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Smooth Manifold

A topological n-manifold M is a topological space that is locally Euclidean of
dimension n and satisfies some other nice properties. This means there are
charts {(Ui, φi) : i ∈ I} such that {Ui} is an open cover for M and φi : Ui → Ûi
is a homeomorphism from Ui to an open subset Ûi ⊆ Rn. To see how M is
locally Euclidean, notice that for any p ∈ M , there exists an open set Ui that
contains p s.t. φi maps Ui homeomorphically onto a subset of Rn.

For a function f : M → R and a chart (U,φ) of M s.t. p ∈ U , we define
the coordinate representation of the function at p by f ◦ φ−1 : Û → R. Since
f ◦φ−1 is a function from a subset of Rn to R, we can perform ordinary calculus on
f ◦φ−1. However, to the coordinate representation f ◦φ−1, it turns out that for any
topological n-manifold M with charts {(Ui, φi) : i ∈ I}, the function φi ◦φ−1

j must
be smooth (infinitely differentiable) for any i, j ∈ I. Topological manifolds that
satisfy this smoothness condition are called smooth manifolds. For a smooth
manifold M , we say that f is smooth at p ∈ M if f ◦ φ−1 is smooth in ordinary
calculus. We denote the vector space of all smooth real-valued functions on M
by C∞(M).

Alternating Tensor

Let V be a finite-dimensional real vector space. A k-tensor on V is a real-valued
multilinear function of k elements of V :

α : V × ...× V︸ ︷︷ ︸
k copies

→ R. (1)

For a k-tensor α, we say that α is alternating if its value changes sign whenever
two of its inputs are interchanged. That is, for any i, j,

α(v1, ..., vi, ..., vj, ..., vk) = −α(v1, ..., vj, ..., vi, ..., vk). (2)

We denote the vector space of all alternating k-tensor on V by Λk(V ∗). When
k = 1, Λ1(V ∗) is just the vector space of linear functionals on V . When k = 0,
Λ0(V ∗) is the vector space of all constant functions, or just R.
An important property of alternating tensor α is that α gives the value zero when-
ever two of its inputs are equal. This is because if vi = vj, then

α(v1, ..., vi, ..., vj, ..., vk) = −α(v1, ..., vi, ..., vj, ..., vk), (3)

which implies α(v1, ..., vi, ..., vj, ..., vk) = 0. Using this property, we can derive
that α gives the value zero whenever its inputs are linear dependent.
For any k-tensor α, we can construct an alternating k-tensor Altα by

Altα(v1, ..., vk) =
1

k!

∑
σ∈Sk

(sgnσ)α(vσ(1), ..., vσ(k)). (4)

where σ is a permutation of n and sgn(σ) is the sign of the permutation.

An important example of alternating tensor is the determinant in linear algebra.
For the space of n× n matrix, the determinant can be regarded as an alternating
n-tensor on the column vector space. That is, we can write det(A) = det(v1, ..., vn)
where vi is the i-th column vector of the matrix A. This is because the definition
of det(A)

det(A) =
∑
σ∈Sn

(sgnσ)

n∏
k=1

akσ(k), (5)

changes sign whenever we interchange its column vectors. Since det(A) is mul-
tilinear on its column vectors, det is an alternating tensor on the column vector
space.
This explains why the determinant can be used as a test for the linear indepen-
dence of matrix: if the column vectors of a matrix are linear dependent, then we
must have det(A) = det(v1, ..., vn) = 0 since det is an alternating tensor.

Vector Space of Alternating Tensors

For an n-dimensional vector space V and a basis (ε1, ..., εn) for the dual space V ∗, we
define εI for each multi-index I = (i1, ..., ik) of length k with ij = 1, ..., n by

εI(v1, ..., vk) = det

 εi1(v1)... ε
i1(vk)

... ...

εik(v1)... ε
ik(vk)

 . (6)

Since det is an alternating tensor, εI is also an alternating tensor, called the elementary
alternating tensor, and it turns out that Λk(V ∗) is finite dimensional with the basis

E = {εI : I is an increasing multi-index of length k} (7)

Because to construct I is to choose an increasing sequence of length k from n elements,
dimΛk(V ∗) =

(n
k

)
.

Differential Form

For a smooth n-manifold M , we can attach a vector space to every point p ∈ M . Such a
vector space is called the tangent space at p, denoted by TpM . Intuitively, for f ∈ C∞(M),
the tangent space at p represents the space of all directional derivatives of f at p, i.e., every
v ∈ TpM is a linear map v : C∞(M) → R. An important fact is that TpM is homeomorphic
to Rn for all p ∈ M .

Now, we can define what differential form is. A differential k-form (or just k-form) ω is
defined to be an alternating tensor field on M . The value of ω at each point p ∈ M is an
alternating tensor ω(p) = ωp ∈ Λk(TpM

∗). For any p ∈ M and a chart (U,φ) that contains
p, because (x1, ..., xn) is a basis for (Rn)∗, E = {xI : I is an increasing multi-index} is a
common basis for all Λk(TqM∗) where q ∈ U . As a result, ω could be locally written as

ω =
∑
I

ωIx
I , (8)

where ωI is the function of the coefficient of each basis vector. We say ω is smooth at p if
ωI is smooth for every I, and the vector space of all smooth k-forms is denoted by Ωk(M).
Notice that a smooth 0-form is just a smooth function, which implies Ω0(M) = C∞(M).

For every smooth map F : M → N , there is a pullback F ∗ : Ωk(N) → Ωk(M) for every k.

Exterior Derivative

For f ∈ C∞(M), we define the differential of f to be

dfp(v) = v(f ). (9)

Therefore, the value of df at p ∈ M is a linear functional dfp on TpM , and df is hence a
1-form (actually df is a smooth 1-form)

The exterior differentiation is a unique linear operator d that sends a smooth k-form to a
smooth k + 1 form for all k, d : Ωk(M) → Ωk+1(M). When k = 0, the exterior differentiation
d(f ) coincides with the differential df . The exterior differentiation can be locally written as

d(
∑
J

ωJdx
J) =

∑
J

dωJ ∧ dxJ . (10)

where the wedge product ∧ is an operator that combines a smooth m-form and a smooth
n-form to produce a smooth (m+n)-form, explicitly defined as (ω∧η)p = (m+n)!

m!n! Alt (ωp⊗ηp).

We say that a smooth differential form ω ∈ Ωk(M) is closed if dω = 0, and exact if there
exists a smooth (k − 1)-form η on M s.t. ω = dη.

De Rham Cohomology

Let M be a smooth manifold. As the exterior derivative d : Ωk(M) → Ωk+1(M)
is linear, its image and kernal are linear subspaces. We define

Zk(M) = Ker(d : Ωk(M) → Ωk+1(M)) = {all closed k-forms}
Bk(M) = Im(d : Ωk−1(M) → Ωk(M)) = {all exact k-forms}

(11)

Then the k-th de Rham cohomology group of M is the quotient vector space

Hk
dR(M) = Zk(M)/Bk(M) (12)

One notable property of de Rham cohomology group is its homotopy invariance.
A direct application of the homotopy invariance tells that if M is a contractible
smooth manifold, then Hk

dR(M) = 0 for every k.
For any smooth map F : M → N , the pullback F ∗ : Ωk(N) → Ωk(M) induces
a linear map called the induced cohomology map from Hk

dR(N) to Hk
dR(M),

also denoted by F ∗. This assignment defines a contravariant functor from the
category of smooth manifolds to the category of real vector spaces.

Mayer-Vietoris Theorem

For a sequence of vector spaces and linear maps

V1
F1→ V2

F2→ V3
F3→ V4

F4→ ..., (13)

we say the sequence is exact if the image of each map is equal to the kernel
of the next, i.e., ImFi = KerFi+1. An important property of exact sequences is

that if the sequence 0
i→ A

f→ B
j→ 0 is exact, then f is a bijection from A to B.

Mayer-Vietoris Theorem is similar to Van Kampen’s theorem in homotopy the-
ory. It states the relationship between the de Rham cohomology group of open
subsets of M and the de Rham cohomology group of M .
Let U , V be open subsets of a smooth manifold M s.t. U ∪ V = M . Consider
the inclusion from U ∩ V to U and V , denoted by iU , iV respectively, and the
inclusion from U and V to M , denoted by jU , jV respectively.
Mayer-Vietoris Theorem states that for each integer k, there exists a linear map
δ : Hk

dR(U ∩ V ) → Hk+1
dR (M) s.t. the following sequence, called the Mayer-

Vietoris sequence for the open cover {U, V }, is exact.

...
δ→ Hk

dR(M)
j∗U⊕j∗V−→ Hk

dR(U)⊕Hk
dR(V )

i∗U−i∗V−→ Hk
dR(U ∩ V )

δ→ Hk+1
dR (M)

j∗U⊕j∗V−→ ...

(14)

Below is an example of how to compute Hk
dR(S

n) for n ≥ 2 using the theorem:
Let U, V be Sn with the north and south pole removed, respectively. Then U, V
are homotopic to Rn, which is contractible, and U ∩ V is homotopic to Rn \ {0},
which is homotopic to Sn−1. Therefore, Mayer-Vietoris Theorem tells us that

0
i∗U−i∗V−→ Hk−1

dR (U ∩ V )
δ→ Hk

dR(S
n)

j∗U⊕j∗V−→ 0 (15)

is exact, which implies Hk
dR(S

n) ∼= Hk−1
dR (U ∩ V ) ∼= Hk−1

dR (Sn−1) for k > 1.
Since we have H1

dR(S
1) = R, this shows Hn

dR(S
n) = H1

dR(S
1) = R.
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Brief Intro to PDEs

Partial Differential Equations (PDEs) are mathematical equations that describe
the behavior of systems involving rates of change with respect to temporal and
spatial variables. Commonly in the form u(x, t), where u is the field variable de-
scribing a value (i.e. temperature in a rod, height of a wave). PDEs relate partial
derivatives like ∂u

∂t = ut or ∂
2u
∂x2

= uxx, showing how systems evolve over time and
space.
PDEs are categorized into linear and non-linear types, Linear PDEs include a
linear combination of the field variable and its derivatives, whereas non-linear
PDEs involve products of the field variable and its derivatives. A few useful equa-
tions include:
Defocusing Non-linear Schrödinger Equation (NLS):

∂ψ

∂t
+
1

2

∂2ψ

∂x2
− k|ψ|2ψ = 0 (1)

The NLS is a fundamental equation used to describe wave packet dynamics in
non-linear media. Fourier Transform (FT) and Inverse Fourier Transform (IFT)

FT: ψ̂(k, t) =
1

2π

∫ ∞

−∞
ψ(x, t)e−ikx dx , IFT: ψ(x, t) =

∫ ∞

−∞
ψ̂(k, t)eikx dk

The Fourier Transform and Inverse are crucial tools for solving the initial value
problem of linear PDE’s such as the linear Schrödinger equation

iψt +
1

2
ψxx = 0, ψ(x, 0) = ψ0(x) (2)

By applying the Fourier Transform to (2) and using the initial condition ψ(x, 0) =
ψ0(x), we get iψ̂t − k2

2 ψ̂ = 0 and ψ̂(k, 0) = ψ̂0(k), which is a simple ordinary

differential equation. The solution to this ODE is ψ̂(k, t) = ψ̂0(k)e
−ik

2

2 t. Then, by
plugging this into the IFT equation, we find our solution:

ψ̂(k, t) =
1

2π

∫
R
ψ0(k)e

ik(1−k
2t)dk.

