of π1pX, x0q.

Corollary 1. Assume the hypotheses of the Seifert-Van Kampen theorem. If UXV
is simply connected, then

π1pU, x0q ˚ πpV, x0q – πpX, x0q.

We can think about this corollary as saying that since π1pU X V q is trivial it is, in a
sense, negligible. For this reason, we only have to think about how the elements
of π1pU, x0q and π1pV, x0q combine in order to completely characterize π1pX, x0q.

Applications:
Let us return to R. Take open balls A and B so that they contain the ellipse on the
left and right, respectively. Define U and V to be the intersection of A and B with
their respective ellipses. Then we have

By construction, U and V are open, path connected, non-empty, and U X V is
simply connected. Additionally, we can “squish down" U and V to be S1. There-
fore, if we apply corollary 1, we deduce that π1pRq is isomorphic to Z ˚ Z and the
free group on two generators.
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Brief Introduction

In the film ” 君の名は。(Your Name),” released in 2016, the protagonist’s name shares
the same character in Japanese as the trefoil knot. The movie often uses “knot”as
a symbol, echoing the “connection between people”in Japanese culture. Here, we
explore several methods to distinguish the left‐ and right‐handed trefoil knots.

Figure 1. character name: 三葉 (Mitsuha) trefoil knot in Japanese: 三葉結び目

Definition of Knot and link

A knot is an embedding of the circle S1 into three‐dimensional Euclidean space R3 (or
the 3‐sphere S3):

K : S1 → R3.

Two knots are considered equivalent if they are ambient isotopic, meaning there exists
a continuous deformation of R3 taking one embedding to the other without cutting or
self‐intersections.

A link is an embedding of a disjoint union of finitely many circles into R3:

L :
n⊔

i=1
S1 → R3,

where each S1 is mapped to a smooth, simple closed curve, and the images are pairwise
disjoint.

What is a Trefoil Knot?

The trefoil knot is the simplest nontrivial knot. Unlike the unknot, which is a simple loop,
the trefoil knot can not be untangled without cutting the loop. There are two trefoil
knots up to isotopy: the left‐handed trefoil and its mirror image, the right‐handed trefoil.

Figure 2. Left‐handed and Right‐handed Trefoil Knots

These two versions look similar but are fundamentally different. You can not twist or
deform one into the other without cutting or passing through itself. That is because
they are not equivalent under ambient isotopy.

Reidemeister Moves

A knot is called amphicheiral if it is ambient‐isotopic to its mirror image—equivalently,
if a finite sequence of Reidemeister moves turns the diagram into its mirror. There are
exactly three kinds of moves:

Figure 3. Reidemeister moves I, II and III.

The trefoil knot is not amphicheiral, but there is no known proof in terms of Reidemeister
moves. An example of an amphicheiral knot is the figure‐eight.

Figure 4. The figure‐eight knot is equivalent to its mirror image.

Tricolorability

A projection of a knot or link is tricolorable if each strand in the projection can be colored
one of three different colors, so that at each crossing, either three different colors come
together or all the same color comes together.

Figure 5. Tricolorability of Left‐handed and Right‐handed Trefoil Knots

Both the left‐ and right‐handed trefoil knots are tricolorable, and any tricolorable knot is
necessarily distinct from the unknot. However, tricolorability alone does not distinguish
between the left‐ and right‐handed trefoils.

Dowker Notation

Figure 6. Left‐handed and Right‐handed Trefoil Knots

Result: they share the same Dowker Notation, 4 6 2. Thus we cannot distinguish be‐
tween the two trefoils by Dowker Notation.

The Very First Polynomial Link Invariant

Introduced by J. W. Alexander in 1928, it is usually presented as a Laurent polynomial in
t:

∆ : {oriented link diagrams} → Z[t, t−1]

Before the calculation of the Alexander polynomial, we better need to clarify a definition:

Figure 7. Three links that are identical except at this crossing

It can be calculated by two rules, which was shown by John Conway:

Rule 1: ∆
( )

= 1

Rule 2: ∆(L+) − ∆(L−) +
(

t1/2 − t−1/2
)

∆(L0) = 0

We can treat the link as L+ or L− based on one of its crossings, and then simplify it step
by step to arrive at the final answer.

Let’s work on the Alexander polynomial of left‐handed and right‐handed trefoils sepa‐
rately.

Left‐handed
∆
( )

−∆
( )

+(t1/2−t−1/2)∆
( )

= 0
where ∆

( )
= ∆

( )
= 1

and∆
( )

− ∆
( )

+ (t1/2 −
t−1/2)∆

( )
= 0

By the theorem that the Alexander
polynomial of a splittable link is always 0,
∆
( )

= 0, so ∆
( )

= t1/2 − t−1/2 and
∆
( )

= (t1/2 − t−1/2)2 + 1 = t − 1 + t−1

Right‐handed
∆
( )

−∆
( )

+(t1/2−t−1/2)∆
( )

= 0
where ∆

( )
= ∆

( )
= 1

and∆
( )

− ∆
( )

+ (t1/2 −
t−1/2)∆

( )
= 0

Again, by the theorem that the Alexander
polynomial of a splittable link is always 0,
∆
( )

= 0, so ∆
( )

= −t1/2 + t−1/2

and
∆
( )

= (t1/2 − t−1/2)2 + 1 = t − 1 + t−1

Result: we cannot distinguish between the two trefoils by the Alexander polynomial.
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Kauffman Bracket Polynomial

The Kauffman bracket polynomial is defined for unoriented knots and links, and provides
the foundation for constructing the Jones polynomial.

Rule 1
⟨ ⟩ = 1

Rule 2⟨ ⟩
= A

⟨ ⟩
+ A−1

⟨ ⟩
⟨ ⟩

= A
⟨ ⟩

+ A−1
⟨ ⟩

Rule 3⟨
L ∪

⟩
= (−A2 − A−2)

⟨
L
⟩

Right‐handed Trefoil⟨ ⟩
= A

⟨ ⟩
+ A−1

⟨ ⟩
= A

⟨ ⟩
+ A−1

(
A
⟨ ⟩

+ A−1
⟨ ⟩)

= A(−A4 − A−4) + A−1
(

A(−A−3) + A−1(−A2 − A−2)(−A−3)
)

= A−7 − A5 − A−3

Left‐handed Trefoil⟨ ⟩
= A−1

⟨ ⟩
+ A

⟨ ⟩
= A−1

⟨ ⟩
+ A

(
A−1

⟨ ⟩
+ A

⟨ ⟩)
= A−1(−A4 − A−4) + A

(
A−1(−A3) + A(−A2 − A−2)(−A3)

)
= A7 − A3 − A−5

Result: The Kauffman bracket distinguishes the two trefoils.

The X Polynomial andWrithe

Introduce an orientation on a knot or link projection. The writhe w(L) is defined as the
difference between the number of positive and negative crossings in the projection.

We define a new polynomial called the X‐polynomial. It is a polynomial of oriented links
and is defined as:

X(L) = (−A3)−w(L)⟨L⟩

where w(L) is the writhe of the oriented link diagram L, and ⟨L⟩ is the Kauffman bracket.

Now suppose we perform a Type I Reidemeister move that introduces a positive twist,
so that:

w(L′) = w(L) + 1

X(L′) = (−A3)−(w(L)+1)⟨L′⟩ = (−A3)−w(L)−1(−A3⟨L⟩) = (−A3)−w(L)⟨L⟩ = X(L)

The Jones Polynomial

The Jones polynomial is a Laurent polynomial in the variable q, assigned to an oriented
knot or link such that:

VL : {oriented link diagrams} → Z[q, q−1]

We can calculated it in two different ways
Given two rules, Rule 1: V

( )
= 1

Rule 2: q−1V (L+) − qV (L−) + (q−1/2 − q1/2)V (L0) = 0
Or, it can be directly obtained from the X polynomial by replacing each A by q−1/4

So, left‐handed: −A16+A12+A4 → −(q−1/4)16+(q−1/4)12+(q−1/4)4 → q−1+q−3−q−4

So, right‐handed: − A−16 + A−12 + A−4 → −(q−1/4)−16 + (q−1/4)−12 + (q−1/4)−4 →
q + q3 − q4

Result: Finally, we can distinguish between the two trefoils by the Jones Polynomial,
and it was the first invariant polynomial that distinguishes between a knot and its mirror
image.
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Introduction

We often use polynomial invariants to detect if two knots are different. In fact, this

familiar method could be elevated to 3-manifolds that a link is sitting in.
The Kauffman bracket skein module is a powerful invariant that is able to detect both

the links in them, and the 3-manifolds themselves.

Background

LetM be a 3-manifold with boundary ∂M . A p-handle is a 3-disk with a specific product
structure D3 = Dp × D3−p. Its boundary is ∂D3 = (∂Dp × D3−p) ∪ (Dp × ∂D3−p).
A p-handle addition is a modification ofM by gluing a p-handle D3 = Dp × D3−p to ∂M
along the boundary of the p-handle.

0-handle: adding a disjoint 3-ball, since ∂D0 × D3 = ∅.
1-handle: gluing a solid cylinderD1×D2 along S0×D2, that is, along its two boundary
disks.

2-handle: gluing a ”plate” D2 × D1 along the annular boundary S1 × D1.

3-handle: gluing a 3-ball along S2 × D0, often visualized as capping off a hole.

Figure 1. p-handle additions to M for p = 0, 1, 2, 3

The 2- and 3- handle additions are essential to our study of 3-manifolds because any
compact oriented 3- manifold can be obtained from a handlebody by adding 2- and 3-
handles to it, hence we can compute the skein module by computing the skein module

of the handlebody first, then quotient by the submodule generated by 2-handle sliding
relations. Note that 3-handle additions induce isomorphisms.

Kauffman Bracket Skein Module (KBSM)

The Kauffman bracket skein module, S2,∞(M), of a 3-manifold M is defined as the

quotient of the freeR-module spanned by ambient isotopy classes of unoriented framed
links (including the empty link ∅) in M modulo the following (local) skein expressions:

(i) L+ − AL0 − A−1L∞,

(ii) L t © + (A2 + A−2)L,

where A is a fixed invertible element of the free-R-module,© denotes the trivial framed

knot and the skein triple (L+, L0, L∞) denotes three framed links inM , which are identical
except in a small 3-ball in M where they look like the following:

Figure 2. Skein Triple (L+, L0, L∞)

The Kauffman Bracket Skein Module (KBSM) is the quotient

S2,∞(M ; R, A) = RLfr/Ssub
2,∞.

Example: An Element of KBSM ofAnn×[0, 1]

Figure 3. Element of KBSM corresponding to a nontrivial link

Properties of KBSM

1. Functoriality An orientation-preserving embedding of 3-manifolds i : M ↪→ N yields

a homomorphism of skein modules

i∗ : S2,∞(M ; R, A) −→ S2,∞(N ; R, A)
This gives a functor from the category of 3-manifolds and orientation-preserving embed-
dings (up to ambient isotopy) to the category of R-modules with a specified invertible
element A ∈ R.

2. 3-handle addition If N is obtained from M by adding a 3-handle to M (i.e., capping

off a hole), and i : M ↪→ N is the associated embedding, then

i∗ : S2,∞(M ; R, A) −→ S2,∞(N ; R, A)
is an isomorphism.

3. 2-handle addition Let N be the 3-manifold obtained from M by adding a 2-handle
to M along a simple closed curve γ in ∂M , then the inclusion i : M ↪→ N induces an

epimorphism of the skein modules:

i∗ : S2,∞(M ; R, A) −→ S2,∞(N ; R, A),
whose kernel is generated by relations yielded by 2-handle slidings. That is,

S2,∞(N ; R, A) = S2,∞(M ; R, A)/J .

where J is generated by relations of the form L − sLγ(L)
4. Disjoint union IfM1 t M2 is the disjoint sum of 3-manifolds M1 and M2, then

S2,∞(M1 t M2; R, A) = S2,∞(M1; R, A) ⊗R S2,∞(M2; R, A).

5. The Universal Coefficient Property Let r : R → R′ be a ring homomorphism between
commutative rings with unity R and R′. Then the identity map on Lfr induces an iso-

morphism between the R- and R′-modules:

r̄ : S2,∞(M ; R, A) ⊗R R′ −→ S2,∞(M ; R′, r(A)).

6. Connected Sums Let M#N denote the connected sum of two compact, oriented

3-manifolds M and N , and let Ak − 1 be invertible in R for any k > 0. Then,
S2,∞(M # N ; R, A) = S2,∞(M ; R, A) ⊗ S2,∞(N ; R, A).

Note: This result does not hold for Z[A±1].
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Examples: KBSM of Different 3-Manifolds

The study of skein modules of 3-manifolds involves both the algebraic structure of the
module, and the 3-manifold itself under various operations. We here introduce a few of
the key theorems and examples:

KBSM of Surface I-bundles

Theorem (Przytycki): The Kauffman bracket skein module of Σ × I is freely generated by the

empty link and links in Σ without crossings and trivial components.

This result in particular applies to a handlebody, because Hn = Σ0,n+1 × I .

Examples: Thickened Surfaces.

Let Σg,n be an oriented surface with genus g and n boundary components.

1. Thickened Annulus

S2,∞(S1 × D2; R, A) ∼= S2,∞(Σ0,2 × I ; R, A) is free and infinitely generated by the curves

{xi}∞
i=0, where x denotes the homotopically nontrivial curve on the annulus and x0 denotes

the empty link ∅.

2. Thickened Torus

S2,∞(T 2 × I ; R, A) is a free R-module generated by the empty link ∅, all (p, q)-curves, and
their parallel copies on the torus. These are simple closed curves that wrap along the torus p
times in the longitudinal direction and q times in the meridional direction. Here gcd(p, q) = 1.
3. Thickened Pair of Pants

S2,∞(Σ0,3 × I ; R, A) is free and infinitely generated by the monomials {xiyjzk}i,j,k≥0. Here,
x, y, and z denote the homotopically nontrivial curves in Σ0,3. Note that the empty link is

represented by x0y0z0. Additionally,

S2,∞(Σ1,1 × I ; R, A) ∼= S2,∞(Σ0,3 × I ; R, A).

KBSM of Lens Spaces

Theorem (Przytycki): S2,∞(L(p, q)) is a freeZ[A±1]-module and it has
⌊p

2
⌋
+1 free generators.

KBSM of S1 × S2

Theorem (Przytycki): S2,∞(S1×S2) is an infinitely generatedZ[A±1]-module. More precisely,

S2,∞(S1 × S2) = Z[A±1] ⊕
∞⊕
i=1

Z[A±1]
1 − A2i+4.

KBSM of Prime 3-Manifolds

Conjecture: The KBSM of a closed oriented prime 3-manifold has a decomposition into free

and cyclic modules, just like S1 × S2.

Connections

Skein modules is a rich area of research that connects to many fields of mathematics and

physics. We can use the theory of skein modules to build 3-manifold invariants in which
distinguish two different 3-manifolds. Many of the 3-manifold invariants derived from
KBSM are widely used in the study of quantum topology and especially the building of

Topological Quantum Field Theories (TQFT’s). The Witten–Reshetikhin–Turaev (WRT)

invariant is one of the most studied invariants derived from KBSM. KBSM is also con-

nected to algebraic geometry via the SL2(C) character variety.
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The Definition of Khovanov Homology

Khovanov homology is a powerful algebraic link invariant that categorifies the
Jones Polynomial.
Theorem (Kronheimer & Mrowka): Khovanov homology detects the unknot.

A Kauffman state (KS), denoted s, is a particular se-
quence of smoothings (A or B), one at each crossing, on
a link. An enhanced Kauffman state (EKS), denoted S,
assigns a positive or negative sign to each cycle in a KS.
Below are all the KS for the right-handed trefoil. There
are 23 = 8 since the knot has 3 crossings.

Definition of the Khovanov Chain Complex:

•Choose an ordering of the crossings on the link. What choice is irrelevant.

• σ(s): # A markers minus # B markers in a KS

• τ (S): # positive assigned cycles minus # negative assigned cycles in an EKS

•Bidegree on the EKS of a link diagram D:

Sa,b(D) = {S ∈ EKS|a = σ(s), b = σ(s) + 2τ (S)}
•Chain groups: Ca,b = ZSa,b

•Boundary map: ∂a,b : Ca,b → Ca−2,b by

∂a,b(S) =
∑

S ′∈Sa−2,b
(−1)t(S,S

′)(S, S ′)S ′

where S ′ is an EKS in Ca−2,b. We must and do have ∂a,b ◦ ∂a+2,b = 0 as ∂ is a
boundary map. (S, S ′) = 1 if the two conditions below hold. Else, (S, S ′) = 0:

1. S and S’ only differ at one crossing v, where in S it is smoothed with an A
marker and in S ′ it is smoothed with a B marker

2. τ (S ′) = τ (S) + 1 and only cycles involving v change their sign

• t(S, S ′): # B markers in S after the crossing v in our ordering

•Khovanov homology groups: Ha,b =
ker(∂a,b)
im(∂a+2,b)

. These are well defined be-
cause of the above requirement for the boundary map.

An Example: The Right-Handed Trefoil

Below are all of the EKS for the ABB KS for the right-handed trefoil. Every
EKS is assigned a bigrading a, b. Notice they all have the same a, which is
inherited from the ABB KS. There are 22 = 4 states since there are 2 cycles.

Examine below the chain complex for b = −5 in the right-handed trefoil, which
contains the groups of the form Ca,−5. The EKS below each chain group are the
chain group’s generators. The green arrows depict each generator’s image under
the boundary map, with each arrow representing two adjacent EKS ((S, S ′) = 1).

Khovanov homology of the Chiral Trefoils:

Left-Handed

b\a −3 −1 1 3

9 Z
5 Z2

1 Z
−3 Z
−7 Z

Right-Handed

b\a −3 −1 1 3

7 Z
3 Z
−1 Z
−5 Z2

−9 Z

Notice that Khovanov homology
distinguishes the chiral trefoils!

We calculate H−3,−5 for the right-
handed trefoil from the figure above:

H−3,−5 =
ker(∂−3,−5)
im(∂−1,−5)

∂−1,−5(u) = x + y
∂−1,−5(v) = −x− z
∂−1,−5(w) = y + z

ker(∂−3,−5) ∼= Z{x, y, z}

=⇒ H−3,−5
∼= Z{x,y,z}

Z{x+y,−x−z,y+z}
∼= Z2 as

(x+ y)+ (−x− z)+ (y+ z) = 2y ≡ 0

Framed vs. Unframed, Euler Characteristic

The version of Khovanov homology presented in this poster uses Oleg Viro’s
notation and is for framed links. We may translate into the unframed version
through the following change of variables:

H i,j(D⃗) = Ha,b(D) = H
w(D⃗)−a

2 ,3w(D⃗)−b
2 (D⃗),

where w(D⃗) is writhe. We can get the Kauffman bracket polynomial (KBP) of
a link from its KS using the Kauffman bracket state sum formula (KBSS):

[D] =
∑

S∈EKS(−1)|Ds|Aσ(s)+2τ (S),

where |Ds| is the number of cycles in a KS and A is the variable in the KBP.
From algebraic topology, we see the KBP is an Euler characteristic of Khovanov
homology–the generating Poincaré polynomial for the chain groups is:∑

a,b rank(Ca,b)x
ayb

Substituting x = −i and y = iA gives the KBSS through a parity argument.

Torsion

The Khovanov homology of links often contains torsion, which is information
not found in the Jones Polynomial. The topological meaning of this torsion is
an active area of research.
Conjecture (Shumakovitch): The Khovanov homology of every link, excepting
the unknot, the Hopf Link, and connected sums or disjoint unions of the two
contains Z2 torsion.
Attempts to find links with high order torsion are ongoing. In 2020, Sujoy
Mukherjee found Z81 torsion with the link T (2, 3)#4(σ1σ2σ3)

4σ1σ2. The previ-
ously highest known odd order was Z7.
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Why StudyMolecular Symmetry?

A molecule has symmetry if it looks the same after certain movements (e.g., rotating

180◦, flipping across a plane). Group theory provides tools to analyze this symmetry and
predict properties like energy levels, light absorption, and chemical behavior.

From Symmetry to Group Representations

A representation of a group G on a vector space V over C is a group homomorphism:
ρ : G → GL(V ).

This means each group element acts as an invertible linear transformation on V , pre-
serving the group structure.

To study group representations systematically, we highlight several key notions:

G-invariant subspace: A subspace W ⊂ V is called G-invariant if ρ(g)(w) ∈ W for

all g ∈ G and w ∈ W .

Irreducible representation: A representation is irreducible if it has no nontrivial

G-invariant subspace.
Maschke’s Theorem: Every finite group representation over C is a direct sum of
irreducible representations.

Character of a representation: The character χ of a representation ρ is the function

χ(g) = tr(ρ(g)).
Orthogonality relations: The irreducible characters form an orthonormal basis with

respect to the inner product 〈χi, χj〉 = 1
|G|

∑
g∈G χi(g)χj(g).

Character table: A table with rows for irreducible representations and columns for

conjugacy classes.

Example: Character table of S3
[1] [(12)] [(123)]

χtriv 1 1 1
χsign 1 −1 1
χstd 2 0 −1

where [1] = {1}, [(12)] = {(12), (13), (23)}, and [(123)] = {(123), (132)}.

What can you observe from the character table?

Symmetry Operations and Point Groups

A symmetry operation is an action that leaves an object in a position that looks

exactly the same as before.

A point group is the set of all symmetry operations that leave at least one point fixed

and map the molecule onto itself.

Operator Description

E Identity operation (no change to the molecule)

Cn Rotation by 2π
n about an axis of symmetry

σ Reflection through a mirror plane

Sn Improper rotation: Cn followed by reflection in a plane perpendicular

to that axis

i Inversion through the center of the molecule

Table: Fundamental symmetry operations in molecular point groups

Figure: Improper rotational axis of Methane CH4

Molecular Point Groups and Their Symmetry Elements

The table below lists several commonly encountered point groups along with their defin-

ing symmetry elements.