Lax Pairs

Lax Pairs [2] provide a framework for integrable systems, enabling the derivation
of PDEs such as the Korteweg–De Vries equation, Nonlinear Schrödinger equa-
tion, Sine-Gordon equation, and more [1, pp. 9-15]. We define the commutator
as [U, V ] = UV − V U , and the Lax pair for our system is given by:

∂w

∂x
= Uw,

∂w

∂t
= V w (3)

where the spatial linear operator U and the temporal spectral operator V are:

U(x, t;λ) =

[
−iλ ψ
ψ∗ iλ

]
, (4)

V (x, t;λ) =

[
−iλ2 − i12|ψ|

2 λψ + i12ψx
λψ∗ + i12ψ

∗
x iλ2 − i12|ψ|

2

]
, (5)

such that λ is a complex spectral parameter. By cross-differentiating (3), we
obtain the zero-curvature condition, which leads to the defocusing Nonlinear
Schrödinger equation [1, p. 9]:

∂U

∂t
− ∂V

∂x
+ [U, V ] = 0

This equation is satisfied if ψ(x, t) solves the NLS equation. In the framework of
scattering theory, λ determines the behavior of solutions at infinity. The scatter-
ing data, which consist of the reflection and transmission coefficients, depend on
λ. These coefficients capture information about how the potential ψ(x, t) affects
incoming waves, with different values of λ providing details of the scattering pro-
cess. Additionally, λ relates to the kernel in the Volterra integral equations used
in the inverse scattering transform. The generalized Jost solutions, u(x;λ) and
v(x;λ), can be expressed in terms of the integral kernel K(x, z;λ) as shown in
the next block.

Inverse Scattering Transform For NLS

The Inverse Scattering Transform (IST) is a method used for solving certain nonlinear
PDEs by evolving scattered data over time. By using the boundary condition properties, we
can invert back to the original potential, hence finding a solution to the nonlinear PDE. To
facilitate this transformation, we use Jost Solutions, which help determine the scattering
data a(λ) and b(λ). These solutions satisfy the linear Schrödinger equation with boundary
conditions approaching limits as |x| → ∞:

J_(x;λ) =

[
e−iλx 0

0 eiλx

]
as x→ −∞

J+(x;λ) =

[
e−iλx 0

0 eiλx

]
as x→ ∞

We note that both J± are non-singular matrices. Jost solutions, J_ and J+ have linearly
independent columns; however, all four solutions are not independent of each other.[3, p.
5] Since J+ and J_ form a basis of the space of solutions, we can write them as a linear
combination of each other.

J+ = J_S(λ) ⇐⇒ J_ = J+S
−1(λ)

In particular, J (1)_ (x;λ) = a(λ)J
(1)
+ (x;λ) + b(λ)J

(2)
+ (x;λ). If we divide both sides by a(λ) we

have a solution

w(x;λ) = J
(1)
+ (x;λ) +R(λ)J

(2)
+ (x;λ)

where we define R(λ) = b
a(λ) and T (λ) = 1

a(λ)
which is defined as the reflection and

transmission coefficients. Moreover, the reflection coefficient evolves in time: R(λ; t) =
R(λ, 0)e2iλ

2t. We now focus on the direct transform, found in [3, p. 5].
Definition: (Direct Transform) For a suitable function ψ : R → C decaying as |x| → ∞ ,
then the direct transform for the defocusing Nonlinear Schrödinger equation is the mapping
of ψ 7→ R associating to ψ its reflection coefficient R = R(λ), λ ∈ R
Schematic of the methodology behind Fourier Transform and IST of linear and non-
linear PDE’s.

The direct transform gathers scattering data, such as a(λ) and b(λ) which ultimately yields
the reflection coefficient, R(λ). We then can solve the Volterra integral equations for the
generalized Jost solutions:

u(x;λ) = 1 +

∫ −∞

x
e2iλyψ(y)v(y;λ)dy , v(x;λ) =

∫ −∞

x
e2iλyψ(y)∗u(y;λ)dy

Solving for u(x, λ) and obtain the following kernel,

u(x;λ) = 1 +

∫ −∞

x
K(x, z;λ)u(z;λ)dz

K(x, z;λ) = ψ∗
∫ x

z
e2iλ(y−z)ψ(y)dy, x > z

When solved, we can recover the potential, ψ from the direct scattering, analogously to the
Fourier Transform. Thus we end up with the following relationship by the IST.[1, p. 20-24]

ψ(x, t) = −2K(x, x;λ)

Alternatively, we can use IST via the Riemann-Hilbert Problem, equivalent to solving the
integral equations above.

Riemann-Hilbert Problem

Our specific Riemann-Hilbert problem asks us to find a matrix M ∈ R2x2 such
that M is: Analytic for λ ∈ C \ R, satisfies the jump condition matrix, D, and
has a normalizing condition limλ→∞M(λ;x, t) = I. Thus, by combining our Jost
solutions into a matrix M such that the upper and lower blocks extend into the
upper and lower half-planes respectively, we have

M+(λ;x) =
[
eiλx

a(λ)
J
(1)
− e−iλxJ (2)+

]
for ℑ(λ) > 0,

M_(λ;x) =
[
eiλxJ

(1)
+

e−iλx
a(λ)

J
(2)
−

]
for ℑ(λ) < 0.

Note that M is a single matrix and each Jost solution component is scaled by
e±iλx to maintain detM(λ;x) = 1.

Lemma : (Analyticity of M(λ;x) [3, p. 14]): For every x ∈ R, the elements
of the matrix M(λ;x) are all analytic functions of λ for ℑ(λ) ≥ 0.
However, we get a jump condition as λ approaches the real axis from both the
upper and lower imaginary planes. According to [3, p. 14-15], we define the
following where λ ∈ R, M±(λ;x) := limϵ↓0M(λ± iϵ;x).
Since Jost solutions can be written as a linear combination of each other, we
also have

M+(λ;x)

[
1

−e2iλxba(λ)

]
=M_

[
1
0

]
, M+(λ;x)

[
1
0

]
=M_

[
−e−2iλxb∗

a∗(λ)
1

]
which can be rewritten as

M+(λ;x)

[
1 0

−e2iλxba(λ) 1

]
=M_

[
1 −e−2iλxb∗

a∗(λ)
1 0

]
By multiplying by the inverse of the right matrix on the left-hand side, we get the
relationship for M+(λ;x)

M+(λ;x) =M_(λ;x)D(λ;x)

where the jump matrix D(λ;x) is

D(λ;x) =

[
1− |R(λ)|2 −e−2iλxR(λ)∗

e2iλxR(λ) 1

]
We find the solution, ψ(x, t) by differentiating the second column of M with re-
spect to x, ∂

∂xM
(2)(λ, x). From (3), we have

M
(2)
x =

[
−2iλ ψ
ψ∗ 0

]
M (2) =⇒ ψ(x, t) = 2i lim

λ→∞
M12(λ;x, t)

Therefore, whether we use the Riemann-Hilbert problem, or the integral equa-
tions using techniques such as Neumann series to solve for u and v to collect
scattering data, we can successfully return the potential ψ(x, t) from the evolved
scattered data.
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Introduction

A complexity class consists of a set of computational problems (languages) adhering to
a rule. The difficulty of computational problems can be classified by the complexity
classes they lie in; they help us understand which problems are tractable and which
require more resources. Classical complexity classes consist of problems that use Turing
Machines (TMs). We list below some relevant classical complexity classes.

Let L be a language. We write poly(n) to refer to any polynomial in n, and D as the
uniform distribution over {0, 1}poly(n). We assume any TM to have binary output, 0
(rejecting) or 1 (accepting).

L ∈ P iff there exists a poly‐time TMM such that M(x) = 1 iff x ∈ L.
L ∈ NP iff there exists a poly‐time TMM such that for all x, there exists a certificate
y ∈ {0, 1}poly(n), M(x, y) = 1 iff x ∈ L.
L ∈ BPP iff there exists a poly‐time TMM such that for Prr∼D[M(x, r) = 1] ≥ 2

3 if
x ∈ L and Prr∼D[M(x, r) = 1] ≤ 1

3 if x ̸∈ L.
L ∈ #P iff L is a function mapping an input x of a poly‐time non‐deterministic TMM
to the number of accepting paths ofM(x). In other words, L is a function mapping x
to |{r ∈ D : M(x, r) = 1}|.
L ∈ PP iff there exists a poly‐time TMM such that Prr∼D[M(x, r) = 1] > 1

2 if x ∈ L

and Prr∼D[M(x, r) = 1] < 1
2 if x ̸∈ L.

L ∈ P‐SPACE iff there exists a poly‐space TMM such that M(x) = 1 iff x ∈ L.
L ∈ EXP iff there exists a exponential‐time TMM such that M(x) = 1 iff x ∈ L.

It is believed that quantum computation is more powerful than classical computation,
giving rise to quantum complexity classes. These classes consist of problems that use
Quantum Circuits (QCs). Thus, we are interested in the limits of quantum computation:
which problems can and cannot be solved efficiently by quantum computers? The com‐
plexity classBQP aims to capture problems that quantum computers can solve efficiently.
We first formally define BQP, and then reason about where it stands in relation to the
classical complexity classes.

Bounded-Error Quantum Polynomial-Time (BQP)

Similar to the notion of the classic complexity class BPP, we define the quantum com‐
plexity class BQP. We say a family of QCs {Ck} is poly‐time uniform there exists a
poly‐time TM which given k, outputs a description of Ck.

L ∈ BQP iff there exists a family of poly‐time uniform QCs {Cx} with O(poly(n))
gates (n = |x|) such that the probability that the first qubit of Cx |0⟩poly(n) is 1 is at
least 2

3 if x ∈ L and is at most 1
3 if x ̸∈ L.

Oracles

Many times, for two complexity classes C1 and C2, it can be hard to prove or disprove
any relation between them directly. However, we can sometimes show these classes are
separate with respect to an oracle.

Formally, an oracle O is just a language, i.e. a set of binary strings. A black‐box function
is a function whose output can be computed in a single time‐step without any other
knowledge of the function. An oracle TM or oracle QC with an access to an oracle O
is a TM or QC given access to a black‐box function f which computes if any binary
string lies in O. For any complexity class C that is defined in terms of Turing machines,
we obtain the definition of the complexity class CO by replacing, in the definition of
C, every occurrence of “TM” (or “QC”) with “oracle TM (or QC) with access to O”. For
example, we can think of NPO as the following.

L ∈ NPO iff there exists a poly‐time oracle machineMO with access to O such that
for all x, there exists a certificate y ∈ {0, 1}poly(n) such that MO(x, y) = 1 iff x ∈ L.

Similarly, we define P#P to be the class of all languages decidable by a poly‐time TM
furnished with the ability to solve any problem in #P in unit time.

So, sometimes, we are unable to show C1 ̸⊆ C2 yet we can show there exists an oracle
O for which C1O ̸⊆ C2O. Note this second statement does not imply the first, but only
gives us “evidence” towards believing the first may be true.

P

NP

BPP

BQP

PH

PP

P#P

P‐SPACE

EXP

P ⊆ BPP ⊆ BQP, as any poly‐time TM can be written as a poly‐time QC.

As any quantum circuit can be classically simulated in
time exponential to its input, we have BQP ⊆ EXP

NPO ̸⊆ BQPO.
Consider the black‐box search problem:

In: A function f : {0, 1}n → {0, 1} as a black‐box
Of , where Of(x) = f (x) and Of |x⟩ = (−1)f(x) |x⟩.
Out: 1 iff ∃x ∈ {0, 1}n s.t. f (x) = 1.

Notice if for every f in the language, we set y to be
such that f (y) = 1, then the TM M that takes in (f, y)
and returns the query from f (y) solves the problem in
the NP definition with black‐box access.
For BQP, we start by claiming claim any QC solving
the black‐box search problem for any general function
f needs to query Of at least Ω(2n/2) times. Let v⃗ ∈
{0, 1}2n be such that v⃗x = f (x) for x ∈ {0, 1}n. Notice
we want to compute ∨xv⃗x (logical OR).
Theorem: If we use T queries to compute ∨xv⃗x, then
there exists a polynomial p with degree 2T such that

|p(v⃗) − ∨xv⃗x| ≤ 1
3.

Proof: We can write our QC as UTOfUT−1 . . . U1OfU0,
where each Ui is a unitary. We start by induction,
to show each amplitude of the state after k queries
is a polynomial in v⃗ of degree k. The base case is
clear. Suppose after k queries, the state of our QC
is

∑
y∈{0,1}n

αk
y |y⟩ where αk

y are polynomials of degree k

in v⃗y. Before the k + 1 query, our QC will apply some
unitary operation Uk, which will preserve the degrees
of αk

y and make them some new αk
y . We will then ap‐

ply our black‐box function Of to get

Of

∑
y

αk
y |y⟩ =

∑
y

(−1)f(y)αk
y |y⟩ =

∑
y

(1 − 2v⃗y)αk
y |y⟩

So, the induction holds. Now, notice if we let p be
Pr[1st qubit = 1], then p =

∑
1y′ |αk

1y′|2, which is a poly‐
nomial in v⃗ of degree 2T . Thus, the theorem holds as
p is the output of the QC computing OR.
Fact: Any polynomial approximating OR needs degree
Ω(2n/2). This can be proven with symmetrization and
the Markov brothers’ inequality.
This tells us, for some QC C to solve this problem in
general for any function f , it needs Ω(2n/2) queries.
This gives us a black‐box lower bound for BQP, and
ultimately tells us NPO ̸⊆ BQPO.

BQPO ̸⊆ NPO.
Consider Simon’s problem:

In: f : {0, 1}n → {0, 1}n as a black‐box Of , where
Of(x) = f (x) and Of |x⟩ |y⟩ = |x⟩ |y ⊕ f (x)⟩.
Out: 1 if ∃s ∈ {0, 1}n \ {0n} s.t. f (x) = f (y) and
x ̸= y ⇐⇒ x = y ⊕ s, or 0 if f is one to one.
We are promised f falls into one of those two
cases.

It is known Simon’s problem does not give any oracle
separation between BQP and NP. Let’s define Co‐
Simon’s problem as Simon’s problem with the outputs
flipped (output 1 iff f is one to one).
Notice Co‐Simon’s problem has a BQP circuit with
black‐box access (by flipping the outputs of the BQP
circuits for Simon’s Problem). However, Co‐Simon’s
problem cannot be solved in the NP definition with
black‐box access across all functions f :
Assume for contradiction there is some poly‐time TM
M such that for all promised functions f , there ex‐
ists a certificate y ∈ {0, 1}poly(n) such that M(f, y) =
1 ⇐⇒ f is one‐to‐one. We know M makes some
T = O(poly(n)) queries on inputs (q1, . . . , qT ) to Of

so it knows s cannot be
(

T
2
)
different numbers. Yet, s

can be exponentially (2n − 1) many numbers, so we
can construct an f ′ with f ′(x) = f ′(x ⊕ s) where
f ′(qi) = f (qi). Since M is deterministic, M(f ′, y) = 1,
which is a contradiction as f ′ is not one to one.
Notice by this contradiction, we also realize M must
make T = Σ(2n/2) queries for

(
T
2
)

≥ 2n − 1. This gives
us a black‐box lower bound for NP, and ultimately
tells us BQPO ̸⊆ NPO.

BQP ⊆ P‐SPACE.
Let L ∈ BQP and let x be our input. We make
the following poly‐space TM:
For each y ∈ {0, 1}n−1, we compute αP for
each Feynman Path P ∈ P|1y⟩ of Cx and sum
them, discarding old values. We square each
sum, and add it to a rolling sum over the y’s, dis‐
carding old values. Notice we have computed∑
y∈{0,1}n−1

∣∣ ∑
P∈P|1y⟩

αP

∣∣2 in poly‐space. We output
x ∈ L iff our sum over 2H is at least 2/3.

BQP ⊆ PP.
Let L ∈ BQP and let x be our input. We make
the following poly‐time TM:
Compute two Feynman Paths P, αP and P ′, αP ′

of Cx at random (in poly‐time). If P and P ′ do
not end in the same state, flip a coin for the
output. Else, P, P ′ ∈ P|by⟩, b ∈ {0, 1}. Output
x ∈ L iff (−1)(1−b)αPαP ′ > 0. Notice we output
1 iff the two paths contribute towards a higher
Pr[1st qubit = 1], so our probability of guessing
right is greater than 1/2. Thus, L ∈ PP.

BQP ⊆ P#P.
Let L ∈ BQP and let x be our input. Define
#+1, #−1 to be the number of Feynman Paths
P, P ′ ∈ P|1y⟩ in Cx such that αPαP ′ = 1, −1
respectively. We have Pr[1st qubit = 1] =
1

2H (#+1 − #−1). Notice as calculating αPαP ′ for
two paths P, P ′ takes polynomial time, so find‐
ing #+1, #−1 is in #P. Thus, let our machine
take x as input, find #+1, #−1 with oracle calls,
and output 1 iff 1

2H (#+1 − #−1) ≥ 2
3. It follows

L ∈ P#P.

Feynman Paths

A common trick when working with arbitrary poly‐time QCs is to decompose them into
an equivalent poly‐time QC only consisting of Hadamard and Toffoli gates.

A Feynman Path of a circuit is the path starting at some initial state and ending at a final
state, with some amplitude. When the circuit composed solely of Hadamard and Toffoli
gates, each state does not split, or either splits into two paths of equal magnitude.

|0⟩ H

|1⟩ H

|0⟩

|010⟩

1√
2 |110⟩

−1
2 |110⟩ −1

2 |111⟩+‐
1
2 |100⟩ 1

2 |100⟩++
+

1√
2 |010⟩

−1
2 |010⟩ −1

2 |010⟩+‐
1
2 |000⟩ 1

2 |000⟩++

+

For a quantum circuit C in BQP, its output depends on the probability of the first qubit
being in state |1⟩. Let P|x⟩ be the set of Feynman Paths ending in state |x⟩, let αP = ±1
be the sign of a path P and let H be the number of Hadamards in C . We have

Pr[1st qubit = 1] =
∑

y∈{0,1}n−1

∣∣∣∣ 1√
2H

∑
P∈P|1y⟩

αP

∣∣∣∣2 = 1
2H

∑
y∈{0,1}n−1

∑
P,P ′∈P|1y⟩

αP αP ′.

Feynman Paths are incredibly useful in understanding and simulating QCs.

From Black-Box Lower Bounds to Oracle Separations

Let L ⊆ F be some language, where F is a set of black‐box functions. Let’s say there is
some poly‐time TM which solves this problem in the NP definition across all f ∈ F , but
for all QCs solving this problem across all f ∈ F , they need some exponential number
of queries to the black‐box. We can show an oracle separation between NP and BQP:

We know for all poly‐time QC C solving this problem, they can only make polynomially
many queries. By the lower bound, for each poly‐time C , there are infinitely many func‐
tions f of large enough size, whichC fails on. As QCs are enumerable, for each poly‐time
QC C , pick a function fC (that foils C) of unique size. Let L′ = {1|f | | f ∈ L} and letO be
the set of f that were picked. Notice that L′ ∈ NPO by our poly‐time TM that can solve
the black‐box problem across all f ∈ F . Yet, L′ ̸∈ BQPO as for each poly‐time QC C ,
there is some f in the language which C fails on. Thus, we have shown NPO ̸⊆ BQPO.

Notewe can switchNP andBQP above (switching TMs andQCs) to argueBQPO ̸⊆ NPO.
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What is a knot?

Imagine a knot. What might come to your mind is the bow of a shoelace. This is a
knot in the traditional sense, but it is not a mathematical knot. Now imagine that the
string has arbitrarily small thickness and the ends of the shoelace are fused together
so that the string forms one tangled loop. Now, this is a mathematical knot.

Definitions

Knot: A circle embedded in R3

Knot diagram: A projection of a knot onto R2 that includes crossing information of
the knot. A crossing is a point whose preimage under the projection has two points;
whichever point is closer to the projection is the crossing information.