Point

Group
Essential Symmetry Element(s) Example Molecule

Cs One symmetry plane Formic acid HCOOH

Ci Center of inversion Ethene C2H4 (planar)

C2 One 2-fold axis Hydrogen peroxide H2O2

C2v C2 + two vertical planes σv Water H2O

D6h High symmetry: C6, σh, etc. Benzene C6H6

Td Tetrahedral symmetry Methane CH4

Oh Octahedral symmetry Sulfur hexafluoride SF6

Ih Icosahedral symmetry Buckminsterfullerene C60

C6H6 SF6

C60

Basis Functions in Character Tables

In chemistry, the character table often includes a Basis Functions column.

The water molecule belongs to the point group C2v, whose symmetry elements and cor-

responding character table are shown below.

Figure: C2 and σv of H2O

C2v E C2 σv(xz) σv′(yz) Basis Functions

A1 1 1 1 1 z, x2, y2, z2

A2 1 1 −1 −1 Rz, xy

B1 1 −1 1 −1 x, Ry, xz

B2 1 −1 −1 1 y, Rx, yz

Table: Character table of C2v with basis functions

A basis function is a function that spans an invariant subspace under the action of a

symmetry group and transforms according to a specific irreducible representation.

In C2v character table, the basis functions are the Cartesian axes x, y, z, the Cartesian
products x2, y2, z2, xy, zx, yz , and the rotations Rx, Ry, Rz.

For example, the function x transforms as (x, −x, x, −x) under the symmetry
operations E, C2, σv(xz), σv′(yz), which corresponds to the irreducible
representation B1.

Basis functions are essential for analyzing molecular vibrations and understanding

how molecules interact with light.

We can use character tables and basis functions to:

Predict which vibrations are IR or Raman active.

Classify vibrational modes based on symmetry

Group Theory Predicts IR and Raman Activity

A vibration is Infarred (IR) active if it causes a change in dipole moment. This

corresponds to basis functions x, y, or z.

A vibration is Raman active if it changes the polarizability tensor. This corresponds to

quadratic basis functions such as x2, xy, etc.

By matching vibrational motions with the irreducible representations in the character

table, we can determine their activity.

Molecular Symmetry in Cyclohexane and Ferrocene

Cyclohexane C6H12: Chair Symmetry

Figure: Front view with symmetry axes Figure: Side view of chair conformation

D3d E 2C3 3C2 i 2S6 3σd Basis Functions

A1g 1 1 1 1 1 1 x2 + y2, z2

A2g 1 1 −1 1 1 −1 Rz

Eg 2 −1 0 2 −1 0 (Rx, Ry), (x2 − y2, xy), (xz, yz)
A1u 1 1 1 −1 −1 −1
A2u 1 1 −1 −1 −1 1 z

Eu 2 −1 0 −2 1 0 (x, y)

Table: Character table of D3d with basis functions

Ferrocene Fe(C5H5)2: AMetal Sandwich with 5-Fold Symmetry

Ferrocene (Fe(C5H5)2) is a prototypical sandwich

compound, consisting of an iron atom coordinated

between two cyclopentadienyl (Cp) rings.

In its eclipsed conformation, ferrocene belongs to the

high-symmetry point group D5h, which features a

fivefold rotation axis C5, a horizontal mirror plane σh,

and multiple vertical mirror planes.

This high symmetry gives rise to degenerate molecular orbitals, which can be

systematically classified using group theory and labeled by irreducible

representations.

These orbitals explain ferrocene’s exceptional electronic stability and aromatic

character.
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Introduction to Homology

Homology is, fundamentally, the study and identification of holes in topological
spaces. Each of these spaces can be created out of different dimensional objects
called simplicial complexes. These complexes are constructed out of a union of
points, line segments, planes, and higher dimensional polytopes, which are call
n-simplicies depending on the dimension of the object. Every simplicial complex,
denoted as K, is a collection of subsets of the vertices of the object of interest. As
discussed in [1], we will study collections of formal sums of For simplicity, we will
study simplicial complexes as vector spaces over F2, the field with two elements
{0, 1}. Let Cn(X) denote the vector space with basis given by the n-simplices of
X. Thus, we can define the boundary map for n = 1, 2, ... as

∂n : Cn(X) → Cn−1(X)

which sends each n-simplex to its boundary. We also see that the boundary of a
boundary is empty; therefore, the composition of any two consecutive boundary
maps is the zero map. From here, we can define what is known as a chain
complex

0
∂n+1−−−→ Cn(X)

∂n−→ Cn−1(X)
∂n−1−−−→ ...

∂2−→ C1(X)
∂1−→ C0(X)

∂0−→ 0

To compute the homology vector space, Hn(X) from the chain complex we find
the quotient

Hn(X) =
ker(∂n)

im(∂n+1)

To explain in simplest terms, the quotient ensures each hole is counted exactly
once, identifying any two cycles of the same hole as the same cycle in the
space Hn(X). The dimension of Hn(X) gives the number of n-dimensional holes
present, called the nth Betti number of X.

Filtered Simplicial Complexes and Persistent
Homology

Persistent Homology attempts to study the homology of a space over some no-
tion of time given a metric to determine the distance or dissimilarity between any
two points in the space. To study this further, we introduce the concept of the
filtered simplicial complex. Given a finite simplicial complex X and finite sequence
of subcomplexes X1 ⊂ X2 ⊂ ... ⊂ Xk ⊂ X, we call X a filtered simplicial com-
plex. While we can compute the homology for each dimension present within
each of the subcomplexes, we will discuss an algorithm that provides a more
efficient computation and visualization of the significant features present in the
simplicial complex. The filtered simplicial complex is created, in most cases, from
a point cloud data set using something known as the Vietoris-Rips complex [2].
The VR complex defines some ϵ > 0 and adds a 1-simplex between any two
points that have a pairwise distance of less than 2ϵ based on the defined metric.
Higher dimensional simplices are added as the distances between closed loops
of n-simplices are less than 2ϵ. A simple way of viewing this is assuming that
each point has some ϵ−neighbourhood defined around it and when the neigh-
bourhoods of any two vertices intersects, a 1-simplex is added connecting the
points. This concept be seen in the following figure, although the metric used
does not follow strictly from an ϵ−neighbourhood.

σ1

σ2

σ3

σ4

X1

σ1

σ4
σ5
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X2
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σ5 σ6
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σ7
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σ8
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X5

Figure 1: Visual Example of a Filtered Simplicial Complex

The Standard Algorithm and Barcode Plots

To create a graphic that displays birth and death of different features, we seek to create the
barcode plot. First, we define the boundary matrix. Let n be the number of simplices in
the simplicial complex X and denote the simplices as σ1, ..., σn ordered in this manner. We
construct the n × n boundary matrix B = {bi,j} where each element bi,j is either a 1 if σi
is a subset of the vertices of σj or a 0. In [2], they discuss what they call the Standard
Algorithm to reduce the boundary matrix. First, they define low(j) to be the largest value
of i such that bi,j ̸= 0 where i, j ∈ {1, ..., n}. If the jth column contains only values of 0,
then low(j) is undefined. Now, we can discuss the standard algorithm:

With a reduced boundary matrix B’, we can determine the birth and death of the features
that are present throughout the filtration steps of the filtered complex. If low(j) = i, then
we say σj is paired with σi meaning that a feature is born when σi enters the filtration and
dies or disappears when σj enters into the filtration. If low(j) is undefined, then σj entering
the filtration causes a feature to be born. If there exists an l such that low(l) = j, then the
feature born due to the entrance of σj dies with the entrance of σl into the filtration. With no
such l, then the feature generated by σj ’s entrance remains throughout the entire filtration.
Given the filtered complex laid out in Figure 1, we can create the boundary matrix and follow
the standard algorithm to reduce the boundary matrix. Thus, we have the boundary matrix,
B, and the reduced boundary matrix, B’, from the standard algorithm (in F2):

B =



0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 1 1 0 0
0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0


B′ =



0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0



Thus, we get the intervals [1,∞) for σ1 unpaired, [1, 3) for σ2, which is paired with σ7, [1, 2)
for σ4, which is paired with σ5, [4, 5) for σ8 paired with σ9, and [1, 3) for σ3 which is paired
with σ6. These were found following the process defined in [2].
From Figure 1, we can create the barcode plot by reading from the intervals of the reduced
boundary matrix.

1 2 3 4 5 6 7

H0

H1

The above barcode for Figure 1 shows the presence of 0 and 1-dimensional holes in the
filtered simplicial complex as well as how long these holes persist. The 1-dimensional hole
persists only between 3 and 4, indicating that it is not a particularly significant feature of the
space X. However, barcode plots are not dependent on which stage of the filtered complex
each simplex appears at but rather the chosen metric, i.e., the value of ϵ. Thus, it is possible
that ϵ increased a great deal more between 3 and 4 than between 1 and 2. Since we did not
choose a specific metric, we displayed the barcode based on the subcomplexes.

Barcode Plots of Different Spheres

We now examine the differences between two different barcode plots based on
two slightly differing filtered complexes. Both complexes are created by gener-
ating 50 points along the surface of S2. In Case 1, the points lie exactly along
the surface of S2, while in Case 2 each point is slightly perturbed, only roughly
being along the surface of S2. These plots were generated using the TDAstats
package in R. First, we look at the barcode plot for Case 1.

We see that the longest bar in dimension 2 suggests that there is a persistent
generator of H2. Since there are no other significant generators in either dimen-
sion 1 or 0, we can conclude that the space we are in is homologically S2. We
can view this as pointing to the existence of the hollow inside of S2 before the
interior is filled in by a 3-simplex. Next, we look at the barcode plot of Case 2.

We see slight differences mainly in a greater dispersal of the H1 generators with
two of those generators persisting long enough that they seem like significant
features that define the space we are in. While we have a persistent H2 genera-
tor similar to that of the previous barcode plot, it is about as persistent as the H1
generators. Thus, the perturbation of the points suggests the space we are in is
no longer homologically S2.
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Goals

In vector calculus, we learn Stokes’ Theorem in familiar forms like Green’s Theorem, the

classical Stokes’ Theorem, and the Divergence Theorem, which relate integrals over a

region to integrals over its boundary. Our goal is to explore and understand the deeper

structure behind these results by generalizing Stokes’ Theorem to smooth manifolds using

differential forms. This unified, coordinate-free formulation reveals the theorem as a

powerful tool in modern geometry and physics — one that applies across any dimension

or shape.

General Stokes’ Theorem

LetM be an orientable smooth n-manifold, and let ω be a compactly supported smooth

(n − 1)-form on M . Then, we have:∫
M

dω =
∫

∂M
ω

Here if Ω is a chosen to be an orientation of M , then wewill take iηΩ to be the orienta-

tion of ∂M where η is an outward-point normal vector of ∂M . In particular, if ∂M = ∅,
then

∫
M dω = 0 .

Smooth Manifolds

A n-dimensional topological manifold M is said to be an n-dimensional topological man-

ifold, if there is a collection A of local parametrizations Fα : Uα → Oα such that⋃
α∈A Oα = M , i.e. these local parametrizations cover all of M ; and

all transition maps F −1
α ◦ Fβ are smooth (i.e C∞) on their domains.

Differential Forms

In vector calculus, we integrate vector fields over surfaces or curves using tools like line

integrals and flux. These make sense because the domains — like regions in R2 orR3— are

covered by a single coordinate system. However, by the definition of manifolds, we might

have many overlapping coordinates chart which makes the vector field make no sense to

have different value on the same coordinates. Thus, we need to introduce Differential

Forms. Let M be a smooth manifold. A smooth differential k-form ω on M is a map

ωp : TpM×TpM×· · ·×TpM → R at each p ∈ M such that under any local parametrization

F (u1, . . . , un) : U → M , it can be written in the form:

ω =
n∑

i1,...,ik=1
ωi1...ikdui1 ∧ . . . duik

where ωi1...ik ’s are smooth scalar functions locally defined in F (u), and they are commonly

called the local components of ω. The vector space of all smooth differential k-forms on

M is denoted by ∧kT ∗M

Exterior Derivative

We define the exterior derivative for a differential form. Let M be a smooth manifold.

Let Mn be a smooth manifold and (u1, . . . , un) be local coordinates on M . Given any

(smooth) k-form

ω =
n∑

ji,...,jn=1
ωj1...jk

duj1 ∧ · · · ∧ dujk

We define:

dω :=
n∑

ji,...,jn=1

n∑
i=1

∂ωj1...jk

∂ui
dui ∧ duj1 ∧ · · · ∧ dujn

In particular, if ω is an n-form (where n = dimv ), we have dω = 0. Like the normal

derivative, if we take a derivative to the first derivative, we will get k+1 form if we take

external derivative toward k-form. It satisfies d2 = 0 and obeys a graded Leibniz rule.

Manifolds with Boundary

Nowwe need to definewhat is the boundary for a manifolds. A n-dimensional topological

manifold M is said to be an n-dimensional topological manifold, or in short a topological

n-manifold, if there is a collection A of local parametrizations Fα : Uα → Oα such that⋃
α∈A Oα = M , i.e. these local parametrizations cover all of M ; and

all transition maps F −1
α ◦ Fβ are smooth (i.e C∞) on their domains.

Since d ◦ d = 0 for all differential forms, we also get ∂(∂M) = ∅.

Orientable Manifolds

Like vector calculus, we need to define the orientation of a manifold. For example, Möbius

Strip is not an orientable manifold.

A smooth manifold M is said to be orientable if there exists a family of local parametriza-

tions Fα : Uα → M covering M such that for any Fα and Fβ in the family with

Fβ(Uβ) ∩ Fα(Uα) 6= ∅, we have:

det D(F −1
α ◦ Fβ) > 0 on F −1

β (Fβ(Uβ) ∪ Fα(Uα)).

In this case, we call the family A = {Fα : Uα → M} of local parametrizations to be an

oriented atlas of M .

We also define the orientation of the manifold. Given an orientable manifold Mn, a

non-vanishing global n-form Ω is called an orientation of M . A basis of tangent vectors

{T1, . . . , Tn} ∈ TpM is said to be Ω-oriented if Ω(T1, . . . , Tn) > 0. A local coordinate

system (u1, . . . , un) is said to be Ω-oriented if Ω( ∂
∂u1

, . . . , ∂
∂un

)

Proof of General Stokes’ Theorem

Step 1 We first show that for the special case where supp ω is contained inside a single

parametrization chart of interior type.∫
M

dω =
∫

U

n∑
i=1

(−1)i−1∂ωi

∂ui
du1 . . . dun

=
n∑

i=1
(−1)i−1

∫ R

−R
· · ·

∫ R

−R
[ωi]

ui=R
ui=−Rdu1 . . . dun

Since ωi’s vanish at the boundary of the rectangle [−R, R]n, we have
∫

M dω = 0. Since
supp ω is contained in a single parametrization chart of the interior type, we have ω = 0
on the boundary ∂M . Thus, we have:∫

M
dω = 0 =

∫
∂M

ω
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Step 2 We then show that for the special case where supp ω is contained inside a single

parametrization chart of boundary type.∫
M

dω =
∫

V

n∑
i=1

(−1)i−1∂ωi

∂ui
du1 . . . dun

=
n−1∑
i=1

(−1)i−1
∫ R

0

∫ R

−R
· · ·

∫ R

−R
(−1)i−1∂ωi

∂ui
du1 . . . dun + (−1)n−1

∫ R

0

∫ R

−R
· · ·

∫ R

−R

∂ωi

∂ui
du1 . . . dun

= (−1)n−1
∫ R

0

∫ R

−R
· · ·

∫ R

−R

∂ωi

∂ui
du1 . . . dun

= (−1)n−1
∫ R

−R
· · ·

∫ R

−R
ωn(u1, . . . , un−1, 0)du1 . . . dun∫

∂M
ω = (−1)n

∫
V∩{un=0}

ωn(u1, . . . , un−1, 0)du1 . . . dun

= (−1)n−1
∫ R

−R
· · ·

∫ R

−R
ωn(u1, . . . , un−1, 0)du1 . . . dun

Thus, we have: ∫
M

dω =
∫

∂M
ω

Step 3 Finally, we “glue” the previous two steps together and deduce the general case.

Let A = {Fα : Uα → M} be an atlas of M where all local coordinates are Ω-oriented.
Suppose {ρα : M → [0, 1]} is a partition of unity of subordinate to A. Then we have:∫

∂M
ω =

∫
∂M

∑
α

ραω

=
∑
α

∫
∂M

ραω

=
∑
α

∫
M

d(ραω)

=
∫

M
d(
∑
α

ρα) ∧ ω + (
∑
α

ρα) ∧ dω

=
∫

M
dω

Application to Vector Calculus

Green’s Theorem

Let R be a closed and bounded smooth 2-submanifold in R2 with boundary ∂R. Given

any smooth vector field V = (P (x, y), Q(x, y)) defined in R, then we have:∮
∂R

V · dl =
∫

R
(∂Q

∂x
− ∂P

∂y
) dx dy

The line integral on the LHS is oriented such that { ∂
∂x, ∂

∂y} has the same orientation

as {µ, T} where µ is the outward-pointing normal of R, and T is the velocity vector of

the curve ∂R.

Consider the 1-form ω := P dx + Q dy defined on R, then we have:

dω = (∂Q

∂x
− ∂P

∂y
) dx ∧ dy

Suppose we fix an orientation Ω = dx ∧ dy for R so that the order of coordinates is (x, y),
then by generalized Stokes’ Theorem we get:∮

∂R
P dx + Q dy︸ ︷︷ ︸∮

∂R ω

=
∫

R
(∂Q

∂x
− ∂P

∂y
) dx ∧ dy︸ ︷︷ ︸∫

R dω

=
∫

R
(∂Q

∂x
− ∂P

∂y
) dx dy
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Monoidal Category

Definition 1.1 A Monoidal category is a tuple (C,⊗, 1C, αa,b,c, λa, ρa) where − ⊗ − :
C × C → C is a bifunctor called the tensor product, 1C is an object called the unit
object in C, α(a,b,c) : (a ⊗ b) ⊗ c → a ⊗ (b ⊗ c) is a natural isomorphism called the
associator, λa : 1C ⊗ a → a and ρa : a ⊗ 1C → a are natural isomorphism called
unitors.

This data must satisfy the following two axioms:

Triangle axiom

a b1C

=

a 1C b

Pentagon axiom

a b cd

=

a b cd

Examples:
• (G−graded vector spaces) Let G be a finite group and Vec(G) be the category

of all finite dimensional G−graded complex vector space V =
⊕

g∈G Vg with
grading-preserving linear map, i.e. , if T : V → W, then T (Vg) ⊆ Wg. We
endow Vec(G) with the structure of tensor product as follows:

(V ⊗W )g :=
⊕
hk=g

Vh ⊗Wk.

The associator moves the parentheses, and the unit object is the field C. Under
this definition, Vec(G) is a monoidal category.

• (Representation for G) Let G be a finite group. Repk(G) is a category of all rep-
resentations of G over complex field C. The objects in this category are pairs
(V, πV ), where πV : G → GL(V ) is the homomorphism for the representation V .
We define the tensor product of pairs as:

(V, πV )⊗ (W,πW ) = (V ⊗W,πV⊗W ), πV⊗W (g) := πV (g)⊗ πW (g).

The unit is the trivial representation 1 = k, and the associator moves parentheses.
Then Repk(G) is a monoidal category. A similar statement holds for the category
Repk(G) of all finite-dimensional representations of G.

Theorem 1.2 (Coherence) Any monoidal category is monoidally equivalent to a strict
monoidal category.

Tensor Category

Definition 2.1 Rigidity is the generalization of duality. The dual of an object X ∈
C is an object X∨ with evaluation and coevaluation morphisms evc : c∨ ⊗ c →
1c and coevc : 1c → c⊗ c∨ satisfying the following relation

(idX ⊗ evX) ◦ (coevX ⊗ idX) = idX , (evX ⊗ idX∨) ◦ (idX∨⊗ coevX) = idX∨ .

Definition 2.2 A finite tensor category is a locally finite k-linear abelian rigid monoidal
category such that there are enough projective covers of simple objects, finitely many
isomorphism classes of simple objects, and 1C is simple.

Hopf Algebras

Definition 3.1 A Hopf algebra is a sextuple (H,∇, η,∆, ε, S) where ∇ : H ⊗H → H
is multiplication, η : F → H is unit, ∆ : H → H⊗H is comultiplication, ε : H → F
is counit, and S : H → H is antipode. All those maps are linear.

This data must satisfy the following axioms:

1 Associativity axiom;

=

∇ ◦ (∇⊗ idH) = ∇ ◦ (idH ⊗∇)

3 Coassociativity axiom;

=

(∆⊗ idH) ◦∆ = (idH ⊗∆) ◦∆

2 Unital axiom ;

= =

∇ ◦ (η ⊗ idH) = ∇ ◦ (idH ⊗η)

4 Counital;

= =

(ε⊗ idH) ◦∆ = idH =
(idH ⊗ε) ◦∆

5. ∆ and ϵ are both unital algebra homomorphisms for all h1, h2 ∈ H (bialgebra)

=

∆◦∇ = (∇⊗∇)◦(idH ⊗βH,H⊗idH)◦(∆⊗∆).

=

∆(η(1)) = η(1)⊗ η(1)

= 1

ε(1) = 1

=

ε ◦ ∇ = ε⊗ ε,

6 Antipode axiom.

S = S =

∇ ◦ (idH ⊗S) ◦∆ = η ◦ ε = ∇ ◦ (S ⊗ idH) ◦∆

Examples:

• (Trivial Hopf algebra) Let F be a field. It is also a Hopf algebra with multiplication
and unit of the field, comultiplication ∆(a) = a⊗1F, counit ε(a) = a, and antipode
S(a) = a

• (Group Algebra) Let G be any group and F be a field. Considering the group ring
F [G]. We define the multiplication ∇ : F [G] ⊗ F [G] → F [G] by extending the
usual group multiplication g ◦ h = g ∗G h for g, h ∈ G. e ∈ G is the unit object
under this multiplication.

The comultiplication ∆ : F [G] → F [G] ⊗ F [G] is generated by g → g ⊗ g for
g ∈ G. By the counital axiom, ε(g)g = g, we could conclude that ε(g) = 1F for all
g ∈ G. Antipode is defined as S(g) = g−1 for all g ∈ G. All together makes F [G]
a Hopf algebra.