Some knots look different but they are just deformations of each other. We say that
two knots are equivalent if they can be deformed to each other by an ambient isotopy.

Ambient isotopy: A continuous deformation of a knot that does not intersect itself
Knot invariant: A property of a knot that does not change under ambient isotopy

Figure 1: A sequence of ambient isotopies on a knot diagram
With respect to some fixed projection, ambient isotopy can be categorized into de-
formations that do not affect the crossings and three deformations that do, the Reide-
meister moves:

Figure 2: The Reidemeister moves

A knot diagram is reduced if it is a diagram with the least number of crossings
possible.
Connect sum: The connect sum J +K of two knots J and K is obtained by cutting
an arc from each knot then connecting the newly made endpoints.

Figure 3: Connect sum of two knots.

Prime knot: A knot which cannot be obtained as a connect sum of nontrivial knots

Mazur Swindle: J +K = 0 if and only if one of J = 0 or K = 0.
Prime decomposition (Schubert): Every knot decomposes into a unique connect
sum of primes.
Corollary: The set of knots with the operation of connect sum (the knot monoid) is
a free N-module generated by the prime knots isomorphic to

⊕
i∈NN.

Thus finding a basis for the knot monoid amounts to tabulating the prime knots. So,
we aim to tabulate prime knots.

See our repository here!

Dowker code

Dowker code: A way to describe a knot diagram. Take a knot diagram with n crossings. Pick
a starting crossing and traverse around the knot, labeling each crossing from 1 to 2n until you
have returned to where you started. This will always pair odd numbers with even numbers on
crossings. Thus we denote a Dowker code by a list of even numbers in order of the size of their
corresponding odd number.

Figure 4: Constructing a Dowker Code the 63 knot

Consider the inverse problem: Obtaining knots from Dowker codes. It is possible that a Dowker
code is unrealizable. That is, it cannot actually be made into a knot because it implies an extra
crossing.

Figure 5: [8, 6, 10, 4, 2] is unrealizable

Theorem (Dowker-Thistlewaite): A realizable Dowker code specifies a unique knot, up to
reflection.

Notice that this correspondence is far from injective. For instance, there are 4n ways to obtain a
code from a knot projection with n crossings.

Figure 6: Two different codes for the square knot

Alternating knots

Alternating knot: A knot that has an alternating knot diagram. The Dowker notation usually
includes signage on crossings, but for alternating knots, every crossing is positive. According
to Tait’s Flyping Theorem, which was proved in 1991, all projections of a prime, reduced,
alternating knot are related through a sequence of moves called flypes.

Because of this theorem, we decided to focus on tabulating prime alternating knots.

A tangle is an area within a knot that when enclosed with a dotted line, the dotted
line is crossed by the string exactly four times.
A flype involves the movement of two connected parts: a crossing and a tangle.

Figure 7: A flype on a tangle T

Outline of Tabulation

Because of Tait’s Flyping Theorem, to tabulate alternating knots with n crossings we
generate all Dowker codes of up to length 2n and eliminate ones that don’t satisfy:

1. The code is realizable
2. The code is lexicographically minimal among equivalent codes
3. The code specifies a reduced prime knot
4. The knot diagram specified by the code cannot be obtained by flyping a knot

diagram whose code is preferred according to the previous criteria

Tabulating alternating knots

Step 1:
To ensure realizability, we represent a knot diagram as a graph by replacing each
crossing with a square of four nodes, and remove those codes for which this graph
is nonplanar.

Step 2:
We conventionally choose the lexicographically minimal Dowker code as a repre-
sentative for each isotopy class, and remove all other equivalent codes. For example,
from Figure 6, the abbreviated code of the right diagram [4, 6, 8, 2] is preferred to
that of the left [6, 8, 2, 4].

Step 3:

Figure 8: Subsequences in a Composite Knot

Notice that the Dowker codes of
composite knots can be separated
into two separate subsequences rep-
resenting their two factors. Thus,
we remove any code exhibiting such
subsequences.
This also removes all possible Type
I Reidemeister moves as a loop will
be detected as a single crossing sub-
sequence.

Step 4:
We perform all possible flypes on the diagrams corresponding to each Dokwer code
to identify equivalent codes. The tangle-crossing pair of a flype is identifiable by
two sequences of numbers and is followed by a crossing. (See crossings 2, 3 and
crossing 1 in Figure 4.)
To execute a flype on a knot, we again convert the knot to a graph. Next, we cut out
the subgraph corresponding to a tangle-crossing pair, rotate it and reattach it to the
graph. Finally, we reconstruct the Dowker code from the resulting graph.

Figure 9: The 63 knot (left), flyped to an equivalent knot through this process
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The Vision

When Alan and I had our first meeting, we came up with a vision of a generative music AI
that could take a well known composer as input and generate a few seconds of classical
music of that composers style. While exciting, that is a huge project and to get started we
needed to come up with something a little more doable. So as the first stepping stone in
this vision was to be a neural network that could be trained to identify the instrument in an
audio clip.

The Data

The data I chose for this project came from Universitat Pompeu Fabra and was compiled by
Ferdinand Fuhrmann for his PhD thesis. It contains, "6705 audio files in 16 bit stereo wav
format sampled at 44.1kHz." [1] Each recording is 3 seconds long and is labeled by the
predominant instrument in each sound. The instruments are: cello, clarinet, flute, acoustic
guitar, electric guitar, organ, piano, saxophone, trumpet, violin, and human singing voice.

The Melspectrograms

For our model to be able to work with the input we needed to convert each of the wav
files to some collection of numbers. The most common practice is transforming audio to
images. Below is a sequence of images for the same two audio files, where the first audio
files contains flute as the predominant instrument and the second contains electric guitar
as the predominant instrument. First we take a look at the raw signal.

We use the Fourier transform to get a better understanding of which frequencies are
present for each of the instruments.

And finally the melspectrograms. A spectrogram is a plot of time vs frequency. A brighter
color means a greater amplitude/presence of that frequency at that time. Fun fact: hu-
mans perceive sound logarithmically, which means that "we can easily tell the difference
between 500 and 1000 Hz, but we will hardly be able to tell a difference between 10,000
and 10,500 Hz."[2]

The Convolutional Neural Network

What is a neural network?

To understand out instrument recognition model, we must first understand
what a neural network is. In the simplest terms, it is a machine learning
model that is modeled after neurons in the brain. (Is it actually a good
representation of how the brain works? Not particularly, so I wouldn’t be
too worried about this model taking over the world anytime soon.)
The basic skeleton of a neural network is a series of layers of nodes. In
the example below, we have one input layer of size 3, three hidden layers
each of size 4, and one output layer of size 2.

Each node receives information from the nodes of the previous layer, ma-
nipulates that data in some way and then passes that information on to the
next layer of nodes. Using a loss function and back propagation the neural
network is able to adjust the way each node manipulates the data so that
the neural network can improve its prediction.

What is a convolutional neural network?

A neural network with convolutional and pooling layers. The purpose of a
convolutional layer is to extract features. We take segments of the matrix
at a time and perform some kind of operation on just those entries. To il-
lustrate, a basic example would be looking just at the top left 2 by 2 matrix
in the image, taking a linear combination of those values and storing that
in a new matrix. Then shifting by one column to the right and repeating this
procedure until you repeat that on every submatrix of size 2 by 2 of that
image.
The purpose of a pooling layer is to reduce the size of the image and as
a result summarize the data a little bit. An example would be similar to
the convolutional layer example above but instead of taking a linear com-
bination, simply taking the average or the maximum of the values in those
submatrices.
Note that there are weights in the convolutional layer that are adjusted
throughout the training process while there are no weights in the pooling
layer.

Structure of our neural network

Our CNN is made up of four convolutional layers all with kernel size 3, the
first taking in an image with one channel and outputting an image with 16
channels, the second taking in an image with 16 channels and outputting
an image with 32 channels. The third convolutional layer output an image
with 64 channels and the last layer outputs an image with 128 channels. In
between each pair of convolutional layers, we have a ReLU layer (a type of
linear activation function) and a pooling layer with kernel size 2. The final
layer in the CNN is to unravel the image into a one dimensional array to
feed through a linear layer. First iteration of model was based on example
by Syed Abdul Gaffar Shakhadri [3]

Plot of the Loss

The left graph below shows the result of training the model using batch size 16. This
caused the huge variance in test loss and the adjustment for this problem was set-
ting the batch size to 128. The right graph below shows the result of overfitting. We
had hoped that the issue of overfitting would disappear once we started using the
entire dataset. Unfortunately it did not so the next steps we took were to introduce
dropout layers after every pooling layer which randomly chooses channels to zero out.

To better illustrate the predictions of our model, below are three probability plots. We
randomly chose three data points from the testing dataset. The first data audio file had
piano, the second had a trumpet, and the third had a violin, had the model predict which
instrument it believed was predominant and scaled the prediction array to get a probabil-
ity distribution. As we can see, the model did pretty well.

Next Steps

Moving forward, I would be interested in using a dataset of classical music and starting
with this pretrained model that is already familiar with music files to see how well a CNN
could predict the composer based off a few second clip of a composition. And from there
we could start thinking about building a generative music AI that could take the name of
a famous composer and create a few second audio clip of a new composition.
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A Brief History of the Ionian Scale

The Ionian scale, known today as the major scale, originated in ancient Greek
music and became a cornerstone of Western music due to its bright and harmo-
nious sound. Today, the major scale remains fundamental in classical, pop, rock,
and jazz music, underscoring its timeless and universal appeal. Out of all the 792
seven-note scales, we set out to find what makes Ionian unique.

Fundamentals of Music Theory

What is a Scale? A musical scale is a sequence of notes arranged in ascending
descending order of pitch within an octave. Scales form the foundation of musical
compositions and are used to define the tonality of a piece of music. Each scale
is made up of notes that follow a specific pattern of intervals, which are the tonal
gaps between the notes.

The Perfect 5th is an interval between 2 notes within the 7-note scale and is con-
sidered highly consonant, meaning it sounds stable and pleasant to the ear. This
consonance is due to the simple frequency ratio of 3:2 between the two notes,
which creates a sense of balance and resolution, making it the most important
interval in music. For example, G is the perfect 5th of C.

When looking for the scale that sounds the best, we turn our attention to a scale
that has the maximum amount of perfect 5th. This narrows down our search
to 7 scales commonly known as, Ionian, Dorian, Phrygian, Lydian, Mixolydian,
Aeolian, and Locrian; referred to as the modes.