Tannaka Reconstruction

Definition 4.1 A Fiber functor is a exact faithful linear functor

F : C → Vec

preserving identity. It is also equipped with a natural isomorphism:

JX,Y : F (X)⊗ F (Y ) → F (X ⊗ Y ), for X,Y ∈ Obj(C)

such that J : F (⊮C) → C
Theorem 4.2 Every finite tensor category equipped with a fiber functor is realized as
the category of finite-dimensional representations of finite-dimensional Hopf algebras
over the field C. In particular,

(C,F ) → H := End(F ), H → (Rep(H), F )

are mutually bijections up to tensor equivalence.

Proof: Generally speaking, the proof is just checking that End(F ) is a Hopf alegbra,
(Rep(H), F ) becomes a finite tensor category, and Rep(End(F )) ∼= C
End(F ) is equipped with an algebra structure. The crucial point for the End(F ) is
to construct the comultiplication, counit, and antipode. Comultiplication and axiom 5
make it into a bialgebra, while the Antipode and axiom 6 make it into a Hopf algebra.
Comultiplication is a homomorphism from End(F ) to End(F ) ⊗ End(F ). Consider
the Delign’s tensor product of End(F ) with itself, there are canonical isomorphism
α between End(F ) ⊗ End(F ) and End(F ⊠ F ). For X,Y ∈ C, we have that (F ⊠
F )(X ⊠ Y ) = F (X) ⊗ F (Y ). Hence, for a natural transformation a = {aZ : F (Z) →
F (Z)|for all Z ∈ C} ∈ End(F ), we define a new natural transformation

∆̃X⊠Y = J−1
X⊠Y ◦ ϕX⊠Y ◦ JX⊠Y ; (F ⊠ F )(X ⊠ Y ) → (F ⊠ F )(X ⊠ Y )

Pulling ∆̃ back through α−1 lands in End(F )⊗End(F ) and is defined as ∆(a). Coas-
sociativity and the algebra map property of ∆ then follow from the monoidal functor
axioms for F and the multiplicativity of α. We then define the counit ε : End(F ) → C
by ε(a) = a where a1 ∈ End(F (1C)) = End(1) = C. Overall, we have that H is a bial-
gebra. Transporting the evaluation and coevaluation maps through the fibre functor F
will obtain the usual linear duality maps on the vector spaces. One could define the
antipode as S(aX) = a∗X∗. Hence, it makes H into a Hopf algebra.

On the other hand, C = RepC(H) is a category whose objects are all finite represen-
tations of H over the field C. The tensor product of H-modules X,Y is defined as the
usual tensor product of vector spaces X ⊗ Y . And the H− action is defined as

h · (x⊗ y) = ∆(h)(x⊗ y) = (h(1) · x)⊗ (h(2) · y)

By the coassociativity and counital axioms, the tensor product here is associative and
unital up to isomorphism, and the unit object is the trivial representation. Pentagon
and triangular axioms hold because the underlying category is Vec. Every object
in C is dualizable by the antipode axiom. The remaining axioms for a Finite Tensor
Category are easy to verify.

And intuitively, H = End(F ) contains every way that the objects of C can act on
themselves inside vector spaces. And those actions could become modules that
recreate all of C, giving the desired isomorphism of categories Rep(End(F )) ∼= C
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Introduction

Cryptography is an area of applied mathematics that draws on disciplines such as number

theory, abstract algebra, probability. These cryptosystems allow users to communicate

securely across the globe, by basing their security on underlying mathematical problems

which are hard to solve, that become easy once additional information is known. The

most widely used system is called RSA which relies on the following problem. Given a

large composite number n, is one able to find two large prime number p and q such that

the product of these two prime numbers is n. Currently problems such as prime integer

factorization are too difficult to solve given known algorithms and computing power.

However with the power of quantum computing and known techniques such as Schor’s

Alogrithm (1994) we are able to solve these problems in realistic time frames.

This is where lattices come into the picture. We define a lattice as such

Definition. Let v1, . . . , vn ∈ Rm be a set of linearly independent vectors. The lattice L
generated by v1, . . . , vn is the set of linear combinations with coefficients in Z,

L = {a1v1 + a2v2 + · · · + anvn : a1, a2, . . . , an ∈ Z}.
A basis for L is any set of independent vectors that generates L. Any two such sets have
the same number of elements. The dimension of L is the number of vectors in a basis for

L.

Figure 1. Visual of a 2-dimensional lattice.

Lattices provide a different approach to cryptography by inviting a new type of hard

problem that are quantum resistant for the time being. This means that there are no

known quantum algorithms that can efficiently solve hard lattice problems. This brings

us to NTRUEncrypt a public key cryptosystem which is based on lattices. It can be

shown that the security of NTRU is equivalent to solving the shortest vector problem.

The Shortest Vector Problem

The Shortest Vector Problem (SVP) can be described as such: Find a shortest nonzero

vector in a lattice L, i.e., find a nonzero vector v ∈ L that minimizes the Euclidean

norm ||v||.
The SVP can be intuitively thought of as such. Imagine we are standing at the origin

of a lattice, what is the closest point to the origin that you can find and what is the

length of the vector that describes this point. While in 2 or 3 dimensions this problem

seems fairly simple to solve, as the number of dimensions grow, the difficulty of this

problem increases as well.

Building off of this. The apprSVP is a modified version of the SVP in which we bound

the euclidian norm of a vector v ∈ L by the product of a scalar function n and the

shortest vector in the lattice called vshortest, where n is the dimension of our lattice.

||v|| ≤ ψ(n)||vshortest||
It should be noted that if we have a basis of a lattice where the vectors are pairwise

orthogonal, then it is easy to solve both SVP and CVP (Closest Vector Problem).

NTRUencrypt

NTRUencrypt (N-th degree Truncated polynomial Ring Units) has three parts to it. Key

creation, encryption and decryption. These three parts utilize two important mathemat-

ical objects, lattices and polynomial rings. We begin by fixing an integer N ≥ 1 and two

moduli p and q (where p and q are coprime), and we let R, Rp, and Rq be the convolution
polynomial rings

R = Z[x]
(xN − 1)

, Rp = (Z/pZ)[x]
(xN − 1)

Rq = (Z/qZ)[x]
(xN − 1)

.

In the equations above R is the name of the ring, Z[x] tells us that the coefficients of x
are integers (in the case of (Z/pZ)[x] it would imply the coefficients are of p) and xN − 1
indicates the greatest possible degree of the polynomial. In other words the highest

degree will be (N-1). These rings will be the playground that our polynomials live in.

Next we shall choose our private keys from the space of ternary polynomials T (d1,d2),

T (d1, d2) =

a(x) ∈ R :
a(x) has d1 coefficients equal to 1,
a(x) has d2 coefficients equal to − 1,
a(x) has all other coefficients equal to 0

 .

Where d obeys the inequality q > (6d+1). Ternary polynomials allow us to encrypt and

decrypt at lighting speeds reducing our multiplication to simple arithmetic. Our private

key consists of two randomly chosen polynomials

f (x) ∈ T (d + 1, d) and g(x) ∈ T (d, d).
We compute the following inverse,

Fq(x) = f (x)−1 in Rq and Fp(x) = f (x)−1 in Rp

Our published key will be the following,

h(x) = Fq ? g(x)
Where ? denotes the multiplication of polynomials with a reduced mod N of power.

Using our public key h(x) we can encrypt any message we like.

The NTRU Lattice

Let

h(x) = h0 + h1x + ...hN−1x
N−1

be an NTRU public key. The NTRU lattice of h(x) is the 2N-dimensional lattice spanned

by the rows of the matrix

MNTRU
h =



1 0 · · · 0 h0 h1 · · · hN−1
0 1 · · · 0 hN−1 h0 · · · hN−2
... ... . . . ... ... ... . . . ...

0 0 · · · 1 h1 h2 · · · h0
0 0 · · · 0 q 0 · · · 0
0 0 · · · 0 0 q · · · 0
... ... . . . ... ... ... . . . ...

0 0 · · · 0 0 0 · · · q


.

Assuming f (x) ? h(x) ≡ g(x) (mod q), let u(x) ∈ R be the polynomial satisfying,

f (x) ? h(x) = g(x) + qu(x).
Then

(f,−u)MNTRU
h = (f, g),

so the vector (f, g) is in the NTRU lattice LNTRUh . In otherwords if onewere to search for

a private key to be able to decrypt a message in NTRU, then it is equivalent to solving the

shortest vector problem. This is a difficult task given the shortest vector is not unique,

the gap between the shortest and second shortest vector might be small, and in higher

dimensions it becomes infeasible to brute-force search.

The LLLAlgorithm

From the SVP section we know that given a basis of a lattice where the vectors are

pairwise orthogonal, then it is easy to solve both SVP and CVP. This naturally gives birth

to the question, given a basis of a lattice are we able to find a way to transform this basis

into one where the vectors are as short and orthogonal as possible. Can we use this

basis to solve SVP or CVP?

This is where the LLL comes into play. The LLL Algorithm is a basis reduction algorithm

in which we reduce a given basis to a new basis where each vector is as short as possible

starting with the shortest vector as our first and each following vector increases until we

reach the last vector. Additionally we would also like these vectors to be as orthogonal

as possible so LLL algorithm uses the Gram-Schmidt process in order to orthogonalize

the basis vectors to our best ability.

Conditions of LLL

We can apply the following definition to a basis of a lattice

Definition: Let B = {v1, v2, . . . , vn} be a basis for a lattice L and let B∗ = {v∗
1 , v

∗
2 , . . . , v

∗
n}

be the associated Gram-Schmidt orthogonal basis. The basis B is said to be LLL reduced

if it satisfies the following two conditions:

1. (Size Condition) |µi,j| =
∣∣∣∣ vi·v∗

j

||v∗
j ||2

∣∣∣∣ ≤ 1
2 for all 1 ≤ j < i ≤ n.

2. (Lovász Condition) ||v∗
i ||

2 ≥
(

3
4 − µ2

i,i−1

)
||v∗
i−1||

2 for all 1 < i ≤ n.

With these conditions being met this ensures that our new basis will be as small and

orthogonal as possible. It should be noted that LLL runs in polynomial time and is guar-

anteed to terminate.

Solving Hard Lattice Problems

What a basis reduction algorithm like LLL tries to do is make a basis orthogonal enough

so that we can solve the apprCVP or apprSVP. In lower dimensions the LLL algorithm

works quite effectively. For instance LLL is able to solve apprSVP within a factor of

2
n−1

2 , however as the number of dimensions increase the LLL algorithm becomes quite

ineffective and hence not feasible for large lattices. In general the security of lattice based

cryptosystems depends on the inability of LLL and other lattice reduction algorithms to

efficiently solve apprSVP and apprCVP to within a factor of, O(
√
n).

Unlike established cryptographic attack algorithms such as sieves or Pollard’s ρ method,

the performance characteristics of standard lattice reduction algorithms (e.g., BKZ-LLL)

are less theoretically understood. This makes it challenging to precisely predict their

effectiveness against specific lattice structures. Hence, for the time being the security

of lattice based cryptosystems like NTRU must be determined experimentally.
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Section 1: What Is Knot Theory?

What is a Knot

Knot theory is a subfield of the mathematical study of topology that focuses on
knots, which can essentially be thought of as a knotted string that has no
thickness and whose ends are connected. Additionally, these knots do not
intersect each other at any point, they merely overlap one another, which are
called crossings.

What are some Classifications

Knots largely fall into one of three categories: a torus knot, a satellite knot, and
a hyperbolic knot. A torus is one that lies on an unknotted torus (visualize a
doughnut), without crossing over or under themselves. They have two different
types of curves: a meridian curve, which runs along the torus the “short way,”
and a longitude curve, which runs along the torus the “long way.” We define a
(p, q) torus knot to be one who intersects p times meridionally and q times
longitudinally.

Figure 1: Torus Knots

A satellite knot is when we take a torus knot, with its own unique knot on the
inside, and knot the torus itself. The knotting of the solid torus is called the
companion knot, which is nontrivial.

Figure 2: Satellite Knot

Finally, a hyperbolic knot is a knot embedded on a hyperbolic surface, or
surfaces that have a curvature of -1. Most knots tend to be hyperbolic knots.
For example, think of a hyperbolic surface as the inside of the unit sphere. Any
knot projected onto this surface is a hyperbolic knot. These knots have very
interesting properties, such as the sum of angles of a triangle in this space is less
than the standard 180 degrees.

Figure 3: Hyperbolic Knots

Some Examples

Here are some examples of knots:

Figure 4: Examples of Famous Knots

Section 2: Properties of Knots

Reidemeister Moves

There are three ways in which we can change a projection of a knot.
Reidemeister moves allow us to change the projection of a knot in one of three
ways. The first Reidemeister move permits us to take out or put in a twist in the
knot. The second Reidemeister move permits us to either add two crossings or
remove two crossings.The third Reidemeister move permits us to slide a strand
of the knot from one side of a crossing to the other side of the crossing.

Figure 5: Reidemeister Moves

Two knot diagrams represent the same knot if and only if they can be
transformed into each other through a sequence of Reidemeister moves and
planar isotopies.

Tricolorability

A projection of a link or a knot is tricolorable when each of the strands in the
projection can be colored one of three colors, so that at each crossing, either
three different colors come together or all the same color comes together.

Figure 6: Tricolorability

Tricolorability is a knot invariant - if a knot is tricolorable, any diagram of that
knot is also tricolorable.

Unknotting, Bridge, and Crossing Numbers

The unknotting number n of a knot K is determined by the fewest number of
crossing changes that are required to transform the knot into the unknot. For
example, the unknotting number of the unknot is 0 because there are zero
crossing changes to be made in order to achieve the unknot. A composite knot
is not able to be unknotted with just one crossing change.
The bridge number of the knot projection is determined by the number of
maximal overpasses in that projection. An overpass is a sub arc of the knot that
goes over at least one crossing, but never goes under any crossing. A maximal
overpass is an overpass that cannot be made any longer.
The crossing number of any knot is the least number of crossings that the
projection of the knot can have without breaking a part of any section of it.
This is achieved by completing Reidemeister moves to remove any unnecessary
crossings.

Section 3: Applications in Biology and Chemistry

DNA

Look at the tangling of DNA in the nucleus. The enzymes that interact with the
DNA can be seen as completing Reidemeister moves that further knot some
DNA. They do this by taking the ends of a type of DNA structure called a linear
duplex and knotting them, connecting the ends,forming a cyclic duplex DNA:

Figure 7: Cyclic DNA Ribbon

Given the twist of the ribbon, or how much the ribbon twists around its axis,
and the writhe, or how much the axis is contorted, we can figure out the linking
number by adding the two. If the ribbon is supercoiled, that is to say it has too
high of a twist, this twist will lower and compensate for this loss by increasing
the writhe, causing the space to get more deformed. An enzyme will cause this
increase in twist, causing the reaction.

Synthesis of Knotted Molecules

While knots have been observed in large and intricate biological molecules like
DNA, simpler molecules can also form knotted or linked structures. Even when
two molecules have the same atoms bonded in the same sequence, their
configurations can differ so they show distinct physical/chemical properties due
to chirality being non-superimposable mirror images. Look at the following:

Figure 8:

Although they have the same molecular graph—making them homeomorphic—
their mirror imaging prevents them from transforming into each other in 3-D
space—denying them the label of isotopic. These pairs are called topological
stereoisomers. Chemists have shown a great interest in synthesizing these,
because they represent new types of substances. They have developed
sophisticated methods to create not only linked molecules but also truly knotted
molecular structures. These advances open the door to synthesizing a vast new
family of molecular architectures. Chemists use templates to guide the formation
of knots, giving way to the first successful synthesis of a molecular trefoil knot.

Chirality of Molecules

A molecular graph in space that can’t be deformed through space to its mirror
image is called chiral, while a molecular graph in space that can be deformed to
its mirror image is called achiral. Knots and links are amphicheiral if they could
be deformed to its mirror image. Hence, for knots, amphicheiral and achiral
mean the same thing. When chemists search for pairs of topological
stereoisomers, they need to know which knots are chiral and which are achiral.
A given molecule may be achiral but not chemically achiral. However, a chiral
molecule must be chemically chiral. A Möbius ladder has been proven to always
be chiral when it has four or more rungs. A Möbius ladder with three rungs
however has been shown to be achiral. The first knot to be proven to be chiral
was the trefoil knot.



ADJOINT FUNCTORS AND THEIR APPLICATIONS

Brandon Jensen Mentored by Jitendra Rathore
University of California Santa Barbara Directed Reading Program (DRP)

ADJOINT FUNCTORS AND THEIR APPLICATIONS

Brandon Jensen Mentored by Jitendra Rathore
University of California Santa Barbara Directed Reading Program (DRP)

Introduction

"Adjoint functors arise everywhere"
- Saunders Mac Lane, Categories for

the Working Mathematician

Category theory provides a universal language for studying structural
similarities between different mathematical objects. Categories were first
axiomitized by Eilenberg and Mac Lane in 1945 as an auxiliary definition to make
precise the notions of functors and natural transformations [3]. As they put it,
"Category theory starts with the observation that many properties of mathematical
systems can be unified and simplified by a presentation with diagrams of arrows"
[2]. Daniel Kan was one of the first to define the notion of an "Adjoint Functor" in
1958, a very special class of functors which are precisely the topic of this poster
[3]. After reading this poster, hopefully you will have a better idea of why we care
so much about adjoint functors. What problems in mathematics do they help us to
solve?

Categories and Functors

A category C consists of two collections, the objects of C denoted as Obj(C) and
the morphisms of C denoted as Mor(C). These collections include the following
data:

1. Every morphism f ∈ Mor(C) has a specified "source" (domain) and "target"
(codomain).

2. Every object X ∈ Obj(C) has a distinguished identity morphism 1X : X → X.

3. If f : Y → Z and g : X → Y are morphisms, then there is a morphism
f ◦ g : X → Z called the composite morphism.

In addition, there are two axioms that must be satisfied:

1. UNITALITY: Given any morphism f : X → Y , f = 1Y ◦ f = f ◦ 1X .

2. ASSOCIATIVITY: Given three morphisms h : W → X, g : X → Y , and
f : Y → Z, we have the equality f ◦ (g ◦ h) = (f ◦ g) ◦ h.

Definition 1. A functor F : C → D consists of a choice of object F (c) ∈ Obj(D)
for each c ∈ Obj(C), as well as a choice of morphism F (g) : F (X) → F (Y ) ∈
Mor(D) for each g : X → Y ∈ Mor(C), satisfying the following conditions:

1. F preserves composition, i.e. F (f ◦ g) = F (f ) ◦ F (g).

2. F preserves identities, i.e. F (idX) = idF (X) for every object X ∈ Obj(C).

Two categories C and D are said to be equivalent if there exists a functor F : C →
D such that F is fully faithful (induced functions on homsets are bijective) and F is
essentially surjective (every object in D is isomorphic to an object in the image of
F ). In this case we say that F defines an equivalence of categories.

What is an Adjoint Functor?

Definition 2. Given a pair of functors F : C → D and G : D → C, we say that F
is left adjoint to G (denoted F ⊣ G) if for each pair of objects X ∈ Obj(C) and
Y ∈ Obj(D) we have a bijection of hom-sets:

HomD(F (X), Y ) ∼= HomC(X,G(Y ))

For those with knowledge in natural transformations, these isomorphisms should
assemble into a natural isomorphism (natural in both arguments).

Free and Forgetful Functors

Many adjoint functors tend to fall into a class called "Free/Forgetful Adjunctions". These types
of adjunctions are, roughly, defined as follows:

Definition 3. Suppose we are given an adjoint pair of functors F ⊣ G such that F : C → D
and G : D → C. Informally, we say that this adjunction is a free-forgetful adjunction when:

• Objects in D have "more structure" than objects in C.

• G is a functor "ignoring" the structure of objects in D, and F endows objects in C with a
free D-structure.

In many cases, the free functor is left adjoint to the forgetful functor.

As always, a definition would be meaningless without examples. As such, here are some
important examples of free-forgetful adjunctions:

1. The Free Group Functor F (− ) : Set → Grp is left adjoint to the forgetful functor UGrp :
Grp → Set.

2. The Polynomial Ring Functor Z[ − ] : Set → CRing is left adjoint to the forgetful functor
UCRing : CRing → Set.

3. The Abelianization Functor ( − )ab : Grp → Ab is left adjoint to the forgetful functor
UAb : Ab → Grp.

4. The Grothendieck Group Functor K0[−] : CMon → Ab is left adjoint to the forgetful
functor UCMon : Ab → CMon. This functor is used to define the zeroth algebraic K-
group K0(R) of a ring R.

CMon Ab Grp Set CRing

K0[−]

UCMon UAb

(−)ab

UGrp

F (−) Z[−]

UCRing

The Optimization Problem

So why do we care about free and forgetful functors? One reason is they allow us to solve
certain mapping problems. Let X be a set, and G be a group. Let’s say we have a set
map f : X → UGrpG. Now we might wonder, "How can we extend this set map to a
group homomorphism?". For simplicity, take X = {1} and consider the following diagrams:

UGrp(Z) UGrp(G)

X

f

i
f

UGrp(Z× Z) UGrp(G)

X

g

(1,0)
g

f is defined uniquely, since Z is the
free group on one generator. Thus f
is a "solution" to the problem: how can
we extend i : X → UGrpG to a group
homomorphism Z → G.

Define g(n,m) = ±
∏n

i=1 g(1)
∏m

i=1 a
for any a ∈ G (depending on the sign
of n and m). There is no unique group
homomorphism from Z × Z → G, yet
it is a "solution" to the problem.

Notice that the most efficient solution to this problem is Z, which is exactly F (X), the image of
X under the free group functor. The fact that the Free Functor gives us such a solution is an
important characteristic of the functor. Later, we will see the Solution Set Condition. Instead
of one object, we have a set of objects which we can choose to factor through. Without
knowing the free functor, these sets might be easier to characterize than finding the "free"
object of that category.

What is Preserved by Adjoints?