Monoids

The free monoid generated by {x, y}, denoted as {x, y}∗, is the set of possible
finite sequences of x and y and these finite sequences are called strings. {x, y}∗
is closed under the concatenation of strings and contains the identity, the empty
string.
We can represent each musical mode as a sequence of intervals, with each inter-
val either ascending by one or two notes. For example, the Ionian mode can be
represented as ′aabaaab′ where a denotes ascent of two notes and b denotes an
ascent of one note. When expressed in this way, each mode is simply a rotation
of the others in the sequence.

Christoffel Words

The notation a⊥b refers to a and b being relatively prime. Suppose a, b ∈ N and a⊥b. The lower
Christoffel path of slope b

a is the path from (0, 0) to (a, b) in the integer lattice Z× Z that satisfies
the following two conditions.

(i) The path lies below the line segment that begins at the origin and ends at (a, b).

(ii) The region in the plane enclosed by the path and the line segment contains no other points
of Z× Z besides those of the path.

The following diagram represents the upper and lower Christoffel words of slope 4
7 which are

′yxyxxyxxyxx′ and ′xxyxxyxxyxy′ making them strings in {x, y}.

Definition: Two elements w and w′ of {a, b}∗ are conjugate if and only if there exist words u and
v such that w = uv and w′ = vu.

In the illustration below, our words (or scales) are just rotations of each other. This is the case for
all conjugates in the free monoid {a, b}∗. Moreover, in the free group, {a, b}, the set of all reduced
words on the alphabet {a, b, a−1, b−1} and the inverse of any word is constructed by taking the
reverse spelling and inverting each element. For example, (aab)−1 = b−1a−1a−1.

Sturmian Morphisms

Definition: A Sturmian Morphism is a monoid homomorphism {a, b}∗ → {a, b}∗ that sends
every Christoffel word to a conjugate of a Christoffel word. The set of Sturmian morphisms forms
a monoid under function composition. We denote the monoid of Sturmian morphisms by St.

If A ∈ St and z1z2...zn ∈ {a, b}∗, then A(z1z2...zn) = A(z1)A(z2)...A(zn) such that any Sturmian
Morphism of {a, b} is determined by the images of a and b so we identify A with the ordered pair
(A(a), A(b)).

Generation of Scales: Using the notation above the monoid, St, of Sturmian morphisms is
generated by the following Sturmian Morphisms.

G = (a, ab), G̃ = (a, ba), D = (ba, b), D̃ = (ab, b), E = (b, a)

Special Sturmian Morphisms

An important sub-monoid of this, St0, is the monoid generated by G, G̃, D and
G̃(note the absence of E). St0 is called the moniod of special Sturmian Mor-
phisms, and these play a distinguished role in the Divider Incidence Theorem.

Divider Incidence Theorem: In the conjugacy class of a Christoffel word of
length n, there are n − 1 words that can be obtained as images f (ab) = f (a)(b)
= f (a)f (b) of the initial word ab where f ∈ St0. We separate this word f (ab) into
factors giving us a divided word f (a)|f (b).

Conclusion

The following table gives the six possible diatonic words (or scales) that can be
obtained through our special Sturmian Morphisms. We should notice that there
is one conjugate missing from this list, which is the Locrian mode, otherwise
known as ’E’, represented by ′(baab)|(aaa)′. This is the only conjugate that
cannot be generated by f (ab) with f ∈ St0, which we call the ’bad conjugate.’

Out of the generators of St0 we can determine that D and G best preserve the
scale integrity. So when choosing a scale out of the 6 modes that are generated
by St0, we would choose the scale generated by D and G, which is Ionian. So,
through Christoffel words and Sturmian Morphisms, we can fully characterize
Ionian as the universally best 7-note scale.
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Derivation of the Model

Let Ω ⊂ Rd be a domain occupied by a viscous fluid. Denote by X(·, t) : Ω → Ω, a 7→ X(a, t), the flow map; u(x, t) =
(u1(x, t), . . . , ud(x, t)) the velocity field; ρ(·, t) the density scalar function; V a volume element in the fluid.

Fluid assumptions: incompressible (∇ · u = 0); homogeneous (ρ is constant in space).

Physical Laws:
• Conservation of mass: ρ is constant in time, so ρ is just a constant ρ0.

• Newton’s second law of motion: ∫
X(V,t)

ρ0(∂tu + u · ∇u)dx =

∫
X(V,t)

−∇p + ν∆udx

where p is the pressure of the fluid, ν is the dynamic viscosity and n is the outward unit normal to ∂X(V, t)
Thus, we have

∂tu + u · ∇u +
1

ρ0
∇p− ν

ρ0
∆u = 0.

We address the existence and uniqueness of solutions on T2 = [0, 2π]2 with periodic boundary conditions. We take ρ0 = ν = 1
as these constants don’t contribute to the analysis of the problem.

Weak Solutions

We say that u is a weak solution to the 2D periodic Navier-Stokes equations if∫
[0,∞)×T2

(u · ∂tϕ + u ·∆ϕ + u · (u · ∇ϕ))dxdt =

∫
T2

u(0, x) · ϕ(0, x)dx

for all ϕ ∈ C∞
0 ([0,∞)× T2) such that ∇ · ϕ = 0, and ∫

T2
u · ∇ϕdx = 0

for all ϕ ∈ C∞
0 (T2).

Main Theorem

Let u0 ∈ L2 be divergence-free and mean-free. The 2D periodic Navier-Stokes equation has a unique global weak solution
with regularity u ∈ L∞(0,∞;L2(T2)) ∩ L2(0,∞;H1(T2)).

Proof of the Existence of Solutions

The proof is divided into several steps:
Step 1. Consider the mollified Navier-Stokes equations

∂tu
ε + Jεu

ε · ∇uε −∆uε +∇pϵ = 0

uε(x, 0) = Jεu0,∇ · uε = 0,

where Jε is a standard mollification operator. For each ε ∈ (0, 1), this mollified system has a global unique smooth solution.
This follows from the contraction mapping principle.
Step 2. In view of the divergence-free condition obeyed by Jεu

ε, the following cancellation law∫
T2

Jεu
ε · ∇uε · uεdx = 0

holds, and consequently, uε obeys the energy equality

1

2

d

dt
∥uε∥2

L2 + ∥∇uε∥2
L2 = 0.

Integrating in time from 0 to t, we obtain

∥uε(t)∥2
L2 + 2

∫ t

0
∥∇uε(s)∥2

L2ds ≤ ∥u0∥2L2

and deduce that {uε}ε∈(0,1) is uniformly bounded in L2(0,∞;H1(T2)) and L∞(0,∞;L2(T2)).

Proof of the Existence of Solutions

Step 3. We denote by P the Leray-Hodge projector, which is the orthogonal projection from L2 onto the closed subset of
divergence-free vector fields in L2. In view of the boundedness of P on L2 and the Ladyzhenskaya interpolation inequality, we
have ∣∣∣∣∫T2

(P(Jεu
ε · ∇uε)−∆uε)ϕdx

∣∣∣∣
≤

(
∥uε∥2

L4 + ∥∇uε∥L2

)
∥∇ϕ∥L2 ≤ C

(
∥uε∥L2∥∇uε∥L2 + ∥∇uε∥L2

)
for all ϕ ∈ H1(T2) with ∥ϕ∥H1 ≤ 1. Consequently,∫ T

0
∥∂tuε(t)∥2H−1dt ≤ C

∫ T

0

(
∥uε(t)∥2

L2∥∇uε(t)∥2
L2 + ∥∇uε(t)∥2

L2

)
dt ≤ C0

where C0 is a constant depending on the size of the initial velocity in L2(T2). Therefore, the family {∂tuε}ε>0 is uniformly
bounded in L2(0, T ;H−1(T2)) for any T > 0.

Step 4. Since
H1(T2) ⊆

compact
L2(T2) ⊆

continous
H−1(T2),

the Aubin-Lions lemma implies the existence of a subsequence that converges strongly in L2(0, T ;L2(T2)) to a weak solution
u of the periodic Navier-Stokes equations. The regularity of weak solutions follows from the Banach Alaoglu theorem.

Proof of the Uniqueness of Solutions

Let u and v be two weak solutions of the Navier-Stokes equation with initial data u0 = v0.
The difference ω = u− v obeys

∂tω −∆ω + u · ∇ω + ω · ∇v +∇q = 0.

We multiply by ω, integrate over T2, estimate using Ladyzhenskaya’s interpolation inequality, and obtain

1

2

d

dt
∥ω∥2

L2 + ∥∇ω∥2
L2 ≤ C∥ω∥2

L4∥∇v∥L2

≤ C∥ω∥L2∥∇ω∥L2∥∇v∥L2 ≤
1

2
∥∇ω∥2

L2 + c∥∇v∥2
L2∥ω∥2L2.

Consequently, we infer that
d

dt
∥ω∥2

L2 ≤ c∥∇v∥2
L2∥ω∥2L2.

As v ∈ L2(0,∞;H1(T2)), it follows from Gronwall’s inequality that ∥ω(t)∥L2 = 0. Therefore ω(t) = 0 for a.e. x ∈ T2. This
proves the uniqueness of solutions.

3D Problem

In the three-dimensional case, the global well-posedness is an open problem, called "the Navier-Stokes existence and smooth-
ness" problem. It is a Millennium Problem selected by the Clay Mathematics Institute of Cambridge for an award that is worth
1 million dollars!
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Introduction

Algebraic topology is the study of topological spaces by using the tools from alge-
bra. People are interested in finding algebraic invariants of topological spaces in
order to classify them. Algebraic topology usually splits into two parts: Homotopy
and Homology.

Concepts in Homotopy

Homotopy could be thought as a "path" between continuous functions. Let’s say
there are two paths f, g in a topological space X. We want to find a way to
continuously deform one path to the other. If such a way exists, then we are going
to say those two functions are homotopic. Moreover, if a space could continuously
deform into another space, we will say two spaces are homotopy equivalent or
have the same homotopy type [1].

Here is an example: If f, g are two loops that start and end at the same points in
Rn, we find that f could continuously deform through the dotted lines and finally
become g.

Definition: Let f, g : X → Y be two continuous functions between two topologi-
cal spaces. Then a homotopy from f to g is a continuous function

F : X × [0, 1] → Y

(x, 0) 7→ f (x)

(x, 1) 7→ g(x)

for all x ∈ X.

Based on this definition, we can see that homotopy could build an equivalent class
for a path at a fixed point.

We can also define an operation between loops. If f, g are two loops in topological
space X such that g starts at the ending point of f , ie f (1) = g(0), then we are
going to say f compose g, or f · g, to be a new loop that starts at f (0), go through
f (1), g(0), and ends at g(1).