Another important property of adjoint functors is the structures they preserve:

Preserved by Left Adjoint Preserved by Right Adjoint
Colimits

1. Coproducts - Direct Sums, Disjoint
Union, Free Product, etc.

2. Coequalizers - Cokernels, Quotients

3. Pushouts

4. Direct Limits

Limits

1. Products - Cartesian Product and
Direct Products

2. Equalizers - Kernels, Subobjects

3. Pullbacks

4. Inverse Limits

This explains why F (X) ∗ F (Y ) ∼= F (X
∐

Y ).
Examples of Adjoint Pairs

1. Tensor/Hom - Given −⊗R N : ModR → Ab and HomAb(N,−) : Ab →
ModR, we have −⊗R N ⊣ HomAb(N,−). So −⊗R N is right exact, and
HomAb(N,−) is left exact.

2. Suspension/Loop-Space - Given the Suspension Functor S : hTop → hTop
and the Loop Space functor Ω : hTop → hTop, we have S ⊣ Ω.

3. Direct Image/Inverse Image - Let f : X → Y be a continuous function.
Then we have the direct/inverse image functors f∗ : Sh(X) → Sh(Y ) and
f−1 : Sh(Y ) → Sh(X), and we have f−1 ⊣ f∗. Here we denote Sh(− ) to be
the category of sheaves valued in Ab.

4. Group Ring/Group of Units - The Group of Units Functor ( − )× : Ring →
Grp admits a left adjoint, namely the Group Ring Functor Z[−] : Grp → Ring,
and we have Z[− ] ⊣ (− )×.

Adjoint Functor Theorem

Since adjoint functors preserve limits/colimits, one might wonder: if a functor
preserves all limits, does it admit a left adjoint? This leads us to a fundamental
result in category theory:

Theorem 1. ADJOINT FUNCTOR THEOREM [1] Let C be locally small and
complete. Given any other category D, and a limit preserving functor U : C → D,
the following are equivalent:

1. U has a left Adjoint.

2. For each D ∈ Obj(D), the functor U satisfies the Solution Set Condition:
There exists a set of objects (Si)i∈I in Obj(C) such that for any object C ∈ C
and arrow f : X → U(C), there exists i ∈ I and arrows i : X → U(Si) and
f : Si → C such that f = U(f ) ◦ i

Notice that −⊗R N preserves cokernels, but it does not generally preserve
kernels. But one might wonder, how far is −⊗R N from being left exact? The
family of functors,ToriR, answers this question exactly (no pun intended), the
derived functors of −⊗R N . Similarly, ExtiR(N,−) are the derived functors of
HomModR(N,−) [4]. These examples have led to the broader study of derived
categories and functors.
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Lie Theory in Physics

In physics, Lie theory provides a framework to describe continuous symmetry, or
invariant properties of systems under continuous transformations. Such transfor-
mations are described by a Lie group G, which is a group and a manifold. Here,
we restrict discussion to a semi-simple, compact, connected, finite-dimensional
Lie group with dimension n.

Lie Group & Lie Algebra

For a manifold M , we generalize the notion of tangent vectors via the following:
for p ∈ M , define curves γ : (−ϵ, ϵ) → M,γ(0) = p. We define an equivalence
relation on such curves: γ1 ∼ γ2 ⇔ (ϕ◦γ1)′(0) = (ϕ◦γ2)′(0), for some coordinate
chart ϕ : U → Rn with p ∈ U open subset of M . The equivalence class [γ]
represent a tangent vector.
The tangent space of p is defined as Tp(M) := {[γ] | γ(0) = p}.
A Lie algebra (g, [·, ·]) of a Lie group is the tangent space at identity for G, de-
noted as Te(G). It has the following properties:

• If a Lie group G is finite dimensional, then dim g = dimG = n.

• The Lie bracket [·, ·] is bilinear, anti-symmetric and satisfies Jacobi identity.

[X, aY + bZ] = a[X, Y ] + b[X,Z], [X, Y ] = −[Y,X ],

[X, [Y, Z]] + [Y, [Z,X ]] + [Z, [X, Y ]] = 0
(1)

In matrix representations, we will use the commutator [A,B] = AB −BA.

Exponential Map & Generators

In physical context, we view Lie algebra elements as infinitesimals that exponen-
tiate to Lie group elements. For example, in the defining representation of SO(2),

the 2-by-2 rotation matrices, A =

(
0 −1
1 0

)
∈ so(2) is an element of the Lie alge-

bra. We exponentiate this matrix with θ ∈ R to recover rotation by θ.

eθA =

∞∑
n=0

(θA)n

n!
=

(
cos θ − sin θ
sin θ cos θ

)
(2)

We can formalize this exponentiation into exponential maps. Define:

exp : g → G, exp(X) = γX(1) (3)

where γX : [0, 1] → G is a curve called one-parameter subgroup such that

γX(0) = e, γX(s)γX(t) = γX(s + t),
d

dt
γX(t)

∣∣
t=0 = X. (4)

The exponential map has following properties:

• exp(s + t)X = exp sX exp tX, (expX)−1 = exp−X, (expX)n = expnX

• For compact, connected Lie groups, exp is surjective. exp(g) = G.

We define the set of generators {Xa}a=1,2,...,n ⊂ g as a basis of the Lie algebra
that satisfies the following:

[Xa, Xb] = i

n∑
c=1

fabcX
c (5)

The fabc are the structure constants. They are anti-symmtric in the first two
indices, fabc = −f bac from anti-symmetry of Lie bracket.. The presence of i is a
physics convention resulted from Xa := iX̃a where X̃a are the actual generators.
We then exponentiate iXa instead of X̃a. This imposes Xa to be Hermitian,
(Xa)† = Xa, instead of anti-Hermitian, (Xa)† = −Xa in the math convention.

Adjoint Representation & Cartan-Killing Form

A Lie group representation ρ : G → GL(V ) induces a Lie algebra representation, which
is a Lie algebra homomorphism. For notation, we may omit dρ map: Xv := dρ(X)v.

dρ : g → L(V ), dρ([X, Y ]) = [dρ(X), dρ(Y )] (6)

We introduce the adjoint representation of a Lie algebra. Ad : g → L(g) s.t

AdXa(Xb) := [Xa, Xb] = i

n∑
c=1

fabcX
c (7)

We may have this representation in matrix form. Define {T a}a=1,2,...,n ⊂ GL(n,R).

(T a)bc := −ifabc ⇒ [T a, T b] = i

n∑
c=1

fabcT
c (8)

Here we have n matrices indexed by a that are n-by-n indexed by b, c. The right side of eq
(8) concludes that T a indeed represent Xa in adjoint representation.
We define the Cartan-Killing form to use index notations. Define the bilinear form

gab := tr
(
ad(Xa) ad(Xb)

)
= tr

(
T aT b

)
(9)

By the Cartan criterion, semi-simple Lie groups have isomoprhic dual spaces by this metric.
I will use full index notation for rest of the poster. Contraction of upper and lower indices
indicates a sum. The δac is the Kronecker delta which gives 1 if a = c and 0 otherwise.

XaY
a :=

n∑
a=1

XaY
a, gabgbc = δac , Xa = gabX

b (10)

Root Spaces & Weights

From {Xa} we select the maximal commuting subset {Hi}, i = 1, 2, . . . l, known as the
Cartan subalgebra h with rank l, each represented by commuting matrices {T i}. We si-
multaneously diagonalize them with real diagonal elements −βi(a), a is the column number.

(T i)ab = −diag(βi(1), βi(2), . . . , βi(a), . . . , βi(n)) = −βiδab (11)

Notably, while Xa were Hermitian, under the diagonalization of Hi, the off diagonal elements
become complex linear combination of the Hermitian Xa, and is no longer Hermitian. We
call them Ea. Acting Hi on Ea, we have

adHi(E
a) = [Hi, Ea] = if iabE

b = −(T i)abE
b = βi(a)δabE

b = βi(a)Ea (12)

This shows that each Ea is an eigenvector of Hi with real eigenvalue βi. Then we identify
each Ea as root vectors Eβ with root β⃗ ∈ Rl as the following:

adHi(Eβ) = [Hi, Eβ] = βiEβ, β⃗(a) = (β1(a), β2(a), . . . , βl(a)) (13)

Taking the complex conjugate of eq (12), we show E
†
β = E−β and split root vectors into

positive and negative pairs. This implies that n− l is even, so n, l must have same parity.

adHi(E
†
β) = [Hi, E

†
β] = −βiE

†
β (14)

We now move away from adjoint to general representation dρ : g → L(V ). Elements of h
share eigenvectors: {vw ∈ V | Hivw = wivw,∀Hi ∈ h}, named weight vectors.

w : h → R, w(Hi) = wi (15)

And above, we define the weight is the map that takes elements of h to their eigenvalue
when acting on eigenvector vw. Notably, root vectors connect weights by the following:

Hi · Eβ · vw = Eβ · (Hi · vw) + [Hi, Eβ] · vw = (w + β)iEβ · vw (16)

By these properties, Cartan generators are often associated with physical observables.

Examples in Physics

Lie groups SU(2), SU(3) are great examples of Lie theory in physics.
SU(N). The defining representation of SU(N) is the N -by-N special unitary
matrix.

ρ : SU(N) → GL(N,C), det(U) = 1, U†U = UU† = I (17)

Plug in the speical and unitary conditions to exponential, we conclude that the
generators are N -by-N traceless Hermitian matrices.
SU(2). In the defining representation of SU(2), we have the generators:

Jx =
σx

2
=

1

2

(
0 1
1 0

)
, Jy =

σy

2
=

1

2

(
0 −i
i 0

)
, Jz =

σz

2
=

1

2

(
1 0
0 −1

)
(18)

The σµ are Pauli matrices, [J i, Jj] = ϵijkJ
k, where ϵ is the totally antisymmetric

Levi-Civita symbol. Jz is the only Cartan generator and it is associated with spin.

J± = Jx ± iJy, [Jz, J±] = ±J± (19)

J± are the E±β root vectors, with roots of ±1. Physically, any weight diagram
of SU(2) into representation SU(N) describe particle of spin j = (N − 1)/2.

Root diagram

0

J+J−

Spin 1
2 (Defining rep)

−1
2

1
2

Spin 2 (SU(5))

-2 -1 0 1 2

Above, we have the defining rep SU(2), j = 1
2 and SU(2) → SU(5), j = 2.

SU(3) represent the strong interaction in the Standard Model. The generators in
the defining rep are the 8 traceless Hermitian 3-by-3 Gell-Mann matrices.

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 , λ4 =

0 0 1
0 0 0
1 0 0

 ,

λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
i 0 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2


(20)

The diagonal λ3, λ8 are the 2 Cartan generators associated with I3, Y , isospin
and hypercharge in Quantum Chromodynamics. Rest of the 6 root vectors di-
vides into 3 pairs. Those are I± = 1

2(λ
1±iλ2), U± = 1

2(λ
6±iλ7), V± = 1

2(λ4±λ5).
We have the root diagram of SU(3) in below left:

V+

I+

U−

U+

I−

V−

I3

Y

s

d u

In above right, the weight diagram of defining representation of SU(3), the
weights correspond to up, down and strange quarks.
Other interesting Lie groups to study in physics include U(1) for electric charge,
the (not connected) Lorentz group SO(3, 1) in special relativity.
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Skein Modules and Skein Algebras

Classically, knot theory is concerned with embeddings of S1 into either R3 or S3.
Here, we can compute algebraic invariants such as knot polynomials by working
with projections onto the plane, where all crossings can be resolved. However, if
we are willing to forgo the necessity of such a global projection, we can consider
embeddings into arbitrary 3-manifolds, instead resolving tangles locally by taking
projections in neighborhoods diffeomorphic to R3. When our manifold has inter-
esting topology, we may end up with untangled yet homotopically nontrivial knots
and link components.
Let M be an oriented 3-manifold, Lfr be the set of unoriented framed links (in-
cluding the empty link ∅) in M up to ambient isotopy, R a commutative ring with
unity, A ∈ R×, and RLfr the free R-module with basis Lfr. Let Ssub

2,∞ ⊆ RLfr be
the submodule

Ssub
2,∞ = ⟨L+ − AL0 − A−1L∞︸ ︷︷ ︸

(skein relation)

, L ⊔⃝ + (A2 + A−2)L︸ ︷︷ ︸
(trivial component relation)

⟩

where ⃝ denotes the trivial framed knot and L+, L0, L∞ are identical except in a
small 3-ball in M where they differ as follows:

L+ L0 L∞

The Kauffman Bracket Skein Module (KBSM) of M is

S2,∞(M ;R,A) = RLfr/Ssub
2,∞.

When M = R3 or M = S3 and R = Z[A±1], S2,∞(M) = R{∅}, which descends
canonically to the Kauffman bracket polynomial by looking at the coefficient on ∅.
Consider the special case in which M = Σ × I, for some surface Σ. It turns out
that in this case, we can endow the KBSM with a multiplication to get a Kauffman
Bracket Skein Algebra (KBSA); given framed links L1, L2 ⊆ Σ×I, define L1 ·L2
by placing L1 over L2, where L1 ⊆ Σ × (1/2, 1), L2 ⊆ Σ × (0, 1/2). We write the
KBSA of a thickened surface as Salg(Σ;R,A). More generally, when A = ±1,
any KBSM admits an algebra structure with multiplication as the disjoint sum.
Manifolds of the form Σ × I provide a large class of well behaved yet nontrivial
KBSMs, which we can compute using the following theorem.
Theorem (Przytycki): Let M be an oriented 3-manifold which is either equal to
Σ × I, where Σ is an oriented surface, or equal to a twisted I bundle over Σ,
Σ×̂I, where Σ is an unoriented surface. Then the KBSM S2,∞(M ;Z[A±1]) =

Z[A±1]B(Σ), where B(Σ) consists of ∅ and links in Σ without contractible com-
ponents.
Example:

Figure 1: The four commutative KBSAs of Σ× I over Z[A±1] with their generators.

Salg(S2) ∼= Z[A±1] Salg(D2) ∼= Z[A±1] Salg(S1 × I) ∼= Z[A±1][x]

x

Salg(Σ0,3) ∼= Z[A±1][x, y, z]

x

y z

Figure 2: Noncommutative multiplications in the torus and the four-punctured sphere.

̸=

S1 × S1

̸=

Σ0,4

Zariski Topology

Let R be a ring. Let S be the set of all prime ideals of R. For each subset (equivalently, we
can consider ideals) I ⊆ R, let V (I) denote the set of all prime ideals of R which contain I.
We have the following properties:

V (0) = X, V (R) = ∅, V

∑
j∈J

Ij

 =
⋂
j∈J

V (Ij), V (I1 ∩ I2) = V (I1) ∪ V (I2).

Thus, the sets V (I) satisfy the axioms for the closed sets of a topological space, whose
points are the elements of S. Such a space is called Spec(R), and the topology is called
the Zariski topology.
A set X ⊆ C[x1, . . . , xm] which is closed under the Zariski topology is called a closed
algebraic set. Given an algebraic set X, let I(X) be the ideal of polynomials which vanish
on X. Then the coordinate ring of X is C[x1, . . . , xm]/I(X).
Let M be a compact orientable manifold. An SL2(C) representation of the fundamental
group π1(M) is a group homomorphism ρ : π1(M) → SL2(C). Then the character of the
representation is χρ = tr ◦ ρ.

Culler-Shalen Theory

Denote the set of all characters by X(M). To each homotopy class of curves γ ∈ π1(M),
we can associate a function tγ : X(M) → C, where tγ(χρ) = χρ(γ). Together, Marc Culler
(a UCSB alumni!) and Peter Shalen proved the following two results:
Theorem (Culler-Shalen):

(i) There exists a finite set of elements {γ1, . . . , γm} in π1(M) such that every tγ is an
element of the polynomial ring C[tγ1, . . . , tγm].

(ii) If every tγ is an element of C[tγ1, . . . , tγm], then X(M) is a closed algebraic subset of
C[tγ1, . . . , tγm].

Let R(M) be the coordinate ring of X(M). While we could make different choices of coor-
dinates, all choices are isomorphic by polynomial maps. Moreover, R(M) makes sense as
a subset of the algebra CX(M) since choice of representative produces the same function,
as we are quotienting out by functions which are identically zero.

Main Theorem

Now, we wish to associate to each knot K an element of π1(K). A priori, this may depend
on the orientation of K. Fix an orientation, and pick a curve γ freely homotopic to the now
oriented K⃗. Trace is invariant under conjugation, so “‘freely” did not matter, and for any
character χρ,

χρ(γ
−1) = tr(ρ(γ−1)) = tr(ρ(γ)−1) =

tr(ρ(γ))
det(ρ(γ))

= tr(ρ(γ)) = χρ(γ).

Thus, our choice of orientation also did not matter, so we can speak of the map tγ deter-
mined by K.
Theorem (Bullock): Let Φ̃ : CLfr → CX(M) be the linear map mapping each knot K to a
function Φ̃(K) : X(M) → C, Φ̃(K)(χρ) = −χρ(K), links to the product of the images of
their components, and ∅ to 1. Then Φ̃ descends to a well defined surjective algebra homo-
morphism Φ : Salg(M ;C,−1) → R(M), with ker(Φ) = nil(Salg(M ;C,−1)).
Since M is compact and orientable, there exist finitely many generators K1, . . . , Km. Then
im(Φ) ⊆ C[−Φ(K1), . . . ,−Φ(Km)], so such −Φ(Ki) are coordinates on X(M), handling
surjectivity. Now, to show that Φ is well defined on the KBSA, we must show Φ̃(Ssub

2,∞) = 0.
By direct computation, we have that the image of the trivial component relation is

Φ̃(L⊔⃝+((−1)2+(−1)−2)L) = Φ̃(L)Φ̃(⃝+2∅) = Φ̃(L)(−χρ(⃝)+2) = Φ̃(L)(−tr(Id)+2) = 0.

Note that ρ(⃝) = Id since ⃝ is nullhomotopic. To compute the image of the skein relation,
we need slightly more machinery, which we will now introduce.

Skein Relation to Trace Identity

For the skein relation, it suffices to show resolutions of skein triples (L,L0, L∞)
in which L (and by choosing the right orientation, L0) are knots are mapped
to 0. In this case, L∞ will have two components K1, K2. Choose ∗ to be a
basepoint in the neighborhood where the skein triple differs. We can then find
a, b ∈ π1(M, ∗) where ab is freely homotopic to L⃗ (recall, our choice of orientation
is inconsequential). Choosing the appropriate orientations K⃗1, K⃗2, we have ab ≃
L⃗0, a ≃ K⃗1, b ≃ K⃗2.

b a∗

b a

L⃗0

b a

L⃗

b a

K⃗2 K⃗1

Figure 3: Free homotopies between the skein triple and words in π1(M, ∗).

For any χρ, let A = ρ(a), B = ρ(b), and we have

Φ̃(L + L0 + L∞)(χρ) = −χρ(L)− χρ(L0) + χρ(K1)χρ(K2)

= −tr(AB)− tr(AB−1) + tr(A)tr(B).

Our skein relation maps to the fundamental SL2(C) trace identity: Let A,B ∈
SL2(C). The Cayley-Hamilton theorem gives

A2 − tr(A)A + det(A)Id = 0 =⇒ A− tr(A) + A−1 = 0.

Multiplying both sides by B and taking the trace,

AB + A−1B = tr(A)B =⇒ tr(AB) + tr(A−1B) = tr(A)tr(B).

Thus, Φ̃(L+ L0 + L∞)(χρ) = 0. Therefore, Φ̃(Ssub
2,∞) = 0, so Φ̃ descends to Φ. A

powerful result arose three years later, refining Bullock’s work:
Theorem (Przytycki-Sikora): Let Σ be an oriented surface, and M = Σ× I. If R
has no divisors, Salg(M ;R,A) has no divisors.
Here, nil(C) = 0 =⇒ nil(Salg(M ;C,−1) = 0 =⇒ Salg(M ;C,−1) ∼= R(M).

Acknowledgements

Thank you to my mentor, Rhea Palak Bakshi, for sharing her expertise and en-
thusiasm in knot theory, and to the DRP for the opportunity to participate.

References

[1] M. F. Atiyah, I. G. Macdonald, Introduction to Commutative Algebra, Addison-
Wesley Publishing Company (1969).

[2] D. Bullock, Rings of SL2(C)-characters and the Kauffman bracket skein mod-
ule, Comment. Math. Helv. 72 (1997), no. 4, 521-542.

[3] J. H. Przytycki, Fundamentals of Kauffman bracket skein modules, Kobe
Math. J., 16(1), (1999), 45-66. arXiv:math/9809113 [math.GT].

[4] J. H. Przytycki, R. P. Bakshi, D. Ibarra, G. Montoya-Vega, D. Weeks, Lectures
in Knot Theory, An Exploration of Contemporary Topics, Springer Universitext
(2024).



LATEX TikZposter

THE WORD PROBLEM IN COXETER GROUPS

Benjamin Schoeb
University of California - Santa Barbara

THE WORD PROBLEM IN COXETER GROUPS

Benjamin Schoeb
University of California - Santa Barbara

Cayley graphs

Let G be a group with a set of generators S. The Cayley graph of
G, denoted Cay(G,S) is a directed graph with the elements of G as
the vertex and edge set {(g, gs) : g ∈ G, s ∈ S}. We call s ∈ S an
involution if it has order 2 and the edge (g, gs) is not directed.

Figure 1: Cay(D12, S) with
generating set S = {r, s}, where s is

an involution

Figure 2: Cay(D6, S) with generating
set S = {a, b}, where a and b are

involutions

Pre-Reflection and Reflection Systems

A pre-reflection system of a group G consists of a subset R of
G, an action of G on a connected simple graph Ω, and a basepoint
v0 ∈ Vert(Ω) where

1. Every element in R is an involution

2. For g ∈ G and r ∈ R, grg−1 ∈ R

3. For each edge in Ω there exists a unique r ∈ R that exchanges its
endpoints, and each r corresponds to an edge in such a way

4.R generates G

A wall Hr is the set of midpoints of edges which are flipped by r.
We can use walls to define a group that intuitively resembles the
geometric notion of "reflection".
A reflection system is a pre-reflection system with the additional
condition:

1. For each r ∈ R, Ω \Hr has exactly two components.

Example: D6 is a reflection system

Figure 3:
Cay(D6, S),R = {a, b, c} and

walls Ha, Hb, and Hc

Coxeter Systems

A Coxeter System, (W,S), is a group with presentation

W = ⟨S|(sisj)mij ∀i, j ∈ I⟩
were s2i = 1∀i ∈ I and mij ∈ N ∪∞.
Example: A right-angled Coxeter group has a presentation

W = ⟨S|s2i ∀i ∈ I⟩

Example: (D6, S) with generating set S = {a, b} with presentation

W = ⟨a, b|a2, b2, (ab)3 ∀i ∈ I⟩
We can connect Coxeter groups to reflection groups and its Cayley graph by
the following lemma:

Lemma 0.1. For Coxeter system (W,S), let Ω = Cay(W,S) and
R = {wsw−1 : w ∈ W, s ∈ S}. Then (Ω, R) is a pre-reflection system.