By those two definitions, we can say that all the homotopy classes of the loops in
X at a fixed based point x0 is going to build a group. We call it a Fundamental
group.

Fundamental Groups:

π1(X, x0) = {Loops in X based at x0}/Homotopy betweeen loops

let’s see some examples:

• Points and Straight lines: they have trivial fundamental groups since those
spaces are simple-connected.

• Circle: π1(S1, x0) is Z. the elements of π1(S1) are just loops that go around
n times, n ∈ Z

• Sphere: its fundamental group is also trivial since it is simple-connected.

• Möbius strip: its fundamental group is also Z, as Möbius strip is homotopy-equivalent
to a circle.

the left side is the cell-complex for the Möbius strip, and the right side explains why the
Möbius strip is homotopy-equivalent to the circle

Another less trivial example is the Genus-two surface whose fundamental group has the
following presentation.

π1(Σ2, x0)
∼= ⟨a, b, c, d | [a, b][c, d] = 1⟩

The left side is a picture of the Genus-two surface, and the right side is its cell-complex
picture. (If you glue each side of the octagon with the corresponding letter then you will get
the left picture)

Higher Homotopy Groups

Fundamental groups are usually not abelian, but their higher dimensional analogs, which
we call higher homotopy groups, are abelian.

The idea here is to generalize the one-dimension loop into higher-dimension. For a nth

sphere Sn and topological space X, we say that f : Sn → S to be, informally, an "nth

dimension loop". And then for all the "nth dimension loop" at a fixed point, we can get
πn(X, x0) by quotient it under homotopy between loops.

After giving the definition of homotopy groups, we can go through why for n > 1, homotopy
groups are abelian. Here is a visual proof:

f and g here represent the two Sn that maps to X. The boundary of those Sn is mapped to
the base point, x0, in X. So we could "shrink down" f and g to have enough space to move it
around without changing the connections of the base point. However, the same trick could
not work for one dimension, as we cannot move two intervals around.

Concepts in Homology

Another algebraic invariant is homology. Most spaces can be decomposed into
simpler objects called simplices and the way they fit together tells us a lot about
the topology of the space. For example, the torus can be decomposed into two
triangles as seen below.

Example: Torus:

We will not give the formal definition, but by looking at the way the 0-, 1- and 2-
dimensional simplices fit together, we can write down the following groups:

H0(T ) = Z, H1(T ) = Z⊕ Z, H2(X) = Z

One important distinction here is that homology groups are always abelian unlike
fundamental groups.

Hurewicz Theorem

As we define the homotopy groups and homology groups, we will naturally won-
der if there are connections between them. Hurewicz Theorem tells us that we
can sometimes find an isomorphism between them.

Let X be a pointed path-connected topological space, and πn(X), Hn(X) be the
nth homotopy group and homology group.

If n = 1, then H1 is isomorphic to the abelianization of π1. Here abelianization
of π1 means that we are going to quotient all the non-abelian parts. Formally,
πab(X) := π1(x)/[π1(x), π1(x)], where [π1(x), π1(x)] is a subgroup of π1(X) and
generated by all the elements of the form aba−1b−1 in π1(X).

Similar things happen for higher homotopy and homology groups (with some
conditions) and that is the statement of Hurewicz theorem.
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Intro to Markov Chains

In the discrete state space S, we say the process (Zn)n∈N is Markov that ∀n ≥ 1
the probability distribution of Zn+1 is determined by the state Zn of the process at
time n. In simpler terms, we say that the future, given the present, is independent
of the past. Since the probability does not depend on n, A Markov process is time
homogeneous that is to say:

P(Xn+1 = j|Xn = i) = P(X1 = j|X0 = i)

Also, P(Xn+1 = j|X0 = x0, X1 = x1 . . . Xn = i) = P(Xn+1 = j|Xn = i).
Therefore, for each step, we just need to consider the previous state.
It is easier to find the probability that the system moves from state i to state j by
finding the corresponding entry. The row corresponds to the current state and the
column corresponds to the next state. Notice that the sum of each row should be
1.

[Pi,j]0≤i,j≤N =


P0,0 P0,1 P0,2 . . . P0,N
P1,0 P1,1 P1,2 . . . P1,N
P2,0 P2,1 P2,2 . . . P2,N

... ... ... . . . ...
PN,0 PN,1 PN,2 . . . PN,N


In order to investigate the relation between the states, we define the Hitting time
TA = min{n > 0, Sn = A} which corresponds to the first time the process will
reach or “hit” a state in the subset A, and the probability of hitting the set through
state l ∈ A from k ∈ S is gl(k) =

∑
m∈SPk,mgl(m). Therefore, if the state j is

absorbing, we have that P(Tj < ∞|Z0 = i) = limn→∞ P(Zn = j|Z0 = i). We can
also define the Return Probability, which is the probability of returning to state j
in finite time starting from state i is

pij = P(T r
j < ∞|X0 = i) = P(Xn = j(n ≥ 1)|X0 = i)

. With this definition, we can introduce the notion of recurrent states. :
State j is said to be recurrent: if Pj(Tj < +∞) = 1, which implies that the chain
will return to j eventually . Also,

∑+∞
n=0P

n
j,j = +∞

State j is said to be transient if Pj(Tj < +∞) < 1 , which implies that the chain
will not return back and

∑+∞
n=0P

n
j,j < +∞). Now, we can explore more about the

relations between states:
The state j is accessible from state i if Pn

i,j > 0.
When both Pn

i,j > 0 and Pn
j,i > 0, we say the states i, j communicate.

The sets of states which communicate with each other partition the set of states,
if this partition only contains one subdivision, the chain is called irreducible, and
all states communicate with each other.
Recurrence and transience are class properties: all the states in a communica-
tion class are either recurrent or transient.

We define the period of a state i as d(i) = gcd{n > 0, Pn
ii > 0}. If d(i) = 1, the

state i is said to be aperiod.
Since for an absorbing state, Pii = 1, an absorbing state is aperiodic and
recurrent.
A recurrent state is said to be ergodic, if it is both positive recurrent (irrducible)
and aperiodic. If [Pn]i,i = 0 for all n ≥ 1, then the period of state i is 0, and it is
transient.
Note that that if the sequence of n contains two distinct numbers that are rela-
tively prime to each other, the state is aperiodic.
Periodicity is also a class property: all states in a given communicating class
have the same periodicity (periodic versus aperiodic), if they are periodic, they
will all have the same period.

Also, A Markov Chain is aperiodic when all of its states are aperiodic.

SIRD Model

S, R, I, D stand for Susceptible, Infected, Recovered, and Deceased states re-
spectively.
Hitting time: TS = 3 as the minimum step is through S → I → R → S.
Absorbing: Since D is isolated, that all PDD = 1, the state is absorbing.
Recurrent transient states: S,R, I are all recurrent
Since S,R, I are accessible from each other, we say that all of them communi-
cate with each other and they form a communication class.

Introduction of PageRank

The PageRank algorithm is based on using Markov Chains to analyze the web
pages and measure the importance of website pages, it is used by search en-
gines like Google. For each page, its PageRank is the sum of all the PageRank it
receives from pages linking to it. The more incoming links a page has, the more
important the page is, and back links from more important pages carry more
weight than back links from less important pages. In Markov Chain, each page
is a state in the chain and links between pages represent transitions from one
state to another, with transition probabilities that are typically uniform across all
outbound links from a given page.

Stationary Distribution

The probability distribution π on S with transition matrix P is said to be
stationary if and only if the vector π is invariant by the matrix P , which implies it
remains unchanged in the Markov chain as time progresses, that

π = πP

Then, for S = {0, 1 . . . N} is finite and πij := limn→∞ P(Xn = j|X0 = i) exists
for all i, j ∈ S, we have

lim
n→∞

Pn =


π0,0 π0,1 . . . π0,N
π1,0 π1,1 . . . π1,N

... ... . . . ...
πN,0 πN,1 . . . PN,N


and therefore

πi =

N∑
j=1

πijP

For the Markov Chain that is ergodic, the chain (Xn)n∈N holds the limiting dis-
tribution

πi := lim
n→∞

P(Xn = i|X0 = j) = lim
n→∞

[Pn]j.i =
1

µi(i)
=

1

Ei(Ti)

Perron-Frobenius Theorem
If A is a positive stochastic matrix, then the eigenvalues satisfy λ1 = 1 and
|λj| < 1, for j > 1. This means that A has a unique positive, steady-state vector
q and that every Markov chain defined by A will converge to q.
Markov chains and the Perron-Frobenius theorem are the central ingredients in
Google’s PageRank algorithm.

PageRank

The existence of stationary distributions is key to assigning a rank to a web page
First, we can create the transition matrix is formed where each entry Pij repre-
sents the probability of moving from page i to page j. Then, with the property
of Markov Chain, xk+1 = Pxk, where x is the PageRank vector that represents
the probability of each state in step k. However, there is no guarantee that every
page rank process will converge to a stationary distribution. With the previous
definition, we know that this can be fixed by making the Markov chain ergodic,
and one way to make a Markov chain ergodic is to insert an edge between every
two nodes.
Also, the Perron-Frobenius theorem implies that a Markov chain xk+1 = Pxk
converges to a unique steady-state vector when the matrix P is positive. This
theorem provides the idea to obtain a new positive matrix P ′ by imagining that
users randomly jump to any other page with a small probability, making sure that
all states are connected. Assume that there exists a matrix Rn such that

Rn =


1
n

1
n . . . 1n

1
n

1
n . . . 1n... ... . . .

1
n

1
n . . . 1n


Then we create a new Google Matrix P ′ by mixing P and R. Choosing an
appropriate parameter α, we set P ′ = αP + (1 − α)Rn, then P ′ is a positive
stochastic matrix. While the R-component in M ensures that the Markov chain
converges, it also changes the stationary distribution. To ensure the impact is
not too large, α should be chosen close to 1. A typical value for α is 0.85.

Example of PageRank

There are two models for PageRank.
Example 1: Most website are similar
In this case, all nodes have 4-5 outgoing links.

Then, we can find the stationary vector [0.15, 0.165, 0.14, 0.13, 0.26, 0.15]
Example 2: One or two websites are ’hubs’
There are two ’hubs’ that has outgoing links with remaining nodes.

Then, we can find the stationary vector [0.17, 0.27, 0.04, 0.08, 0.15, 0.29]
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Abstract

Free probability theory is a relatively new area of study, bringing together many different
fields of mathematics, such as operator algebras, random matrices, combinatorics, and rep-
resentation theory of symmetric groups. In this poster, we will explore the basic groundwork
for free probability and provide a combinatorial proof of the free central limit theorem.