The Word Problem

Given a group G with generating set S, a word s is a sequence consisting of
the generators in S. Words can be visualized as a path on the Cayley graph
of G beginning at the identity and ending at the product of the generators that
make up the word. The word length of g ∈ G with respect to S is

lS(g) = min{n ∈ N : ∃s1, ..., sn ∈ S where g = s1...sn}.
A word s = (s1, ..., sn) is called reduced if lS(g) = n and g = s1...sn.
Example: In D6, as defined above, an example of a word would be

s = (a, b, a, b, a, b, a, b, a, b, b, a)

where

lS(abababababba) = 1

The word problem: Consider a group G with generating set S. Given any
words s1, s2, we want to be able to determine if they represent the same
element of G. In many groups, there is no algorithm that can make this de-
termination. However, for Coxeter groups, their structure and relationship to
their Cayley graphs provide strategies for minimizing words in these groups.

Theorem 0.2. Assume W is generated by a set of distinct involutions S. Then
the following are equivalent

1. (W,S) is a Coxeter system

2. if Ω = Cay(W,S) and R = {wsw−1 : w ∈ W, s ∈ S} then (Ω, R) is a
reflection system

3. (W,S) satisfies the exchange condition

4. (W,S) satisfies the deletion condition

The Exchange-Deletion Condition

The exchange condition: If s1...sk = w ∈ W then for any s ∈ S,
lS(sw) = k + 1 or

w = (ss1...ŝi...sk)

where ŝi is deleted.
This is a consequence of the deletion condition.
The deletion condition: Assume w = s1...sk. If s = (s1, ..., sk) is
a word in S with K > lS(s1...sk) then there exist indices i < j such
that

s = (s1, ..., ŝi, ..., ŝj, ...sk)

The deletion condition is derived from the action of ri = rj over its
wall. This allows the vertices wi and wj−1 to be omitted from the
path while preserving the types of edges, deleting two edges and
therefore two elements from the sequence.

Figure 4: The deletion condition Figure 5: The exchange condition

Tits’ solution

A word is M-reduced if it can’t be shortened by the following oper-
ations

1. Delete a subword of the form (s, s)

2. Replace an alternating subword of the form (s, t, ...) of length mst

by the alternating subword of the form (t, s, ...) of length mst

These operations follow from the structure of Coxeter groups. Fol-
lowing from Theorem 0.2 we have

Theorem 0.3. Assume W is generated by a set of distinct involu-
tions S and Theorem (0.2) applies. Then a word in S is reduced if
and only if it is M-reduced.
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Monoidal Categories

A monoidal category C is a category equipped with a multiplication which is unital and
associative, up to specified isomorphisms. This means we have a unit object 1 : C, and a
multiplication functor ⊗ : C × C → C . Since the multiplication is not “strictly” unital and
associative, we have to specify isomorphisms:

• The left unitor λA : 1 ⊗ A → A.

• The right unitor ρA : A ⊗ 1 → A.

• The associator αA,B,C : (A ⊗ B)⊗ C → A ⊗ (B ⊗ C).
We don’t want to be able to derive a map (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C) other than the
associator by composing associators and unitors. It suffices for the following diagrams
to commute (indices on the associators and unitors omitted for space):

((A ⊗ B)⊗ C)⊗ D (A ⊗ (B ⊗ C))⊗ D

(A ⊗ B)⊗ (C ⊗ D)

A ⊗ (B ⊗ (C ⊗ D)) A ⊗ ((B ⊗ C)⊗ D)

α

α⊗D

α

α

A⊗α

(A ⊗ 1)⊗ B A ⊗ (1 ⊗ B)

A ⊗ B

α

ρ⊗B A⊗λ

Some monoidal categories which are particularly relevant to us:

• Vec, the category of finite-dimensional complex vector spaces, with 1 = C the one
dimensional space, and ⊗ the tensor product.

• Rep(G), the category of finite-dimensional complex representations of the finite
group G, again with 1 = C, the trivial representation, and ⊗ the tensor product
of representations.

• Vec(G) the category of finite-dimensional G-graded vector spaces. The unit has
one dimension, graded in the group identity, and the tensor product is given by
(V ⊗ W)g =

⊕
h Vh ⊗ Wh−1g.

String Diagrams

We can visualize morphisms in a monoidal category in a nice way using
string diagrams. An example string diagram is drawn on the left. Each
object in the category is represented by a string, and horizontal juxtapo-
sition of strings represents the monoidal product. The monoidal unit is
sometimes written with a dotted string, but more often the strings rep-
resenting unit objects are simply omitted. Similarly, we don’t draw the
associator explicitly. We represent morphisms with little labeled circles
or boxes. So, the example diagram represents f ⊗ g : A ⊗ B → X ⊗ Y,
where f : 1 → X and g : A ⊗ B → Y.

f g

X

A

Y

B

Rigidity

ev

V∗ V coev

V V∗
In the category of finite-dimensional vector spaces, every vector
space V has a dual space, written V∗, consisting of the linear func-
tionals on V. Furthermore, we have a linear map ev : V∗ ⊗ V → 1
which evaluates a linear functional at a vector, and another map
coev : 1 → V ⊗ V∗, which is dual to evaluation. These morphisms
are drawn as string diagrams on the left. The evaluation and coeval-
uation maps satisfy the relations below. This makes Vec an example
of a rigid monoidal category.

V

V

=

V

V

V∗

V∗

=

V∗

V∗

Simple Objects

Simple groups are common objects of study in group theory. Similarly, we can talk about
simple objects in an arbitrary category, which are objects with no nontrivial proper quo-
tients. The categories we care about on this poster are abelian categories enriched over
Vec, which essentially means we have a direct sum operation on our objects, and the Hom
sets form complex vector spaces with bilinear composition. In this context, an important
theorem about simple objects is Schur’s lemma:

Theorem 1. If A and B are simple objects in an abelian category enriched over Vec, then either A
and B are not isomorphic and Hom(A, B) = 0, or A and B are isomorphic, and Hom(A, B) is
one-dimensional. In particular, Hom(A, A) = C.

An important concept related to simple objects is semisimplicity. A category is semisimple
if every object can be decomposed into a finite direct sum of simple objects.

Fusion Categories

A fusion category is a rigid linear monoidal category which:

• is semisimple,

• has finitely many simple objects, up to isomorphism,

• and has a simple monoidal unit 1.

The rank of a fusion category is the number of simple objects it has, up to isomorphism. All
the examples of monoidal categories to the left are in fact fusion categories:

• In Vec, the only simple object is the one-dimensional vector space; every vector space
can be decomposed into a direct sum of one-dimensional spaces. This is the only
fusion category with exactly one simple object.

• In Rep(G), the simple objects are the irreducible representations.

• In Vec(G), there is a simple object for each element g of G, which is a one-dimensional
vector space in the g-graded component and zero dimensional in all the other compo-
nents.

Examples of small fusion categories

The simplest nontrivial examples of fusion categories we can come up with are ones with
only two simple objects, one of which is the monoidal unit.

• One such category is Vec(Z/2), the category of (finite-dimensional) Z/2-graded vec-
tor spaces. The two simple objects are 1, which is one-dimensional in the 0-graded
component, and T, which is one-dimensional in the 1-graded component. We have
that T ⊗ T must be a direct sum of simple objects, in this case T ⊗ T = 1. Representing
T by a blue strand, we can derive the following string diagram relations:

= 1 =

• Another small fusion category is Fib, which has simple objects 1 and A. In Fib, the
decomposition of A ⊗ A is 1 ⊕ A. Because the tensor product distributes over direct
sums, we can use this to show that the number of summands isomorphic to A in A⊗n

will be the n-th fibonacci number, hence the name Fib. Having an isomorphism A ⊗
A → 1 ⊕ A means that we have maps A ⊗ A → A and A → A ⊗ A. We represent A as
a red strand, and we represent these maps as trivalent vertices, giving the following
relations, where τ is the golden ratio:

= = = τ = 0

=
∗
= =

1
τ

+

We can take linear combinations of morphisms like this because our categories are
linear, thus the Hom-sets are vector spaces.

Free Product of Fusion Categories

We are interested in using our simple examples of fusion categories to build more com-
plicated ones. A useful construction is the free product of fusion categories. The objects
in the free product are formal direct sums of tensor products of objects from the factors.
This means that the simple objects in a free product will be products of simple objects of
the factors. For example, in the case of Vec(Z/2) ∗ Fib, the simple objects will be of the
form A, T, A ⊗ T, T ⊗ A, A ⊗ T ⊗ A, · · · . A string diagram in this category would look
like the following:

We have a blue diagram from Vec(Z/2) overlaid on a red diagram from Fib, such
that the strands from one don’t overlap the strands from the other. We can apply the
relations we derived for the red and blue strings, as long as the strands don’t overlap.
This free product is still a semisimple rigid monoidal category, but it’s no
longer a fusion category: it has infinitely many nonisomorphic simple objects.
We want to introduce some kind of relation which makes some of these simple
objects isomorphic. In fact, in the case of Vec(Z/2) and Fib, it must be of the
form U : (A ⊗ T)⊗n → (T ⊗ A)⊗n. On the right, we see the case n = 2.

U

Jellyfish Relations

Once we introduce our isomorphism U, we want the resulting category to be fusion,
and so we can use the properties of fusion categories in order to derive relations on
the isomorphism U. However, we want to check that these relations are “consistent.”
We might find that by introducing the isomorphism U, we may have introduced more
relations on the simple objects than we intended to.
In order to check this, we derive “jellyfish relations” for our category, pictured below.
These relations apply for any n, so we represent T ⊗ (A ⊗ T)⊗n−1 with a purple strand.
The number ωU is some 2n-th root of unity, and σU is a square root of ωU.

U = U∗ U =
ωU
τ

U∗ + σ−1
U U U∗

Then, we use the jellyfish relations in order to “normalize” a particular diagram in two
different ways, drawn below in the case n = 1.

U

U

=
U∗

U

=
ω−1

U
τ

U U
+ σU

U U∗ U

We move the inner U out leftwards until we get a linear combination of diagrams to
which no jellyfish relations apply, as shown above. We also move it rightwards to get
another such linear combination. Then, we can set these two expressions equal to each
other, and see if there are values for ωU and σU which solve the equation. If we can
solve the equation without introducing new linear dependencies, then we will know
the isomorphism U we added hasn’t introduced any more unwanted relations between
simple objects.
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What is Percolation?

Percolation is a core mathematical model for studying phase-transition phe-
nomena involving connectivity in random media. In a regular lattice, such as the
2-dimensional Z2, each edge (bond percolation) or node (site percolation) is
independently set to be"open" or "closed" with probability p. Here, the values of
p do matter. The figure below shows samples of a 9× 9 square lattice generated
by Python by setting p = 1

3 and 2
3. Observe that, when p = 2

3, one cluster extends
from top to bottom and from left to right of the sample. That is, there exists
vertical crossing when p = 2

3, but no such crossing exists when p = 1
3.

Why we care: Percolation underpins real-world phenomena like the spread of
wildfire. Wildfires that occur frequently cause immense suffering and losses. The
devastating wildfire in Los Angeles is a vivid case of percolation in ecological
systems. When vegetation is sparse, the spread of fire tends to remain localized.
However, as the density of flammable material increases, the chain reaction
will trigger a large-scale systematic spread. So, we can model this through
percolation on a 2D lattice.

The central question: One fundamental question in percolation theory asks at
what probabilities p an infinite connected path exists in the graph. The lower
bound of such probability, denoted by pc, is called the critical threshold. For
bond percolation on the planar lattice Z2, the proof of pc = 1

2 is one of the field’s
landmark results.

Harris-Kesten Theorem

The Harris-Kesten Theorem is a foundational result in percolation theory for the
Z2 lattice. It explains why the critical threshold pc =

1
2:

• Harris (1960) proved that for p ≤ 1
2, all clusters are almost surely finite,

including at pc = 1
2.

• Kesten (1980) showed that for p > 1
2, a unique infinite cluster emerges al-

most surely.

The proof relies on the lattice’s self-duality (linking open paths in Z2 to closed
paths in its dual), and the construction of square annulus in Harris’s Theorem.
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Dual Lattice

In planar bond percolation, we first need to study the probability of open crossings in a
bounded subset R of the Cayley graph of Z2, a cornerstone of the Harris-Kesten Theorem.

• The planar dual of R is Rh, shown with dashed lines in the lefthand figure below.

• Edges in Dual: there always exist a vertex v ∈ Rh corresponding to each face of R, so
we define an edge of Rh is open if and only if the corresponding edge of R is closed,
as the righthand figure below shows.

• Define H(R) and V (R) respectively as the events that there exists horizontal crossing
or vertical crossing in R.

Lemma: Self-Duality

Let R be an n by n + 1 rectangle. Then, exactly one of the events H(R) and V ∗(Rh)
holds, but not both. If S is an n by n square and p = 1

2, then

P1
2
(H(S)) = P1

2
(V (S)) ≥ 1

2
.

We construct a maze-like graph as the figure below shows. Imagine the arrowed edges are
paths a player can traverse, and edges of R and Rh are walls. If you enter at x, you will
always keep walls of R on the right, and walls of Rh on the left. You either exit at w or at y. If
you exit at w, there was always a wall of R on your right, which makes a horizontal crossing
of R. Similarly, if you exit at y you get a vertical crossing of Rh. With this heuristic, we can
see that one of the events H(R) and V ∗(Rh) will hold. Moreover, one can apply the Jordan
Curve Theorem to show that these events are mutually exclusive.

Now, if R′ is a copy of R rotated by 90◦ with probability p that an edge is open in R, we know
that Pp(H(R)) = Pp(V (R′)) and for n by n + 1 rectangle R,

Pp(H(R)) + P1−p(V (R′)) = 1.

If p = 1
2, then P1

2
(H(R)) = 1

2 for R. This also implies that, for the smaller n by n square S,

P1
2
(H(S)) = P1

2
(V (S)) ≥ 1

2
.
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Harris’s Theorem: Percolation at p= 1
2

Main Idea: By combining crossing probabilities with geometric decomposition,
the proof shows that no infinite open cluster exists at pc = 1

2 in Z2.

Lemma: Exclusive Percolation in Dual Lattice
Let R = [0,m] × [0, 2n], m ≥ n, by an m by 2n rectangle. Let X(R) be
the event that there are paths P1 and P2 of open edges, where P1 crosses
S = [0, n] × [0, n] from top to bottom, and P2 lies inside R and joins some
vertex on P1 to some vertex on the right-hand side of R. Then

Pp(X(R)) ≥ Pp(H(R))Pp(V (S))/2.

In H1, the Lemma tells, by conditioning on the existence of the leftmost vertical
crossing P1, the probability of finding a connecting path P2 is at least half the
probability of a horizontal crossing of R.

In H2, two overlapping rectangles R and its reflection R′ share a square S. Then,
we will use X(R) same as in the H1, X(R′), the reflection of X(R), and H(S).
Now, based on increasing event lemma and previous lemma, we have:

P1
2
(H(R ∪R′)) ≥ P1

2
(X(R))2P1

2
(H(S)) = P1

2
(H(R))2/25.

Repeatedly applying this to scaled rectangles gives a uniform lower bound for
horizontal crossing probabilities in long thin rectangles, we prove:

Corollary
Let ρ > 1 be a fixed integer. There is a constant c(ρ) > 0 depending only on
ρ such that for any 2ρn by 2n rectangle R we have

P1
2
(H(R)) ≥ c(ρ).

In bond percolation, θ(p) is the probability that the origin belongs to an infinite
open cluster of connected edges. By the above corollary, long thin rectangles
have a probability of being crossed. This idea allows us to build the configuration
of two thin rectangles sharing a square to create H3, and extending this yields
H4, a square annulus fully enclosing the center. Each rectangle crossing is in-
dependent and occurs with probability ≥ c, so the full cycle forms with probability
≥ c4. Repeating this around the origin with disjoint annuli, the probability of no
surrounding cycle in the dual lattice tends to zero. Thus, we have:

Theorem: Harris’s Theorem
For bond percolation in Z2, there is almost certainly no infinite open cluster,
showing that

θ

(
1

2

)
= 0.
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Solving the Schrödinger Equation: The Hydrogen Atom
Aileen Arreola and Rebekah Pustelnik

Partial Differential Equations

Partial differential equations (PDEs) are equations that involve partial derivatives of a
function with multiple variables. They are often used in physics, chemistry, and engi-
neering to describe how a quantity (temperature, energy, pressure, etc.) changes with
respect to space and time.
Ex. Heat Equation

ˆu

ˆt
= –

ˆ2u
ˆx2

Separation of Variables

Separation of variables is a technique used to solve linear homogeneous PDEs by assum-
ing the solution is a product of functions, each depending on only one variable.
Heat Equation

ˆu

ˆt
= –

ˆ2u
ˆx2, u(0, t) = 0, u(L, t) = 0, u(x, 0) = f (x)

u(x, t) = X(x)T (t)

X(x)T Õ(t) = –X ÕÕ(x)T (t)

T Õ(t)
–T (t) = X ÕÕ(x)

X(x) = ≠⁄

So now we have two equations with respect to one variable:
X ÕÕ + ⁄X = 0 and T Õ + –⁄T = 0

which can be solved as simpler ODEs.

Schrödinger Equation

The Schrödinger equation gives rise to the wave function, �(x, t), which explains the
state of a quantum system over time. Specifically, it describes the probability of finding
a particle in a certain place or state.

i~ˆ�
ˆt

= ≠ ~2

2m

ˆ2�
ˆx2 + V � (1)

�(x, t): wave function with respect to position and time, ~: reduced Planck constant,
m: mass, V : potential energy function

Probability Density Functions

Probability can be modeled using discrete or continuous variables. For a discrete vari-
able X , let P (j) be the probability that X is equal to j. The function P (j) is called the
probability mass function of X and satisfies

0 Æ P (j) Æ 1 and
ŒX

j=0
P (j) = 1.

Similarly, for a continuous probability distribution, let Pa,b be the probability that X lies
in [a, b]. We define fl(x) such that

Pa,b =
Z b

a
fl(x)dx and

Z Œ

≠Œ
fl(x)dx = 1.

We call fl(x) the probability density function (PDF) of X . The solutions to the
Schrödinger equation (1) are functions � which describe the quantum state of the sys-
tem; the wave functions are such that |�|2 = fl is the PDF for the position of the particle.
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Time Independent Schrödinger Equation

If we assume V is independent of time, we can apply the method of separation of vari-
ables to the 1-D Schrödinger equation (1):

�(x, t) = Â(x)Ï(t)

i~ 1
Ï

dÏ

dt
= ~2

2m

1
Â

d2Â
dx2 + V.

Hence, both sides must be equal to a constant, E

i~ 1
Ï

dÏ

dt
= ~2

2m

1
Â

d2Â
dx2 + V = E =∆ Ï(t) = e≠iEt/~,

~2

2m

d2Â
dx2 + V Â = EÂ. (2)

We obtain solutions Ân with a corresponding allowed energy En, where any linear
combination of separable solutions is a solution.

Particle in a Box
Consider a particle in a well such that the sides prevents the particle from being outside
the well. That is, the potential can be described as

V (x) =
(

0, 0 Æ x Æ a

Œ, otherwise.

The requirement V = Œ outside of [0, a] tells us Â(x) = 0 outside of [0, a]. As V = 0 in
0 Æ x Æ a, (2) can be written as

~2

2m

d2Â
dx2 = EÂ, 0 Æ x Æ a.

We then write
d2Â
dx2 = ≠k2Â, k ©

Ô
2mE

~ , Â(0) = Â(a) = 0.

We can then solve as ODEs to obtain distinct solutions

En = n2fi2~2

2ma2 , Ân(x) =
r

2
a

sin
⇣nfi

a
x
⌘

0 Æ x Æ a.

Hydrogen Orbitals

R10(r)
(1,0,0)

Given the solutions Ânlm
from (4), we can plot the
PDFs to obtain the or-
bital shapes of hydrogen.
For the example of Â100,
we observe how the radial
equation, R10, describes
the shape of the 1s orbital
of hydrogen.

(2,0,0)

(2,1,0)

(3,0,0)

(3,1,0)

(2,1,1)

(3,1,1)

The Solution for the Hydrogen Atom

1. Time independent 3-D Schrödinger equation:
≠~2

2m
Ò2Â + V Â = EÂ

2. Convert to spherical coordinates and apply separation of variables to the radial and
angular equations

Â(r, ◊, „) = R(r)Y (◊, „)

1
R

d

dr

✓
r2dR

dr

◆
≠ 2mr2

~2 [V (r) ≠ E] = l(l + 1)

1
Y

(
1

sin ◊

ˆ

ˆ◊

✓
sin ◊

ˆY

ˆ◊

◆
+ 1

sin2 ◊

ˆ2Y
ˆ„2

)
= ≠l(l + 1)

Note l(l + 1) is the separation constant.
3. Separation of Variables for the angular equation

Y (◊, „) = �(◊)�(„)
�(„) = eim◊ and �(◊) = AP m

l (cos ◊)

where P m
l is the associated Legendre polynomial.

4. Change of variables of the radial equation
u(r) = rR(r)

≠~2

2m

d2u
dr2 +

"
V + ~2

2m

l(l + 1)
r2

#
= Eu (3)

5. Solving the 3-D equation with the hydrogen potential energy function

V (r) = ≠e2

4fiÁ0

1
r

Define
Ÿ =

Ô
≠2meE

~ , fl = Ÿr, fl0 = mee2

2fiÁ0~2Ÿ
.

Using (3), we obtain
d2u
dfl2 =


1 ≠ fl0

fl
+ l(l + 1)

fl2

�
u.

Define a new function
u(fl) = fl1+1e≠flv(fl).

Expressing v(fl) as a power series, we can develop a recurrence relation for the
coefficients. The solution is v(fl) = L2l+1

n≠l≠1(2fl) where Lp
q(x) is the associated

Laguerre polynomial. Hence, the allowed energies are

En = ≠

2

4me

2~2

 
e2

4fiÁ0

!23

5 1
n2 = E1

n2 .

We then can write the spatial wave equations by calling their quantum numbers
Ânlm(r, ◊, „) = Rnl(r)Y m

l (◊, „)

Ânlm =
s✓

2
na

◆
(n ≠ l ≠ 1)!
2n(n + l)! e≠r/na

✓
2r

na

◆l h
L2l+1

n≠l≠1(2r/na)
i

Y m
l (◊, „) (4)

Connections to Linear Algebra

We make note of two important properties of the wave functions obtained from the
Schrödinger equation:
1. Ânlm are orthogonal.

Z
Âú

nlmÂnÕlÕmÕ r2 sin ◊ drd◊d„ = ”nnÕ ”llÕ ”mmÕ

2. Ânlm are eigenfunctions with eigenvalue En of allowed energy.
 

≠~2

2m
Ò2 + V

!
Ânlm = EnÂnlm
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Introduction

The toric code is an important model in physics which is a simplest-case, analytically

solvable model of many different phenomena. It is the simplest case of a Z2 lattice gauge

theory and exhibits topological order. Most importantly, in this case, it is a basic form of

a quantum error correcting code. That means that it can correct errors due to quantum

”bit flips” and noise in its constituent qubits. A qubit is a quantum two-state system

which can be represented as the normalized column vector:

ψ =
[
α
β

]
Where α, β ∈ C and |α|2 + |β|2 = 1. Unlike a traditional bit, when the state of the

qubit is measured, it will return a result of 0 with probability |α|2 and a result of 1 with a

probability of |β|2. In Dirac notation, we can write these vectors as follows:

|ψ〉 = α |0〉 + β |1〉
In this case, this notation is just shorthand but it can be much more versatile.

Pauli Operators and Multi-qubit Systems

The Pauli operators are defined as:

σx =
[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
These have vital meanings in the measurement of qubits and as generators of the

Lie algebra sl(2,C). All three have eigenvalues of 1 and −1 and obey the following

properties:

Traceless: Tr(σi) = 0 ∀i ∈ {x, y, z}
Anti-commutative: σiσj = −σjσi ∀i 6= j

Involutary: σ2
i = I ∀i ∈ {x, y, z}

Hermitian: Their transpose conjugates are equal to themselves

These properties, along with the fact that:

σy = iσxσz

gives all the products of these matrices. We also sometimes include the identitymatrix

I as one of the operators to form a basis.

When working with systems with more than one qubit, we tensor product them to-

gether. In the case of two qubits we have

|ψ〉 = |ψ1〉 ⊗ |ψ2〉
We can also tensor product Pauli operators and the identity in different ways to act on

different parts of a multi-qubit system. We denote a Pauli operator acting on a qubit

j (and identity on all others) as σj.
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Z2 Homology of the Torus

Consider wrapping a k × k square lattice around a torus, joining opposite edges:

We define 0-cells to be points/vertices on this lattice (marked in green), 1-cells to be

edges (blue), and 2-cells to be the squares (red). We also define an n-chain to be sum

of an element of Z2 (0 or 1) multiplied by a set of n-cells (the line in yellow below is a

1-chain). The space of n-chains is denoted Cn and is a Z2 vector space.

We now define the boundary map dn which takes an n-chain and returns its bound-

ary as an (n-1)-chain. The following are very important results about this map:

n-chains with no boundaries are n-cycles and the

subspace of n-cycles (the kernel of dn) is denoted Zn.

n-chains which are the boundary of an (n+1)-chain are

called n-boundaries and the subspace of these (image

of dn+1 is denoted Bn
All n-boundaries are n-cycles (dndn+1 = 0)

We define the homology group Hn = Zn/Bn and the homology groups of a torus are

Z2,Z2 ⊕ Z2 and Z2 respectively (up to isomorphism).

We then make another lattice called the dual lattice as follows:

An n-cocell is a (2-n)-cell on the dual lattice (ex: a

0-cocell is a square plaquette on the dual lattice)

The chain group on the dual lattice is called the

cochain group Cn

We define coboundary (dn), cocycles (Zn),
coboundaries (Bn), and cohomologies (Hn)

analogously to that of the regular (primal) lattice.

The Toric Code

Take a k × k toric lattice like that seen before. Now place a qubit on each edge (tensor

them) to create a vector space (specifically a Hilbert space) N and define the following

operators:

As =
∏
j∈+s

σxj ,

Bp =
∏
j∈�p

σzj

This is the toric code. We define the protected subspace on the vector space of this

code to be:

L = {|ψ〉 ∈ N | ∀s, p : As |ψ〉 = |ψ〉 , Bp |ψ〉 = |ψ〉}

For the set of linear operators on this space L(L), this is the same as setting As = 1 and
Bp = 1:

L(L) ∼= L(N )/I

Where I is the left sided ideal generated by all As − 1 and Bp − 1.

Dimension of the Protected Subspace

No matter the extension to L(N ), elements of L(L) will always commute with As and
Bp. Thus we loosely write that L(L) ⊆ G where G ⊂ L(N ) is the space of operators that
commute with As and Bp which can be shown to be generated by:∏

i∈C
σzi ,

∏
i∈C ′

σxi

Where C and C ′ are in the 1-cycles and cocycles respectively. In other words, this is all

closed loops on the lattice and dual lattice.

We can see then that L(L) is generated by all cycles and cocycles modulo all boundaries

(I being an ideal is not important in this case). In other words the generators of L(L) is
isomorphic to H1 ⊕ H1 which for the torus has rank 4, corresponding to the following

cuts and operators:

Z1 =
∏
i∈c1

σzi , Z2 =
∏
i∈c2

σzi ,

X1 =
∏
i∈c′1

σxi , X2 =
∏
i∈c′2

σxi

This generates 16 unique operators and thus the dimension of the protected subspace

is 4.

Uses of the Protected Subspace

Each of the topologically defined states in the protected subspace can be considered a

”codeword”. These codewords can have errors on them that cause changes. We consider

an error of the form:

E =
∏
i

(σxi )αi
∏
i

(σxi )βi αi, βi ∈ 0, 1

Our tools to catch these errors are syndrome measurements, measurements of the

eigenvalues of As and Bp. This means that an error will not be caught only if it com-

mutes with As and Bp (E ∈ G). However, if the error is a product of onlyAs and Bp then
it will not change the codeword of the state so E would not be an error. Thus, to cause

an error, E must contain a non-contractible chain or cochain which can only happen if

the action of E is non-trivial for at least k qubits. We can also define a Hamiltonian (an

energy) such that the protected subspace is the ground state:

H = −
∑
s

As −
∑
p

Bp

Then we can imagine that for small errors (which are excitations to this energy), the

system will ”cool” down to its ground state and automatically error-correct.
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Background

In the margins of his copy of Diophantus’ Arithmetica, Pierre de Fermat scribbled the
following intriguing conundrum, circa 1637.

“It is impossible to separate a cube into two
cubes, or a fourth power into two fourth
powers, or in general, any power higher
than the second, into two like powers. I
have discovered a truly marvelous proof of
this, which this margin is too narrow to con-
tain.”

—Pierre de Fermat

This sparked one of the most famous mathematical problems in modern history that
came to be known as Fermat’s Last Theorem (FLT). It asserts that no three positive
integers a, b, c satisfy

an + bn = cn

for any integer n > 2. Despite its seemingly simple appearance, the theorem eluded a
complete proof for over 350 years. Although FLT applies to all integers n > 2, it can be
reduced to two fundamental cases:

• n = 4, which Fermat himself proved using his method of infinite descent.

• n = p, where p is an odd prime.

Indeed, any n ≥ 3 must have one of the aforementioned factors. The general case for
odd primes remained unresolved for centuries. Our project focuses on a major break-
through achieved in the 19th century by Ernst Eduard Kummer, who resolved FLT for
a special class of prime exponents. His work laid the foundations for modern algebraic
number theory and ultimately led to Andrew Wiles’ complete proof in the 1990s.

Key Definitions and Concepts

Def 1. A number field K is a field containing Q such that K is a finite dimensional
vector space over Q. The ring of integers of K is the set of all elements in K
that are a root of a monic polynomial with integer coefficients.

Def 2. The ideal class group CK of a number field K is the quotient group JK/PK
where JK is the group of fractional ideals of the ring of integers of K, and PK is
the subgroup of principal ideals in JK . It is a finite abelian group.

Def 3. The class number of a number field K is the order of its ideal class group CK .
It quantifies the failure of the ring of integers of K to be a unique factorization
domain.

Def 4. A Dedekind domain is an integral domain in which all non-zero ideals factor
uniquely into a product of prime ideals.

Def 5. A primitive p-th root of unity is a number ζp ∈ C such that (ζp)p = 1 but (ζp)k ̸= 1
for all k ∈ N with k < p. The p-th cyclotomic field is the number field generated
by Q and any choice of a primitive ζp. We will henceforth denote such a ζp by ζ.

Key facts

Fact 1. The ring of integers of Q(ζ) is Z[ζ ], which is a Dedekind domain.

Fact 2. The ideal ⟨1− ζ⟩ of Z[ζ ] is a prime ideal and ⟨1− ζ⟩p−1 = ⟨p⟩.
Fact 3. All units in Z[ζ ] are of the form ϵζi where ϵ is real and i is an integer.

Fact 4. If I is an ideal of Z[ζ ] such that Ik is principal for some positive integer k that
does not divide the class number of Q(ζ), then I is itself principal.

Kummer’s Special Case

In the 19th century, Ernst Eduard Kummer introduced groundbreaking ideas that laid
the foundation of modern algebraic number theory and used them to prove FLT for a
conjecturally infinite class of prime exponents p known as regular primes—those for
which p does not divide the class number of Q(ζp).

• Use the factorization ap + bp = (a + b)(a + ζb) · · · (a + ζp−1b).

• Work in Z[ζ ], which is analogous to Z but lacks the unique factorization property.

• Introduce ideal numbers (early version of ideals) to handle the failure of unique
factorization in Z[ζ ].

• Establish that if p is regular, then one can bypass the failure of unique factorization
in Z[ζ ] and prove FLT for the exponent p.

This resolved FLT for many small primes. Indeed, the only irregular primes less than
100 are 37, 59 and 67. It is known that there are infinitely many irregular primes and it
conjectured that the number of regular primes is also infinite.

Proof Structure

We outline a proof of the following special case of Kummer’s breakthrough:

Theorem. If p is an odd regular prime, the Diophantine equation xp + yp = zp has no
solutions in positive integers x, y, z where p ∤ xyz.

Suppose on the contrary that there is such a triplet. Then there exists another triplet
whose members are pairwise coprime and which also satisfies FLT. Using properties
of roots of unity and passing to ideals, we can factor xp + yp, yielding:∏p−1

i=0
⟨x− ζiy⟩ = ⟨z⟩p (†)

Each factor on the left hand side must be pairwise coprime. Assuming otherwise
implies there is some prime ideal p that contains z and y(1− ζ)ζk for some integer k.
Since ζk is a unit and p is a prime, either p contain y or 1− ζ. Suppose

• y ∈ p. Then since y and z are coprime, we have 1 ∈ p, contradiction.

• 1 − ζ ∈ p. As ⟨1 − ζ⟩ is prime by the first part of Fact 2, we have p = ⟨1 − ζ⟩.
The second part of Fact 2 then forces p | z through a series of congruences, a
contradiction.

Since the right hand side of (†) is a p-th power, and since, by Fact 1, a Dedekind
domain like Z[ζ ] guarantees unique factorization into prime ideals, each factor on the
left hand side must also be a p-th power of an ideal. Therefore, there exists some ideal
I such that

⟨x− ζy⟩ = Ip.

Since Ip is a principal ideal and the prime p is regular, I itself is a principal ideal by
Fact 4. Therefore, there exists some δ ∈ Z[ζ ] such that I = ⟨δ⟩. This implies that
x− ζy = uδp where u ∈ Z[ζ ] is a unit. By Fact 3, all units in Z[ζ ] can be expressed in
the form ϵζi for some real element ϵ ∈ Z[ζ ] and some integer i. We therefore have

x− ζy = ϵζiδ

By considering this equation modulo ⟨p⟩, rearranging, and substituting, we can deduce
that

x

p
ζ−i +

y

p
ζ1−i − x

p
ζp − y

p
ζi−1 ∈ Z[ζ ].

Since p does not divide x or y, some of the exponents must be congruent modulo p
in order for their corresponding terms to combine. The possible congruences produce
contradictions as follows:

• i ≡ 0 (mod p) and i ≡ 1 (mod p) imply the contradiction p | xyz.

• 2i ≡ 1 (mod p) implies that p = 3, which can be solved by working mod 9.

Remark. The case in which p | xyz was also shown by Kummer using similar methods.

From Fermat To Modularity

Modularity Theorem. Every elliptic curve over Q is modular.
That is, there exists a correspondence between two seemingly distinct objects: elliptic
curves and modular forms.

• Elliptic curves are smooth projective algebraic curves of the form y2 = x3+ax+ b,
whose rational points form a finitely generated abelian group.

• Modular forms are complex analytic functions on the upper half-plane that exhibit
a rich symmetry under the action of modular transformations.

An elliptic curve A disk model plot of the associated modular form

Andrew Wiles And The Proof

In 1985, Gerhard Frey observed that a hypothetical counterexample to Fermat’s
Last Theorem would give rise to a special elliptic curve—now known as the Frey
curve—which, if the modularity conjecture were true, could not be modular. Build-
ing on this insight, Ken Ribet proved that this was indeed the case a year later.
Andrew Wiles’s crucial contribution was his proof of the modularity theorem for
semistable elliptic curves. Using the theory of Galois representations, he uncovered
a profound link between the arithmetic of elliptic curves and modular forms. However,
the initial proof contained a serious gap. With the help of Richard Taylor, Wiles later
resolved the issue. Combined with Ribet’s theorem, this breakthrough eliminated any
possible counterexample to Fermat’s Last Theorem. The final proof appeared in 1995.

Andrew Wiles at the 1993 Cambridge lecture.
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Introduction

Permutation Wordle is a Wordle-inspired game in which both the secret code and each

guess are permutations of {1, . . . , n}, and after every guess you learn which entries lie

in the correct position (analogous to Wordle’s green tiles). It challenges a guesser to

recover a hidden permutation σ ∈ Sn by making successive permutation guesses with

this “correct-position” feedback.

Permutation Wordle

Hidden: 3 2 1
Guess 1: 1 2 3 1 correct (position 2)

Guess 2: 3 2 1 All correct!

We study the Circular Shift strategy, proposed by Kutin and Smithline [1]. We prove that

it constitutes a list strategy and we show that any valid game-tree induces such a list.

We conjecture that Circular Shift is optimal among all list strategies.

Definitions

For any strategy A and target σ ∈ Sn, let GA(σ) denote the number of guesses A uses

to correctly identify σ. For a fixed σ we write γr for the rth guess made by a strategy.

We say a permutation π is consistent with the first r − 1 guesses γ1, . . . , γr−1 if, under

feedback, σ would not have been eliminated by those guesses.

Weak domination: Strategy A weakly dominates B if its average guess-count

G(A) := 1
n!

∑
σ∈Sn

GA(σ)

satisfies G(A) ≤ G(B)

Strong domination: For each r ≥ 1, let
NA(r) := |{σ ∈ Sn : GA(σ) ≤ r}|

Then A strongly dominates B if

∀ r : NA(r) ≥ NB(r)

List Strategy: A list strategy L is defined by a fixed total ordering

L :=
(
σ(1), σ(2), . . . , σ(n!)) ⊂ Sn

In which γ1 = σ(1), and for each r > 1,

γr := σ(j) such that j = min
L

{
i : σ(i) is consistent with γ1, . . . , γr−1

}

Excedances and Eulerian Numbers

PermutationWordle’s performance under Circular Shift is governed by excedances. An

excedance of σ ∈ Sn is a position i with σ(i) > i; we write exc(σ) to denote how many

exceedances σ has. For example:

3 1 6 2 7 4 5

a permutation of S7, with bold boxes showing excedances σ(i) > i.

The Eulerian number

A(n, k) :=
∣∣{σ ∈ Sn : exc(σ) = k}

∣∣
counts permutations in Sn with exactly k excedances. Under Circular Shift, each

targetσ is solved in precisely 1 + exc(σ) guesses which yields an average guess count

of (n + 1)/2 across all permutations, see [1] for details. In practice, this means that

almost all permutations are solved in very close to the average number of guesses,

underscoring both the predictability and efficiency of Circular Shift.

List Strategies and Game Trees

A game tree encodes every possible play of a list strategy as a rooted branching diagram:

each node is a guess, and each outgoing edge corresponds to the feedback received.

The depth of each node gives the number of guesses needed for that permutation.

σ1

σ2

σ3 σ4

σ3 σ4

σ2

σ3 σ4

σ3 σ4

. . .

Figure 1: A partial tree diagram showing the

sequence of guesses σi; ellipses indicate further

continuation.

(1 2 3)

(1 3 2)

(3 2 1)

(2 1 3)

(3 1 2)

(2 3 1)

1 guess

2 guesses

3 guesses

Figure 2: A predetermined ordering of

permutations of S3 by guess count that defines a
list strategy.

By recording the nodes of any valid game tree in breadth-first order, you obtain exactly

the ordering that reproduces that tree’s guess behavior. Conversely, given any list, you

can rebuild its game tree by following each path of guesses

Circular Shift in Action

The Circular Shift strategy: begin with the identity, then at each step cyclically rotate

all misplaced entries one position to the right, leaving fixed entries untouched.

CircularShift Strategy (n=4)

Hidden: 2 3 1 4
Guess 1: 1 2 3 4

Feedback: Only position 4 correctGuess 2: 3 1 2 4

Feedback: Only position 4 correct

Guess 3: 2 3 1 4 Feedback: All correct!

Proposition: Circular Shift is a List Strategy.

Let S(σ) = i denote the number of guesses Circular Shift needs to reach σ, for all i
with 1 ≤ i ≤ n!. We proceed by induction.

Base Case (k = 1). Only the identity permutation id = (1, 2, ..., n) is solved in one guess,
so σ(1) = id and S(id) = 1.

Inductive Hypothesis. Assume that, for a target σ, Circular Shift’s first k guesses are

(γ1, γ2, . . . , γk) = (σ(1), σ(2), . . . , σ(k)) where S(σ(i)) = i for all i with 1 ≤ i ≤ k.

Inductive Step. Consider σ(k+1). Note σ(k+1) = σ. That is,

(σ(k+1))(1) = σ(1), (σ(k+1))(2) = σ(2), . . . , (σ(k+1))(k) = σ(k).

Notice that if for some 1 ≤ j ≤ k we had(
σ(k+1))(j) 6= σ(j),

then σ(j) would conflict with the feedback from the first j − 1 guesses. But by our

hypothesis, those first j − 1 guesses already agree, and Circular Shift’s deterministic

nature forces the jth guess to coincide as well. Thus all k initial guesses agree, so

γr = σ(r), r = 1, . . . , k,

and γk+1 = σ(k+1) with S(σ(k+1)) = k + 1. Moreover, this next guess is unique: if two

targets ρ, ω are both consistent with guesses γ1, . . . , γk and both reach guess γk+1 in
the strategy, then we must have ρ(k+1) = ω(k+1), hence ρ = ω. This completes the

induction. Therefore, by listing all permutations in order of increasing S(σ), we obtain

a list L, similar to that in Figure 2. Circular Shift follows such a list exactly, so it is indeed

a list strategy.

Our Conjectures

DAGs Dominate General Stratgies

What We Know: In a general strategy, modeled by an arbitrary directed graph, tree

structures have the potential for cycles, allowing for the repetition of previous

guesses.
σ1 σ′

2

σ3σ2

The diagram above illustrates a general strategy whose directed graph contains such

a cycle. From the root guess σ1 one can follow the green feedback path:

σ1 → σ2 → σ3 → σ′
2

Creating a loop in which guess σ3 can be repeated. By contrast, a directed acyclic

graph (DAG) strategy forbids any such cycles: its acyclic nature guarantees no closed

loops, meaning no possibility of repeated guesses. We conjecture that for any cyclic

general strategy, there is a DAG that solves every target in no more guesses.

Concept of Proof: We hypothesize that successful induction on the removal of the

number of loops within a directed cyclic graph would result in a dominating DAG

structure.

List Strategies Dominate DAGs

What We Know: In a DAG strategy, a single guess can be reached by multiple

feedback paths. As shown in the figure below, the two nodes σ2 and σ′
2 both point to

σ3, as well as σ4 and σ′
4 with σ5:

σ1

σ2

σ′
2

σ3

σ4

σ′
4

σ5

Conversely, within a list strategy, each node has exactly one incoming edge. Namely,

there is a unique parent for each guess, so no two different feedback histories can

ever converge on the same next guess. We conjecture that for any DAG-based

strategy, there is a list strategy that solves every target in no more guesses than the

DAG.

Circular Shift is a List Strategy X

Circular Shift Dominates List Strategies

What We Know: Not all list strategies perform equally. In computational

experiments, we compared Circular Shift against multiple other valid list strategies,

such as Lexicographic Derangements, shown in the graph below. In every case,

Circular Shift strongly dominated. We conjecture that Circular Shift is optimal among

all list strategies.
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Circular Shift

Lexicographic Derangement

Concept of Proof: We hypothesize that for any strategy A, we can bound NA(r)
above by

∑r
i=1 A(n, i), the sum of the Eulerian Number for each value of r. Whereas

for Circular Shift, N(r) is exactly equal to
∑r

i=1 A(n, i) [1].
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Tangent Vectors as Derivations

When embedding smooth manifolds into Rn, tangent vectors are associated with
directional derivatives. To generalize tangent vectors into abstract smooth mani-
fold, we need an analogy:

Definition
Any point u ∈ M , a Derivation at u, is a linear map vu : C∞(M) → R, that
satisfies the product rule:

∀f, g ∈ C∞(M), vu(fg) = f (u)(vug) + g(u)(vuf )

The vector space of all derivations at u, or Tu(M), is the Tangent Space of M
at u, and each derivation vu ∈ Tu(M) is a Tangent Vector of u.