Background

∗-Probability Space (A, φ)

A ∗-probability space consists of a unital ∗-algebra A and an expectation φ : A → C.
A unital ∗-algebra A is a vector space over C equipped multiplication that is associative
but not necessarily commutative, a multiplicative identity 1A, and an adjoint operation ∗
(e.g., adjoint of linear maps, conjugate transpose of matrices).

• Elements a ∈ A are called (non-commutative) random variables.
• A0 is called a subalgebra of A if A0 ⊆ A and it is itself a unital ∗-algebra.
• The expectation φ is a linear functional with φ(1A) = 1 and φ(a∗a) ≥ 0,∀a ∈ A.

Classical Independence
Let (A, φ) be a ∗-probability space. Elements a, b ∈ A are (classically) independent if
ab = ba and φ(anbm) = φ(an)φ(bm) for all n,m ∈ N.

Free Independence
Let (A, φ) be a ∗-probability space and I be a fixed index set. For each i ∈ I , let Ai ⊆ A
be a subalgebra. The subalgebras (Ai)i∈I are freely independent (FI) if

φ(a1a2 . . . ak) = 0

whenever we have the following:
• aj ∈ Ai(j), with i(j) ∈ I , for all j = 1, 2, . . . , k and k ∈ N.
• φ(aj) = 0 for all j = 1, 2, . . . , k.
• Neighboring elements are from different subalgebras, i.e., i(1) ̸= i(2), ..., i(k−1) ̸= i(k).

Elements a, b ∈ A are freely independent if the subalgebras they generate are FI.

Convergence in Distribution

Let (AN , φN )N∈N and (A, φ) be ∗-probability spaces. Consider aN ∈ AN for each N ∈ N
and a ∈ A. We say that aN converges in distribution to a as N → ∞ and denote this by
aN

distr−−−→ a, if we have convergence of all moments: lim
N→∞

φN (anN ) = φ(an) for all n ∈ N

The Classical Central Limit Theorem

Theorem 1. (Classical Central Limit Theorem) Let (A, φ) be a ∗-probability space and
a1, a2, . . . ∈ A be a sequence of independent and identically distributed self-adjoint random
variables. Assume all random variables are centered: φ(ar) = 0,∀r ∈ N and denote by
σ2 := φ(a2r) the common variance of the random variables. Then, we have

a1 + . . . + aN√
N

distr−−−→ x,

where x is a normal random variable with mean 0 and variance σ2.
Remark. This statement means explicitly

lim
N→∞

φ

((
a1 + . . . + aN√

N

)n)
=

1√
2πσ2

∫ ∞

−∞
tne

− t2

2σ2dt, ∀n ∈ N.

The Free Central Limit Theorem

Theorem 2. (Free Central Limit Theorem) Let (A, φ) be a ∗-probability space and
a1, a2, . . . ∈ A be a sequence of freely independent and identically distributed (FIID)
self-adjoint random variables. Assume all random variables are centered: φ(ar) = 0,∀r ∈ N
and denote by σ2 := φ(a2r) the common variance of the random variables. Then, we have

a1 + . . . + aN√
N

distr−−−→ s,

where s is a semicircular random variable with variance σ2.
Remark. This statement means explicitly, ∀n ∈ N and σ :=

√
σ2,

lim
N→∞

φ

((
a1 + . . . + aN√

N

)n)
=

∫ 2σ

−2σ

tn

2πσ2

√
4σ2 − t2dt =

 σ2k

k+1

(2k
k

)
, if n = 2k is even

0, if n is odd

We provide a combinatorial proof of Theorem 2 (Free CLT) using Lemmas 1-3.

Lemma 1. Under the condition of Theorem 2,

lim
N→∞

φ

((
a1 + . . . + aN√

N

)n)
= Dnσ

n,

where Dn :=
∣∣∣{π : π non-crossing pair partition of {1, . . . , n}}

∣∣∣.
Figure 1. Non-crossing / crossing pair partitions of {1, 2, 3, 4}

1 2 3 4

a non-crossing pair partition

1 2 3 4

a crossing pair partition

Proof of Lemma 1. By definition of FIID, we have for large N ,

φ

((
a1 + . . . + aN√

N

)n)
=

∑
1≤r(1),...,r(n)≤N

N−n/2φ(ar(1) · · · ar(n)) ≈
∑

π partition
of {1,...,n}

N |π|−n/2κπ

where π has index tuple (r(1), . . . , r(n)) and κπ := φ(ar(1) · · · ar(n)).
If π contains a subset with only one element, then the resulting κπ must be zero, since the
φ(ar(m)) = 0,∀ar(m). Moreover, if π contains a subset with at least three elements, then
|π| < n/2, so N |π|−n/2 vanishes as N → ∞. Therefore, we have

lim
N→∞

φ

((
a1 + . . . + aN√

N

)n)
=

∑
π pair partition

of {1,...,n}

κπ

Case 1. Consider the case when all consecutive indices are different: r(1) ̸= . . . ̸= r(n).
Since φ(ar(m)) = 0 for all m = 1, . . . , n, we have by the definition of free independence

κπ = φ(ar(1) · · · ar(n)) = 0

Case 2. Consider the case when two consecutive indices coincide, i.e., r(m) = r(m + 1),
for some m = 1, . . . , n − 1. Since ar(m)ar(m+1) is freely independent from the subalgebra
generated by {ar(1), . . . , ar(m−1), ar(m+2), . . . , ar(n)}, we have the following factorization

κπ = φ(ar(1) · · · ar(m−1)ar(m+2) · · · ar(n)) ·
������������������:σ2
φ(ar(m)ar(m+1))

We repeat this iteration until we either get zero in one of the steps or arrive at the moment
φ(1A) = 1, in which the corresponding partition will give a contribution of σn. This occurs
precisely when π is a non-crossing pair partition of {1, . . . , n}. □

Non-crossing Pair Partitions and Dyck Paths

The n-th Catalan number Cn for n ≥ 0 is given by

Cn =
1

n + 1

(
2n

n

)
=

(2n)!

n!(n + 1)!

An equivalent representation of the Catalan numbers is the following recurrence relation

C0 = C1 = 1, Cn =

n∑
k=1

Ck−1Cn−k, n ≥ 2

We define Dyck paths in the lattice Z2 to be walks from (0, 0) to (n, 0), for n ∈ N even,
with steps either of the form (+1,+1) or (+1,−1), keeping y-coordinate nonnegative.
Lemma 2. There is a one-to-one correspondence (bijection) between Dyck paths on
2n steps and non-crossing pair partition of {1, 2, ..., 2n}.

Figure 2. Dyck paths on 6 steps / non-crossing pair partition of {1, 2, 3, 4, 5, 6}

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

Bijection between Dyck paths and non-crossing pair partitions

Lemma 3. Cn = D2n, the number of Dyck paths on 2n steps.

Proof of Lemma 3. Consider a Dyck path on 2n steps and suppose it first hits y = 0

at the 2k-th step with 1 ≤ k ≤ n. The path has to move (+1,+1) (go up) on the first
step, and it must move (+1,−1) (go down) at the 2k-th step. The middle 2(k − 1) steps
are arbitrary as long as y ≥ 0, so the first 2k steps have D2(k−1) combinations. The
remaining 2(n− k) steps also have no restriction and have D2(n−k) combinations. Thus,
this case (first hits at 2k) contributes D2(k−1)D2(n−k) to D2n. By induction, we have

D2n =

n∑
k=1

D2(k−1)D2(n−k) =

n∑
k=1

Ck−1Cn−k = Cn (with the convention D0 = 1).

This shows Catalan numbers count the number of Dyck paths. Together with Lemma 2,
we proved that Catalan numbers count the number of non-crossing pair partitions. □
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Introduction

Over 2000 years ago, Euclid derived geometry from four intuitive axioms and an
arbitrary “parallel postulate”. Getting rid of it became the focus of mathematicians
for millennia. Taking a line L and a point p not on L, mathematician János
Bolyai supposed that L had several parallel lines going through p for the sake of
contradiction. He instead discovered a consistent geometry distinct from Euclid’s.
Non-Euclidean geometry proved that the parallel postulate cannot be derived
from the other four, diverging into two well-studied branches: hyperbolic and
spherical. We will focus on hyperbolic geometry for this poster.

Figure 1: Only one parallel line
through p such that α+β = 180 deg.

Figure 2: In spherical geometry, all
lines (great circles) intersect.

Figure 3: Multiple parallel lines
(Credit: Damia Taimina)

Hyperbolic geometry occurs on surfaces with negative curvature. In nature, these
are corals, organs, cells, kale, jellyfish, and perhaps even the universe! Further-
more, hyperbolic structures apply to the theory of relativity and machine learning
models for hyperbolic datasets, e.g. historical-linguistics data. To better under-
stand hyperbolic space, lettuce dive into two different models for it.

The Upper Half-Plane Model

How about adapting from a space we already know? Let’s take the top half of the
complex plane defined as H = z ∈ C : Im(z) > 0. For two distinct points p and q
in H, there is a hyperbolic line l between them as follows:

l =

{
z ∈ C : Re(z) = Re(p) if Re(p) = Re(q)

z ∈ C : |z − c| = r if Re(p) ̸= Re(q)
(1)

where c =
|p2|−|q|2

2(Re(p)−Re(q))
and r = |c− p|.

For each pair p and q of distinct points in H,
there exists a unique hyperbolic line l in H
passing through p and q.

Figure 4: Constructing Euclidean circles with per-
pendicular bisectors.

One property of interest is parallel lines, as they behave differently from Eu-
clidean space. Let l be a hyperbolic line in H and p a point in H not on l. Then,
there exist infinitely many distinct hyperbolic lines through p that are parallel to l.

Since there are infinitely many points on R
between K and L, we can construct an Eu-
clidean circle passing through x and p with
center on R for each x, then L has infinitely
many parallel lines through point p.

Figure 5: Infinite orange parallel lines to A.
The hyperbolic plane can be modeled as the upper half of the extended complex
numbers C̄ = C∪ {∞}. A circle in C̄ is either a Euclidean circle in C or the union
of a Euclidean line in C with {∞}. A disc in C is one of the complements of
a circle in C: the area either outside or inside a circle, not including the circle itself.

Crucially, H can be modeled as a disc in C̄! This is because the real axis (the
boundary at infinity for our half plane model) is considered a circle in C̄. The
boundary at infinity for any set in H is where it intersects the real axis.