Vector Fields & Smooth Condition

Definition
a vector field is a map X : M → TM (TM denotes the Tangent Bundle), with
X(u) = Xu ∈ Tu(M).
Which, X is a Smooth Vector Field, if X : M → TM is a smooth map.
A collection of smooth vector fields on M is X(M), which is an R-vector space.

Another equivalent condition of saying X is smooth, is through smooth functions
f ∈ C∞(M): For all u ∈ M , X(u) = Xu ∈ Tu(M) is a derivation at u, define Xf :
M → R by Xf (u) = Xu(f ). Which, the Derivation is an equivalent condition for
smooth vector field:

Theorem
Given vector field X, X ∈ X(M) iff it satisfies product rule. i.e. For all u ∈ M ,
and all f, g ∈ C∞(M):

X(fg)(u) = Xu(fg) = f (u)(Xug) + g(u)(Xuf ) = f (u)Xg(u) + g(u)Xf (u)

=⇒ X(fg) = f (Xg) + g(Xf )

Vector Fields of Different Manifolds
Given M,N two smooth manifolds, and smooth map F : M → N . Let X ∈ X(M),
an ideal situation is mapping X to a smooth vector field of N through F . Yet, this
requires F to be bijective:

Figure 1: Example of Conflicting Tangent Vectors

So, we’ll consider a weaker notion:

Definition
Given X ∈ X(M) and Y ∈ X(N), the two are F -related, if for all u ∈ M , the
following is true:

dFu(Xu) = YF (u)

Simply speaking, F maps the tangent vectors collected by X, to be compatible
with tangent vectors collected by Y .

Figure 2: A demonstration of F -Relation

Lie Bracket of Vector Fields
The initial motivation is to combine two vector fields X, Y ∈ X(M) to be another vector field.
For all f ∈ C∞(M), since Y f ∈ C∞(M), then XY f := X(Y f ) ∈ C∞(M). But, in general
XY is not a derivation, hence not a vector field:

Example

Define vector fields X = ∂
∂x, Y = x ∂

∂y on R2. Take smooth functions f (x, y) = x and
g(x, y) = y, then we get the following:

XY (fg) = X

(
x
∂

∂y
(xy)

)
=

∂

∂x
(x2) = 2x

But, product rule doesn’t hold for this example:

f (XY g) + g(XY f ) = x

(
X

(
x
∂

∂y
(y)

))
+ y

(
X

(
x
∂

∂y
(x)

))
= x

So, we need to define a new operation on vector fields:

Definition
The Lie Bracket [·, ·] : X(M)× X(M) → X(M), is defined as:

∀X, Y ∈ X(M), [X, Y ] = XY − Y X

Which, the output [X, Y ] ∈ X(M), since it satisfies product rule:

[X, Y ](fg) = X(Y (fg))− Y (X(fg)) = X(f (Y g) + g(Y f ))− Y (f (Xg) + g(Xf ))

= f (XY g)+(Y g)(Xf )+g(XY f )+(Y f )(Xg)−f (Y Xg)−(Xg)(Y f )−g(Y Xf )−(Xf )(Y g)

= f (XY g − Y Xg) + g(XY f − Y Xf ) = f [X, Y ](g) + g[X, Y ](f )

Lie Bracket also satisfies these properties:

• Bilinearity: [aX + bY, Z] = a[X,Z] + b[Y, Z]

• Antisymmetry: [X, Y ] = −[Y,X ]

• Jacobi’s Identity: [X, [Y, Z]] + [Y, [Z,X ]] + [Z, [X, Y ]] = 0

Moreover, Lie Bracket inherits relation of smooth maps:

Theorem
Given smooth map F : M → N , if X1, X2 ∈ X(M) and Y1, Y2 ∈ X(N) are F -related
respectively, then [X1, X2] ∈ X(M) and [Y1, Y2] ∈ X(N) are also F -related.

Lie Groups & Left-Invariant Vector Fields

The initial motivation is to study group structures in some smooth manifolds.

Definition
A Lie Group G, is a smooth manifold along with group structure, such that the group
operation P : G × G → G by P (g, h) = gh, and the inversion map i : G → G by
i(g) = g−1 are both smooth maps between manifolds.

For all g ∈ G, denote the left multiplication Lg : G → G by Lg(h) = gh, since Lg = P
∣∣
{g}×G,

it is a smooth map. Hence, there’s a notion of X being Lg-related to itself:

Definition
Given any X ∈ X(G) and all g ∈ G, X is a Left-Invariant Vector Field, if for all g ∈ G,
X is Lg-related to itself. Which, for all g ∈ G:

d(Lg)e(Xe) = XLg(e) = Xg

So, X is uniquely determined by its tangent vector at identity, Xe ∈ Te(G). In fact, each
ve ∈ Te(G) also corresponds to a unique Left-Invariant vector field.
The collection of Left-Invariant vector fields g ⊆ X(G), is itself a linear subspace, and
g ∼= Te(G) as vector spaces, based on the above relation.

Recall that Lie Bracket of vector field preserves F -relation between manifolds, so:

Theorem
For all X, Y ∈ g, since for all g ∈ G, X and Y are Lg-related to themselves, then the
Lie Bracket [X, Y ] is also Lg-related to [X, Y ]. Hence, [X, Y ] is also left-invariant, or
[X, Y ] ∈ g. So, g is closed under Lie Bracket’s operation.

Lie Algebra on a Lie Group

Definition
Given a vector space g over R or C, with a binary operation [·, ·] : g× g → g,
such that the following holds:

• Bilinearity: [aX + bY, Z] = a[X,Z] + b[Y, Z]

• Antisymmetry: [X, Y ] = −[Y,X ]

• Jacobi’s Identity: [X, [Y, Z]] + [Y, [Z,X ]] + [Z, [X, Y ]] = 0

Then, the pair (g, [·, ·]) is a Lie Algebra.

In general, Lie Algebra is non-associative, so Jacobi’s Identity is an alternative
condition. Finally, we can define Lie Algebra of a Lie Group:

Definition
Given a lie group G, since the subset of left-invariant vector fields g ⊆ X(G)
forms a linear subspace, while closed under Lie Bracket’s operation, then the
pair (g, [·, ·]) forms a Lie Algebra of G, denoted as Lie(G).

Here’s an example of Lie Algebra on a Lie Group:

Example
General Linear Group & its Lie Algebra:
Given Mn(R) ∼= Rn2, and GLn(R) ⊂ Mn(R) as an open subset, it’s a natural
smooth manifold with dimension n2. The product of matrices and the inversion
are smooth maps, so GLn(R) is a Lie Group.
Now, consider g = Lie(GLn(R)): Each X ∈ g is uniquely characterized by
XIn ∈ TIn(GLn(R)). And, as vector spaces, g ∼= TIn(GLn(R)).

Lie Algebra on Mn(R):
Given Mn(R) as R-vector space and the commutator [A,B] = AB −BA, the
pair (Mn(R), [·, ·]) in fact forms a Lie Algebra, denoted as gln(R).

Lie Algebra Isomorphism between g and gln(R):
GLn(R) has a global coordinate provided by Mn(R), denote as (Xi

j)1≤i,j≤n.
For each A ∈ gln(R), it corresponds to a tangent vector in TIn(GLn(R)):

A = (Ai
j) 7→ Ai

j
∂

∂Xi
j

∣∣∣∣
In

The above tangent vector defines a Left-Invariant vector field AL ∈ g. For all
X ∈ g, the left multiplication LX is in fact a linear operator on Mn(R), so its
differential is identical to itself. Which, it provides the following relation:

AL
X = d(LX)In

(
Ai
j

∂

∂Xi
j

∣∣∣∣
In

)
= Xi

jA
j
k

∂

∂Xi
k

∣∣∣∣
X
, AL = Xi

jA
j
k

∂

∂Xi
k

Then, for arbitrary A,B ∈ gln(R), Lie Bracket of AL, BL ∈ g generates:[
AL, BL

]
= Xi

jA
j
k

∂

∂Xi
k

(X
p
qB

q
r)

∂

∂X
p
r
−X

p
qB

q
r

∂

∂X
p
r
(Xi

jA
j
k)

∂

∂Xi
k

Because each A
j
k, B

q
r are constants, while ∂

∂Xi
k

X
p
q = 1 iff (i, k) = (p, q) and is

0 otherwise. Then, match up related indices, we get:[
AL, BL

]
= Xi

j(A
j
kB

k
r −B

j
kA

k
r)

∂

∂Xi
r
= (AB −BA)L = [A,B]L

Hence, the map gln(R) → g by A 7→ AL is a Lie Algebra Isomorphism.
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Coxeter Systems
Dihedral groups , well known from elementary group theory, encode the symmetries
of regular polygons. For example, the square admits eight fundamental symmetries:
reflections through its horizontal and vertical axes and two diagonals, and rotations
through 90, 180, and 270 degrees.

𝐷8 = ⟨𝑟, 𝑠 | 𝑟4 = 𝑠2 = (𝑠𝑟)2 = 1⟩ 𝑡𝑠
𝑡

𝑒
𝑠

𝑠𝑡

𝑠𝑡𝑠
𝑠𝑡𝑠𝑡 = 𝑡𝑠𝑡𝑠

𝑡𝑠𝑡

Through the transformation 𝑡 ≔ 𝑠𝑟, we can describe this group solely in terms of
reflections, which gives rise to the notion of a geometric reflection group —a more
generic group generated by reflections across a particular set of hyperplanes 𝐻𝑖 acting
on Euclidean, hyperbolic, or spherical spaces.

Abstracting this further, beyond purely geometric considerations, produces the Coxeter
group , defined by the presentation

𝑊 = ⟨𝑠1, 𝑠2, …, 𝑠𝑛 | (𝑠𝑖𝑠𝑗)
𝑚𝑖𝑗 = 1⟩

where 𝑚𝑖𝑖 = 1 and 𝑚𝑖𝑗 = 𝑚𝑗𝑖 ∈ {2, 3, …} ∪ {∞} for all distinct 𝑖, 𝑗. Observe this defi4
nition implies each generator 𝑠𝑖 is an involution and thus corresponds to a reflection.
Denoting the indexing set {𝑠𝑖} by 𝑆, we define a Coxeter System as the pair (𝑊, 𝑆).

Importantly, for some 𝑇 ⊆ 𝑆, we define the parabolic subgroup 𝑊𝑇  of 𝑊  by 𝑊𝑇 =
⟨𝑇 ⟩; we can show that (𝑊𝑇 , 𝑇 ) is a Coxeter System as well.

Chambers and Nerves
For the following definitions let (𝑊, 𝑆) be a Coxeter system. Then, for the diagrams
shown below, let 𝑆(0) = {𝑠0, 𝑠1, 𝑠2, 𝑠3}, 𝑆(1) = {𝑠, 𝑡, 𝑢}, and

𝑊 (0) = ⟨𝑠0, 𝑠1, 𝑠2, 𝑠3 | 𝑠2
𝑖 = (𝑠𝑖𝑠𝑖+1)

2 = 1, ∀𝑖 ∈ ℤ4⟩

𝑊 (1) = ⟨𝑠, 𝑡, 𝑢 | 𝑠2 = 𝑡2 = 𝑢2 = 1; (𝑠𝑡)3 = 1⟩ ≅ 𝐷6 ∗ 𝐶2.

• An abstract simplicial complex is a
set 𝑉 , called the vertex set, and a collec4
tion 𝑋 of finite subsets of 𝑉  such that:
‣ {𝑣} ∈ 𝑋 for all 𝑣 ∈ 𝑉
‣ if Δ ∈ 𝑋 with Δ′ ⊆ Δ then Δ′ ∈ 𝑋

• The nerve of (𝑊, 𝑆), denoted by 𝐿 =
𝐿(𝑊, 𝑆), is the abstract simplicial com4
plex with a simplex 𝜎𝑇  for each 𝑇 ⊆ 𝑆,
where 𝑇 ≠ ∅ and 𝑊𝑇  is finite

• Let 𝐿′ be the barycentric subdivision
of 𝐿 (adding additional simplices at the
barycenters of existing simplices repre4
senting the parabolic subgroups 𝑊𝑇 )

• The chamber 𝐾 is the cone on 𝐿′. For
each 𝑠 ∈ 𝑆, we can define the closed
star in 𝐿′ of the vertex 𝑠 to be 𝐾𝑠 ⊆ 𝐾

• The point added by the cone is the
empty set ∅ in the simplicial complex,
which represents the subgroup 𝑊∅

𝑠0 𝑠1

𝑠2𝑠3 𝑠 𝑡

𝑢

𝐿(𝑊 (0), 𝑆(0)) 𝐿(𝑊 (1), 𝑆(1))

𝑠0 𝑠1

𝑠2𝑠3

{𝑠0, 𝑠1}

{𝑠1, 𝑠2}

{𝑠2, 𝑠3}

{𝑠0, 𝑠3} 𝑠 𝑡

𝑢

{𝑠, 𝑡}

𝐿′(𝑊 (0), 𝑆(0)) 𝐿′(𝑊 (1), 𝑆(1))

𝐾𝑠0
𝐾𝑠1

𝐾𝑠2
𝐾𝑠3

∅

𝐾𝑠 𝐾𝑡

𝐾𝑢

∅

𝐾(𝑊 (0), 𝑆(0)) 𝐾(𝑊 (1), 𝑆(1))

The Davis Complex as a Basic Construction
We wish to realize a Coxeter group, returning it to its geometric origins. This is the idea
behind the basic construction 𝒰(𝑊, 𝑋).

We begin with some additional definitions. If (𝑊, 𝑆) is a Coxeter system and 𝑋 is a
connected and Hausdorff topological space, define a mirror structure on 𝑋 over 𝑆 by
a collection (𝑋𝑠)𝑠∈𝑆 , where each 𝑋𝑠 is a nonempty, closed subset of 𝑋. Call each 𝑋𝑠
the 𝑠4mirror of 𝑋. The idea is to “glue” copies of 𝑋 along the mirrors.

For each point 𝑥 ∈ 𝑋, define 𝑆(𝑥) ⊆ 𝑆 by 𝑆(𝑥) ≔ {𝑠 ∈ 𝑆 : 𝑥 ∈ 𝑋𝑠}. Define a relation
∼ on 𝑊 × 𝑋 by

(𝑤, 𝑥) ∼ (𝑤′, 𝑥′) if and only if 𝑥 = 𝑥′ and 𝑤−1𝑤′ ∈ 𝑊𝑆(𝑥).

Now the basic construction is the quotient

𝒰(𝑊, 𝑋) = 𝑊 × 𝑋/ ∼

equipped with the quotient topology. We then define the Davis complex Σ(𝑊, 𝑆) as

Σ(𝑊, 𝑆) = 𝒰(𝑊, 𝐾)

where 𝐾 is a chamber with the mirror structures (𝐾𝑠)𝑠∈𝑆  as defined previously.

𝐾

𝑠0𝐾 𝑠1𝐾

𝑠2𝐾𝑠3𝐾

𝑠0𝑠1𝐾

𝑠1𝑠2𝐾

𝑠1𝑠3𝐾

𝐾
𝑡𝐾

𝑡𝑠𝐾
𝑡𝑠𝑡𝐾

𝑠𝑡𝐾

𝑠𝐾

𝑢𝐾

𝑡𝑠𝑡𝑢𝐾

Σ(𝑊 (0), 𝑆(0)) Σ(𝑊 (1), 𝑆(1))

The Davis Complex is CAT(0)
We say a geodesic space 𝑋 is CAT(0) if the triangles in 𝑋 appear no “fatter”
than triangles in a Euclidean space 𝔼𝑛 of same dimension. Similarly, we can define
CAT(−1) and CAT(1) for triangles in 𝑋 compared to triangles in hyperbolic space
ℍ𝑛 and spherical space 𝕊𝑛 respectively. In order to realize this condition for the Davis
complex, we must construct a metric for it.

We first choose a collection 𝑑 = (𝑑𝑠)𝑠∈𝑆  for which 𝑑𝑠 > 0 for any 𝑠 ∈ 𝑆. For finite 𝑊𝑇 ,
let 𝐶𝑇  be a chamber in ℝ𝑛 generated by the intersection of the half spaces produced by
the hyperplanes 𝐻𝑡 for 𝑡 ∈ 𝑇  as in the Tits Representation . Then we can define the
unique point 𝑥𝑇  in the interior of 𝐶𝑇  such that 𝑑(𝑥𝑇 , 𝐻𝑡) = 𝑑𝑡 for all 𝑡 ∈ 𝑇 . We then
metrize each cell of Σ(𝑊, 𝑆), 𝑤𝑊𝑇 , as a copy of the polytope generated by the 𝑊𝑇 4
orbit of 𝑥𝑇  (a standard choice for 𝑑 is 𝑑𝑠 = 1

2  for all 𝑠 constructing the path metric for
the 14skeleton of Σ(𝑊, 𝑆)).

Using this metric, it was shown by Moussong and Gromov that the Davis complex for
a Coxeter group 𝑊 , Σ(𝑊, 𝑆), is a complete CAT(0) space. This result implies the
contractability of the Davis complex, and shows that the word problem (whether
two words represent the same element) and conjugacy problem (whether two words
represent conjugate elements) are solvable for 𝑊 .

Tits Representation
A key result due to Jacques Tits gives a faithful linear representation for (𝑊, 𝑆),

𝜌 : 𝑊 → GL𝑛(ℝ),

with 𝑛 = |𝑆|, such that for each 𝑠𝑖 ∈ 𝑆, 𝜌(𝑠𝑖) = 𝜎𝑖 is a linear involution whose fixed
set is a hyperplane and for all 𝑖 ≠ 𝑗, the product 𝜎𝑖𝜎𝑗 has order 𝑚𝑖𝑗. Consider the real
vector space 𝑉  with basis {𝑒1, …, 𝑒𝑛}, and define a symmetric bilinear form 𝐵 on 𝑉  by

𝐵(𝑒𝑖, 𝑒𝑗) =
{{
{
{{− cos( 𝜋

𝑚𝑖𝑗
) if 𝑚𝑖𝑗 is finite

−1 if 𝑚𝑖𝑗 = ∞.

Then define the hyperplanes by 𝐻𝑖 = {𝑣 ∈ 𝑉 : 𝐵(𝑒𝑖, 𝑣) = 0} and the linear maps by

𝜎𝑖(𝑣) = 𝑣 − 2𝐵(𝑒𝑖, 𝑣)𝑒𝑖,

which we note is the usual form of reflections in Euclidean geometry.

Buildings
A building of type (𝑊, 𝑆) is a simplicial complex Δ, which is a union of subcomplexes
called apartments , where each apartment is a copy of the Coxeter complex (or
alternatively the Davis complex) for (𝑊, 𝑆). With chambers defined to be the maximal
simplices in Δ, the following hold:
1. Any two chambers are contained in a common apartment
2. If 𝐴 and 𝐴′ are arbitrary apartments, then there is an isomorphism 𝐴 → 𝐴′ which

fixes 𝐴 ∩ 𝐴′ pointwise

For example, take the infinite dihedral group

𝑊 = ⟨𝑠, 𝑡 | 𝑠2 = 𝑡2 = 1⟩ ≅ 𝐷∞,

whose Coxeter complex (and similarly its
Davis complex) is the tessellation of the real
line 𝔼1 under the action of 𝑊 .

The 34regular tree 𝑇3 (shown to the left) is
a building of type (𝑊, 𝑆) when we take the
system of apartments to be the collection of
all bi4infinite lines in 𝑇3. Each line segment
corresponds to a chamber in the building
and each path through the tree corresponds
to a single Davis complex Σ(𝑊, 𝑆).

Observe that the first condition is satisfied since any two edges in the tree are contained
in a common line. The second condition follows because we can trivially find a map
between any pair of bi4infinite lines. Thus, 𝑇3 is a building of type (𝑊, 𝑆).
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History

Reinforcement Learning (RL) emerged in the late 1970s from psychology, neuroscience, and
control theory, focusing on hedonistic systems that maximize reward through trial and error.
Today, RL powers real-world applications in gaming, web services, finance, and healthcare,
with the goal of learning through interaction for better decision-making.

Figure 1: the action-agent interaction in a Markov Decision Process (MDP).

Background

Fundamentally, Reinforcement Learning uses mathematical methods to find the optimal
policy, π∗, that an agent can follow to achieve a specific goal in an environment. This
is done by having the agent and environment interact in a specific action, a ∈ A from a
state, s ∈ S, placing the agent in a new state, s′ ∈ S. A policy π tells us which action to
take in a given state, also known as a state-action pair. Each state-action pair gives us a
different return, which is the total accumulated reward, r, that the agent seeks to maximize.

We assign a value function to each state, vπ, and state-action pair, qπ, that’s dependent
on a specific policy and we define one policy to be better than the other if it’s expected
return is greater. Using this logic, we can find the optimal policy by finding out
which policy maximizes these value functions. As time progresses, the influence of future
rewards diminishes. This is shown using a discount factor, γ ∈ [0, 1], which reduces the
contribution of rewards received further in the future.

Key Equations (Bellman optimality):

v∗(s) = max
a

∑
s′,r

p(s′, r | s, a)
[
r + γ v∗(s′)

]
,

q∗(s, a) =
∑
s′,r

p(s′, r | s, a)
[
r + γ max

a′
q∗(s′, a′)

]
.

We can represent this by a backup diagrams, which show how we gather information back-
wards form future states to update our optimal policy.

Figure 2: Backup Diagrams for v∗ and q∗
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Dynamic Programming (DP)

Definition. A family of algorithms for computing optimal value functions and policies when the full MDP
model is known. It uses the known transition/reward model p(s′, r | s, a) to perform expected updates (policy
evaluation, iteration, value iteration). DP performs expected updates using the Bellman equations to refine
value estimates. We begin with iterative policy evaluation, where an arbitrary v0 is updated under a given
policy π by applying the Bellman equation as the Key Update:

vk+1(s) =
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a)
[
r + γvk(s

′)
]
.

As this process repeats vk −→ vπ. Policy improvement chooses actions that maximize expected return,
aka what actions maximize qπ(s, a). This gives us a new, greedy policy.

π′(s) = argmax
a

∑
s′,r

p(s′, r | s, a)
[
r + γvπ(s

′)
]
.

Alternating these processes is policy iteration and it yields increasingly better policies with repetition until
we eventually converge to the optimal policy, π∗.

π0
E−→ vπ0

I−→ π1
E−→ vπ1

I−→ π2
E−→ · · · I−→ π∗

E−→ v∗

Monte Carlo (MC)

Definition. Methods for estimating value functions by averaging sample returns from complete episodes,
without requiring any model. The return Gt from time step t is defined as:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑
k=0

γkRt+k+1.

The value function is updated using the Key Update (constant-α first-visit MC):

V (s) ← V (s) + α
(
Gt − V (s)

)
,

where α > 0 is the learning rate. There are two main types of MC Methods: first-visit and every-visit
which estimate vπ(s) following the first visit or all visits to s respectively.

Off-Policy
MC methods estimate value functions based on complete episodes of experience. This allows us to evaluate a
target policy π, while generating episodes using a different behavior policy b. To correct for the difference, we
use importance sampling, which re-weights returns based on how likely we are to choose an action-state
pair under π versus b.

importance sampling ratio: ρt =
T−1∏
k=t

π(Ak | Sk)
b(Ak | Sk)

The basic form, ordinary importance sampling, scales each return by ρt and averages the results. Although
unbiased, this method can have high variance if b differs greatly from π. Although biased, weighted importance
sampling solves this and reduces variance by normalizing the weights.

ordinary: V (s) =

∑
t∈T (s) ρtGt

|T (s)|
weighted: V (s) =

∑
t∈T (s) ρtGt∑
t∈T (s) ρt

Figure 3: Weighted importance sampling produces lower error estimates of the value of a single blackjack
state (normal rules) from off-policy episodes.

Temporal Difference (TD)

Definition. A hybrid of MC and DP that learns directly from experience
like MC and bootstraps—updating estimates using other estimates— like
DP without requiring a model. While MC waits until the end of an episode
to update, TD updates after a specified number of steps. The special case,
TD(0), updates after each step, but the more general form, TD(n) updates
after n steps.

Key Update (TD(n)):

Vt+n(St) = Vt+n−1(St) + α [Gt:t+n − Vt+n−1(St)] , 0 ≤ t < T

Note that the quantity in brackets is the TD error, δt, which is the difference
between successive estimates. This method of updating is incremental which allows
for quick updates.

n-step SARSA (on-policy)
We estimate the action-value function qπ(s, a) under the current policy π, using the
same n-step update structure we described above for state values.

Qt+n(St, At) = Qt+n−1(St, At) + α [Gt:t+n −Qt+n−1(St, At)] , 0 ≤ t < T

Q-Learning (off-policy)
We directly approximate q∗, independent of the policy being followed, by using the
maximum estimated value at the next state (from TD(0) specifically).

Q(St, At)← Q(St, At) + α
[
Rt+1 + γmax

a
Q(At+1, a)−Q(St, At)

]
.

n-step Expected SARSA (on-policy)
We average over the expected value over the distribution of future state-action pairs
instead of the max. Thus assuming t + n < T and Gt is the return function,

Gt:t+n = Rt+1 + γRt+2 + · · · + γn−1Rt+n + γn
∑
a

π(a | St+n)Q(St+n, a)

Q(St, At)← Q(St, At) + α [Gt:t+n −Q(St, At)]

Figure 4: The backup diagrams for the spectrum of n-step methods for
state–action values.

Trade-Offs

Dynamic Programming (DP)
Pros: Converges to exact solution, uses full model.
Cons: Requires known dynamics, computationally expensive (not scalable).

Monte Carlo (MC)
Pros: Model-free, easy to implement.
Cons: High variance, needs complete episodes (can be slow), no bootstrapping.

Temporal Difference (TD)
Pros: Model-free, bootstraps, lower variance (and faster) than MC, online and
incremental.
Cons: Biased updates, analysis more complex than MC.
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0. What is Gauge Theory

In the most general sense, Gauge Theory is the study of gauge-
theoretic equations. That is, differential equations involving con-
nections or sections on various types of bundles. These equations
provide valuable information about the geometry and topology of
the underlying manifold.

1. Mathematical Prerequisites

Here we shall define the terms in the above definition:

1 A smooth manifold is a manifold with a maximal smooth
atlas. (A smooth surface)

2 Let M be a smooth manifold. Let p ∈ M . The tangent
space of p in M , TpM , is defined to be the set of all
possible velocities of curves passing through p. The
tangent bundle of M is defined as ⊔p∈MTpM .

3 A Lie group is a smooth manifold with a group structure
such that: each point g in the manifold corresponds to a
translation diffeomorphism which sends the identity point
e to g. These diffeomorphisms form a group.

4 If M is a smooth manifold, and G is a Lie group, then a
smooth action of G on M is a smooth map
· : G×M → M such that e · p = p and
g · (h · p) = (gh) · p

5 Suppose G acts on M and let X be a left-invariant vector
field on G. Let ϕp : G → M be given by ϕp(g) = g · p.
Then a fundamental vector field on M is a vector field of
the form

X̃p = Deϕp(Xe)

6 Let U,E,M be smooth manifolds and let π : E → M be
a surjective differentiable map. If for every x ∈ M ,
π−1(x) ∼= U , then U is called the general fiber of π (∼=
means diffeomorphic). If, for every x ∈ M , we can find a
neighbourhood V of x such that π−1(V ) ∼= U × V , then
(E, π,M,U) is called a fiber bundle.

7 U → E
π−→ M is called a principal U -bundle if it satisfies

the following: U is a Lie group, the action of U preserves
each fiber on E, and there is a bundle atlas of
“G-equivariant” charts E → M × U .

8 The vertical tangent space, Vp, of a principal bundle is
the tangent space to the fiber. Vp = ker(Dpπ).

9 The horizontal tangent space, Hp, is a subspace of TpE
such that Hp

⊕
Vp = TpP . Note that horizontal tangent

spaces are not defined uniquely. Each horizontal tangent
space determines a different connection on our bundle,
and each connection correspond to a different gauge. This
is the main tool used in our exploration of Gauge theory.
We look at invariants under different gauges to find
symmetries in physics.

10 A connection form is a u(1)-valued 1-form
ω ∈ Ω1 (P, u(1))

satisfying
(rg)∗ω = Adg−1 ◦ ω = ω and ω

(
X̃q

)
= X ,

for each fundamental vector field X̃q generated by
X ∈ u(1). kerωq = HorqP defines the horizontal
subspace at q ∈ P .

2. Examples

Figure 1: S1 as a Lie group

The picture above shows a left translation diffeomorphism on the
Lie group S1. This is the Lie group in the principal bundle we use
to study Electromagnetism.

Figure 2: Principal Bundle

The figure above shows a principal bundle P over a manifold
M . The structure group or general fiber of this bundle is a
one-dimensional Lie group diffeomorphic to the strands Gi and Gf .
Hi and Hf are two horizontal tangent spaces. Notice that they
need not be orthogonal to Vi and Vf .

The Hopf Fibration
One of the most famous and useful fiber bundles in maths is the
Hopf fibration: the bundle

S1 → S3 π−→ S2

with π(z0, z1) = (2z0z
∗
1 , z0z

∗
0 − z1z

∗
1)

3. Cartan’s Theorem

Throughout our reading, this unbelievable theorem was used several
times to prove critical results. The statement is the following:
Let G be a Lie group and suppose that H ⊆ G is a subgroup in
the algebraic sense. Then H is an embedded Lie subgroup if and
only if H is a closed set in the topology of G.

4. E&M as a Gauge Theory

Classical electromagnetism, unified by Maxwell’s equations, finds its
mathematical expression through the framework of gauge theory. A
formalism that encodes the electromagnetic field as a manifestation
of local symmetry (specifically, invariance under the U(1) gauge
group) governing the phase freedom of charged fields.

5. The Electromagnetism Connection

Electromagnetism is formulated on a 4D Lorentzian manifold
(M, gµν), where gµν is the metric tensor with signature (−,+,+,+).
The gauge structure is a principal bundle P π−→ M with struc-
ture group G = U(1) ∼= S1, equipped with a connection form
ω ∈ Ω1(P, u(1)).

ωq : TqP −→ u(1) ∼= iR .
In conclusion, this is (P, π,M,U(1)), a principal U(1)-bundle over
the Lorentzian manifold (M, gµν), with right action

rg : P → P, q 7→ q · g, g ∈ U(1).
The connection form ω splits TP = Vert(P ) ⊕ Hor(P ), where
Hor(P ) is annihilated by ω.

6. Electromagnetic Potential

Local sections s : U → P define the gauge potential Aµ, a u(1)-
valued 1-form on U , via the pullback

s∗ω = iA = iAµdx
µ ∈ Ω1(U, iR)

where Aµ ∈ C∞(U). For ϕ(x) ∈ C∞(U), changing the section to
s′(x) = s(x) ·g(x) = s(x)e−iϕ(x) induces the gauge transformations:

s′∗(ω) = g(s∗ω)g−1 + dg · g−1

= iA + d(eiϕ) · e−iϕ

= i(A + dϕ) .
In short, A 7→ A + dϕ, i.e., Aµ(x) 7→ Aµ(x) + ∂µϕ(x) . We define
covariant derivatives to compensate for local phase changes:

Dµ = ∂µ − iAµ =⇒ Dµψ 7→ eiϕ(x)Dµψ .

7. Electromagnetic Field Tensor

The curvature 2-form is Ω = dω + [ω, ω] . Since U(1) is abelian,
[ω, ω] = 0, so

Ω = dω.

Given a local section s : M → P , the pullback of ω gives the
electromagnetic potential A = s∗ω, a 1-form on M . The field
strength is then

F = s∗Ω = dA,

which in local coordinates is

F = 1
2
Fµν dx

µ ∧ dxν, with Fµν = ∂µAν − ∂νAµ.

Equivalently,
iF = i · dA = d(s∗ω) = s∗(dω) = s∗(Ω) .

The electromagnetic field tensor Fµν is considered geometrically as
the curvature of a connection on a principal U(1)-bundle.

8. Visual Schematics

Mx
•

U
( )

EUEx
∼= F

π
E

Figure 3: A schematic of the fiber bundle π : E → M .

M
x = π(q) = π(q ·g)

Tπ(q)M
∼= HqP

G

HqP

VqP
q ωq

v

VΦgqP

ωΦgq

(Φg)∗v

HΦgqP

(Φg)∗

Figure 4: A schematic of the connection 1-form.

Figure 4 shows the visualization of
ωΦgq ((Φg)∗v) = Adg(ωq(v)) = Φ−1

g (ωq(v))Φg , ∀ v ∈ TqP .

9. Yang-Mills Theory

The potential in electromagnetism takes the form of a connection
on a principal U(1) bundle. We can generalize this picture to other
interactions in the Standard Model. If we replace U(1) with an
arbitrary compact Lie Group G, the resulting field theories are
called Yang-Mills theories. The weak interaction corresponds to
the choice G = SU(2) and the strong interaction corresponds to
G = SU(3).
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Weierstrass ℘ -Function

Let Λ ⊂ C be a lattice. The Weierstrass ℘ -function as-
sociated to Λ is

℘(z; Λ) =
1

z2
+

∑
ω∈Λ\{0}

( 1

(z − ω)2
− 1

ω2

)
.

It is an even, Λ -periodic meromorphic function on C with
a double pole (zero residue) at each ω ∈ Λ and no other
poles.

Parity and Zeros of ℘′

For any lattice Λ,

℘(−z) = ℘(z), ℘′(−z) = −℘′(z),

and on each fundamental parallelogram there are ex-
actly three simple zeros of ℘′, which occur at the nonzero
half–periods of Λ. Moreover ℘′ has a triple zero at the
origin.

My Favorite Problem

Let Λ = Λi, the derivative ℘′ of the corresponding Weier-
strass ℘−function has
• a triple pole at 0

• simple zeros at 1
2,

i
2, and 1+i

2

Since iΛ = Λ one shows

℘(iz) = ℘iΛ(iz) = i−2℘(z) = −℘(z).

Show that

•℘(1+i2 ) = 0

•℘′(1+i2 ) = 0, then 1+i
2 is a double zero, and the only zero

of ℘ on C/Λ
• after an appropriate scaling C/mΛ the Weierstrass
equation becomes

y2 = 4x(x− 1)(x + 1)

Solution

Since iΛ = Λ shows

℘(iz) = ℘iΛ(iz) = i−2℘(z) = −℘(z).

Plug in z = 1+i
2 , we have

℘(i
1 + i

2
) = ℘(

i− 1

2
) = −℘(

1 + i

2
).

But i−1
2 differs from 1+i

2 by a lattice vector, so ℘(i−1
2 ) = ℘(1+i2 ).

Hence
℘(

1 + i

2
) = −℘(

1 + i

2
) ⇒ ℘(

1 + i

2
) = 0.

By hypothesis ℘′ has simple zeros at 1
2,
i
2, and 1+i

2 . In particular
℘′(1+i2 )=0, so 1+i

2 is a zero of ℘ of order at least two. One checks
there are no other zeros mod Λ.
Complex-conjugation invariance Λ = Λ gives ℘(z) = ℘(z), so

℘(
1

2
) ∈ R, and since ℘(

i

2
) = −℘(

1

2
), ℘(

i

2
) ∈ R.

Computing some dominant terms for ℘(12) and ℘( i2), one sees
that ℘(12) > 0. Denote

e = ℘(
1

2
) > 0, ℘(

i

2
) = −e.

Then the usual form is

y2 = 4(x− e1)(x− e2)(x− e3)

where e1 = ℘(1+i2 ) = 0, e2 = ℘(12) = e, e3 = ℘( i2) = −e. Hence

y2 = 4x(x− e)(x + e) = 4x(x2 − e2).

Since ℘mΛ(mz) = m−2℘Λ(z) and ℘′
mΛ(mz) = m−3℘′

Λ(z), we
choose

X =
x

e
, Y =

y

e3/2
.

Then y2 = e3 ·Y 2 and 4x(x2− e2) = 4e3X(X2− 1). By canceling
e3, we have

Y 2 = 4X(X2 − 1) = 4X(X − 1)(X + 1).

To make the nonzero roots ±1, we need

m−2e = 1 ⇒ m =
√
e =

√
℘(

1

2
).

Hence the torus C/
√

℘(12)Λ has Weierstrass equation

Y 2 = 4X(X2 − 1) = 4X(X − 1)(X + 1).

Weierstrass Differential Equation

Define the invariants

g2 = 60
∑

ω∈Λ\{0}

ω−4, g3 = 140
∑

ω∈Λ\{0}

ω−6.

Then ℘(z) = ℘(z; Λ) satisfies(
℘′(z)

)2
= 4℘(z)3 − g2℘(z)− g3.

The map z 7→
(
℘(z), ℘′(z)

)
identifies the torus C/Λ with

the elliptic curve

y2 = 4x3 − g2x− g3 .
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Wigner Matrix and Semi-circle Law

Start with two independent families of independent and identically distributed
(i.i.d.) zero mean, real-valued random variables

{
Zi,j

}
1≤i<j and {Yi}1≤i, such

that EZ2
1,2 = 1 and, for all integers k ≥ 1,

rk := max
(
E
∣∣Z1,2

∣∣k , E |Y1|k
)
< ∞

Consider the (symmetric) N ×N matrix XN with entries

XN (j, i) = XN (i, j) =

{
Zi,j/

√
N, if i < j

Yi/
√
N, if i = j

We call such a matrix a Wigner matrix, and if the random variables Zi,j and Yi
are Gaussian, we use the term Gaussian Wigner matrix.
Let λNi denote the (real) eigenvalues of XN , with λN1 ≤ λN2 ≤ · · · ≤ λNN , and
define the empirical distribution of the eigenvalues as the (random) probability
measure on R defined by

LN =
1

N

N∑
i=1

δ
λNi

Define the semicircle distribution (or law) as the probability distribution σ(x)dx
on R with density

σ(x) =
1

2π

√
4− x21|x|≤2

The following theorem can be considered the starting point of random matrix the-
ory (RMT).
Theorem 1 (Wigner’s Semi-circle Law) For a Wigner matrix, the empirical mea-
sure LN converges weakly, in probability, to the semicircle distribution.
More precisely, Theorem 1 asserts that for any f ∈ Cb(R), and any ε > 0,

lim
N→∞

P (|⟨LN , f⟩ − ⟨σ, f⟩| > ε) = 0.

Define the moments mk :=
〈
σ, xk

〉
. Recall the Catalan numbers

Ck =

(2k
k

)
k + 1

=
(2k)!

(k + 1)!k!

One can easily check, for all integers k ≥ 1,

m2k = Ck, m2k+1 = 0

Lemma 2 βk = Ck < 4k. Further, the generating function β̂(z) := 1 +
∑∞

k=1 z
kβk

satisfies, for |z| < 1/4,

β̂(z) =
1−

√
1− 4z

2z

Figure 1: density of semicircle law

Stieltjes Transform

Definition 3 Let µ be a positive, finite measure on the real line. The Stieltjes transform of
µ is the function

Sµ(z) :=

∫
R

µ(dx)

x− z
, z ∈ C\R

Note that for z ∈ C\R, both the real and imaginary parts of 1/(x−z) are continuous bounded
functions of x ∈ R and, further,

∣∣Sµ(z)∣∣ ≤ µ(R)/|ℑz|. These crucial observations are used
repeatedly in what follows. Stieltjes transforms can be inverted. In particular, one has

Theorem 4 For any open interval I with neither endpoint on an atom (element with nonzero
mass) of µ,

u(I) = lim
ε→0

1

π

∫
I

Sµ(λ + iε)− Sµ(λ− iε)

2i
dλ

= lim
ε→0

1

π

∫
I
ℑSµ(λ + iε)dλ

Theorem 4 allows for the reconstruction of a measure from its Stieltjes transform. Further,
one has the following.

Theorem 5 Let µn ∈ M1(R) be a sequence of probability measures.

a) If µn converges weakly to a probability measure µ then Sµn(z) converges to Sµ(z) for
each z ∈ C\R.

b) If Sµn(z) converges for each z ∈ C\R to a limit S(z), then S(z) is the Stieltjes transform
of a sub-probability measure µ, and µn converges vaguely to µ.

c) If the probability measures µn are random and, for each z ∈ C\R, Sµn(z) converges
in probability to a deterministic limit S(z) that is the Stieltjes transform of a probability
measure µ, then µn converges weakly in probability to µ.

(We recall that µn converges vaguely to µ if, for any continuous function f on R that decays
to 0 at infinity,

∫
fdµn →

∫
fdµ. Recall also that a positive measure µ on R is a sub-

probability measure if it satisfies µ(R) ≤ 1.)

Theorem 6 For z ∈ C such that z /∈ [−2, 2], the Stieljes transform S(z) of the semicircle law
equals

S(z) =

∫
1

λ− z
σ(dλ) =

−z +
√
z2 − 4

2
(1)

Proof We use complex analysis to prove it. Notice that σ(x) = 1
2π

√
4− x2χ|x|≤2. We have

S(z) = − 1

2π

∫ 2

−2

√
4− λ2

z − λ
dλ.

Taking the branch such that ℑ
√
z2 − 4 ≥ 0. Let λ = 2 cos(θ) with θ ∈ [0, π]. Then,

S(z) =
1

2π

∫ π

0

4 sin2 θ

z − 2 cos θ
dθ.

Let u = eiθ, (0 ≤ θ ≤ π). We have

S(z) = − 1

4πi

∮
|u|=1

(u− u−1)2

u2 − uz + 1
du.

There are three poles, which are u± = z±
√
z2−4
2 and u′ = 0. The choice of a branch makes

|u−| < 1 < |u+|. Since

Resu=u− = −
√
z2 − 4 and Resu=0 = z,

by the residue theorem,

S(z) = −2πi

4πi

(
Resu=u− + Resu=0

)
=

−z +
√
z2 − 4

2
□

Proof for Gaussian Wigner Matrices

We prove Theorem 1 when XN is a Gaussian Wigner matrix. Recall Stein’s
identity.

Lemma 7 (Stein) If ξ is a zero mean Gaussian random variable, then for f dif-
ferentiable, with polynomial growth of f and f ′,

E(ζf (ζ)) = E
(
f ′(ζ)

)
E
(
ζ2
)

Define next the matrix ∆
i,k
N as the symmetric N ×N matrix satisfying

∆
i,k
N (j, l) =

{
1, (i, k) = (j, l) or (i, k) = (l, j)

0, otherwise

Then, with X an N ×N symmetric matrix,

∂

∂X(i, k)
SX(z) = −SX(z)∆

i,k
N SX(z)

Therefore,

1

N
E trSXN

(z) =− 1

z
+

1

z

1

N
E
(
trXNSXN

(z)
)

=− 1

z
− 1

z
E

[〈
LN , (x− z)−1

〉2]
− 1

zN

〈
L̄N , (x− z)−2

〉
− 1

zN2

∑
i

((
EY 2

i − 2
)
ESXN

(z)(i, i)2
)

It follows ∣∣∣∣E [〈
LN , (x− z)−1

〉2]
−

〈
L̄N , (x− z)−1

〉2∣∣∣∣ →N→∞ 0.

This, and the boundedness of 1/(z − x)2 for a fixed z as above, imply
the existence of a sequence εN (z) →N→∞ 0 such that, letting S̄N (z) :=
N−1E trSXN

(z), one has

S̄N (z) = −1

z
− 1

z
S̄N (z)2 + εN (z)

Thus any limit point s(z) of S̄N (z) satisfies

s(z)(z + s(z)) + 1 = 0 (2)

For all z ∈ C, with a suitable choice of the branch of the square-root,

s(z) = −1

2

[
z −

√
z2 − 4

]
.

Comparing with equation 1, one deduces that s(z) is the Stieltjes transform of the
semicircle law σ. It follows that SLN

(z) converges in probability to s(z), solution
of equation 2, for all z ∈ C\R. The proof is completed by using part c) of
Theorem 5.
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