Möbius Transformations

Definition
A Möbius transformation is a function of the form m(z) = az+b

cz+d, where a, b, c, d ∈ C and
ad− bc ̸= 0.
They have some very useful properties, including:

• Möbius transformations are continuous and bijective
• Inverse of a Möbius transformation is also a Möbius transformation
• Composition of Möbius transformations is also a Möbius transformation
• Möbius transformations preserve lengths, angles, lines, circles, and discs in C̄

Fixed Points
A fixed point of a Möbius transformation is defined as a point where m(z) = z.
A Möbius transformation that has more than two fixed points is equivalent to the identity
transformation, where m(z) = z for all z. Because of this, a Möbius transformation can be
specified by how it acts on any three distinct ordered points in C̄.

Classifications
Two Möbius transformations m1,m2 are considered conjugate if there exists a Möbius
transformation p such that m2 = p ◦ m1 ◦ p−1. Similar to matrix diagonalization in linear
algebra, we can simplify analysis of Möbius transformations by conjugating them into three
standard forms: parabolic, elliptic, and hyperbolic.

For elliptical and hyperbolic Möbius transformations, the coefficient of the standard form is
considered the multiplier.

Matrix Classification
Since Möbius transformations have a distinct structure, their coefficients can be written as

distinct matrices: m(z) = ax+b
cx+d ∼ A =

(
a b
c d

)
.

Then we can endow Möbius transformations with matrix characteristics. From the example
above, we can normalize m by multiplying it by α = 1

det(m)
. However, normalized m has

ambiguity at α = 1, so we can construct a well-defined set of the trace T (m) = (a + d)2.
Crucially, the trace of a Möbius transformation is invariant under conjugation, since

T (p ◦m ◦ p−1) = T ((p ◦m) ◦ p−1)

= T (p−1 ◦ (p ◦m))

= T (p−1 ◦ p ◦m)

= T (m).

(2)

Thanks to the associativity and commutativity of function compositions, instead of conju-
gating Möbius transformations to classify them, we can instead simply normalize them and
compute the trace.

Type Standard Form Trace Number of Fixed Points
Parabolic n(z) = z + 1 4 One
Elliptical n(z) = e2iθz [0, 4) Two

Hyperbolic n(z) = p2e2iθz (−∞, 0) ∪ (4,∞). Two

The Poincaré Disc Model

From Disc to Half Plane

Figure 6: How one example of a Möbius transformation that takes
the unit disc in C̄ to the real axis (m(z) = (z+1)

(z−1)
(i−1)
(i+1)) transforms the

boundary at infinity.

As both the upper half plane
and the unit disc of the Poincaré
model are considered discs in
C̄ and Möbius transformations
preserve discs in C̄, we can use
Möbius transformations to con-
vert between the two different
model types. This will also pre-
serve lines, circles, and angles
between the two models.

Lines in Poincaré Disc Model

In the Poincaré disc model,
lines in hyperbolic space are
represented as Euclidean lines
that are the diameters of the
unit circle, or Euclidean circles
perpendicular to it.

Hyperbolic Distance in Poincaré Disc Model

In the Poincaré disc model of hyperbolic space,
distance works differently than in Euclidean
space. Two line segments that appear of similar
length on different parts of the disc can actually
represent vastly different distances.

Figure 7: For a continuous and dif-
ferentiable path f (t), the length of
f (t) can be expressed as an inte-

gral,
∫
f

√
dx
dt

2
+ dy

dt

2
dt.

Figure 8: For the upper half plane
model, the Euclidean length is
scaled by a factor of 1

Im(z), reflect-
ing how the real axis (Im(z) = 0)
represents infinity.

Figure 9: For the Poincaré disc
model, the Euclidean length is
scaled by a factor of 2

1−|z|2 .
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Introduction

In order to study different topological spaces, it is useful to assign invariants

to each space that are preserved under some notion of equivalence. Although

homeomorphism is a natural candidate, the weaker property of homotopy equiv-

alence is more flexible. Homology is a branch of algebraic topology that asso-

ciates a sequence of homology groups to a space. If two spaces are homotopy

equivalent, then the corresponding entries in each sequence of homology groups

are isomorphic. Homology is an important tool for studying topological spaces

because unlike the homotopy groups, homology groups are easily computable.

The Idea of Homology

The homology groups of a space provide a description of how high-

dimensional features attach to lower-dimensional features in a space. Homol-

ogy provides a systematic way of describing holes, connected components,

and other features of a space. Several different homology theories have been

developed for particular kinds of spaces, such as cellular and simplicial ho-

mology. Singular homology is a more general approach defined for arbitrary

topological spaces. The construction is very detailed, but the idea can be ax-

iomatized in order to avoid many of the geometric arguments used in proving

its fundamental results.

Preliminaries

The n-simplex is the smallest convex set ∆n ⊆ Rn+1 that contains the

standard basis vectors {v0, v1, . . . , vn, vn+1}.

Figure 1. The 0-, 1-, 2-, and 3-simplices [1]

A singular n-simplex in a space X is a continuous map σ : ∆n → X .

The nth chain group of a space X , denoted by Cn(X), is the free abelian

group whose basis is the set of singular n-simplices of X , and each element

of this group is an n-chain, a formal sum of singular n-simplices.

The boundary maps ∂n : Cn(X) → Cn−1(X) are defined

∂n(σ) =
∑

i

(−1)i σ | [v0, . . . , v̂i, . . . , vn],

where σ | [v0, . . . , v̂i, . . . , vn] denotes the restriction of the singular

n-simplex σ to a face consisting of all the vj except for vi. The map extends

linearly to n-chains. Thus the restriction can be seen as a singular

n − 1-simplex.

A sequence of homomorphisms of abelian groups

· · · −−−→ Cn+1
∂n+1−−−−→ Cn

∂n−−−−→ Cn−1 −−−→ · · · −−−→ C1
∂1−−−−→ C0

∂0−−−−→ 0
is called a chain complex if ∂n∂n+1 = 0 for all n, which is succinctly

expressed ∂2 = 0
It can be shown that for the boundary maps im ∂n+1 ⊆ ker ∂n. The nth
singular homology group Hn(X) is the quotient ker ∂n / im ∂n+1.

Exact Sequences and Category-theoretic Results

A sequence of homomorphisms

· · · −−−→ An+1
αn+1−−−−→ An

αn−−−−→ An−1 −−−→ · · ·
is an exact sequence if for each adjacent pair im αn+1 = ker αn.

For spaces X and Y , any map f : X → Y induces a map on homology

f∗ : Hn(X) → Hn(Y ). By composing f with σ ∈ X∆n
, an element fσ ∈ Y ∆n

is obtained. Thus f extends linearly to a map f# : Cn(X) → Cn(Y ).
Furthermore, f# is called a chain map, because f# commutes with applying

the boundary maps, written f#∂ = ∂f#. We have the following

commutative diagram.

A chain map between chain complexes induces a homomorphism on

homology. Thus there exists f∗ : Hn(X) → Hn(Y ).

The Five-Lemma

The Five-Lemma states that in the following commutative diagram over an

abelian category, if the rows are exact and α, β, δ, and ε are isomorphisms,

then γ is also an isomorphism.

The simplicial homology groups are defined for a specific type of topological spaces

known as ∆-complexes, and the Five-Lemma is used to prove that for such spaces, the

singular and simplicial homology groups are isomorphic.

The Splitting Lemma

For a short exact sequence

0 −−−→ A
i−−→ B

j−−−→ C −−−→ 0,

the following are equivalent:

There exists a homomorphism p : B → A such that pi = 1A.

There exists a homomorphism s : C → B such that js = 1C.

There is an isomorphism B ≈ A ⊕ C that creates the commutative diagram

below, with the lower maps being a 7→ (a, 0) and (a, c) 7→ c.

Degree Theory

For a map f : Sn → Sn, the induced map f∗ : Hn(Sn) → Hn(Sn) is a
homomorphism of an infinite cyclic group onto itself; hence, f∗(α) = dα for

some integer d.

This integer depends only on f and is called the degree of f , denoted deg f .

The idea of degree is an important application in algebraic topology

because it is the original method for proving Brouwer’s fixed-point

theorem.

Brouwer’s Fixed-Point Theorem

Every continuous map h : Dn → Dn has a fixed point, a point x∗ ∈ Dn such

that h(x∗) = x∗.

Let f, g : Sn → Sn be continuous maps. The degree has several interesting

properties:

If f is not surjective, then deg f = 0.
If f and g are homotopic, then deg f = deg g. This is not difficult to show

because f and g must satisfy f∗ = g∗. Surprisingly, the converse is also true.

Degree is multiplicative: deg fg = deg f · deg g. This is because (fg)∗ = f∗g∗.

The Hairy Ball Theorem

The space Sn has a continuous field of non-zero tangent vectors if and only if

n is odd.

If n = 2k − 1, then one can

construct the vector field by

(x1, x2, . . . , x2k−1, x2k) 7→
(−x2, x1, . . . , −x2k, x2k−1).
Conversely, if the vector field

exists, one can show that a

homotopy exists between the

identity 1 and the antipodal map

−1. But if n is even, the antipodal

map has degree (−1)n+1 = −1 6= 1.
Figure 2. A failed attempt to comb S2.

Source: Wikipedia.
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Serrin’s Overdetermined Problem

Let us consider the following problem. Let Ω ⊆ Rn be a domain that is bounded,
open, and connected. Furthermore, suppose that the boundary ∂Ω is smooth.
Let u : Ω → R be a C2 function that satisfies the following conditions: ∆u = −1
in Ω and u = 0 and ∂u

∂ν = c on ∂Ω for some constant c and ν is the outward
normal vector to ∂Ω. Then, Ω must be a ball. Furthermore, we know that
u(x) = (b2− r2)/2n, where b is the ball’s radius and r is the distance to its center.

First Proof

The first proof we present is from Professor James Serrin himself [3]. This proof
utilizes the moving plane method. Let T0 be a n− 1 dimensional hyperplane in
Rn that does not intersect the domain Ω. We begin to move this plane normal
to itself until it intersects Ω. When this occurs, the new plane T splits Ω into
two parts. The part of Ω that lies on the same side of T as our initial plane T0
is denoted by Σ(T ). We reflect Σ(T ) in T to obtain Σ′ := Σ′(T ). As T moves
through Ω, Σ′ will remain in Ω until it becomes internally tangent to Ω at a point P
(case i) or T becomes orthogonal to Ω at some point Q (case ii). When either
of these occurs, we stop moving the plane T , and we denote the resulting plane
by T ′. We claim that Ω is symmetric about T ′. Showing this would prove the
theorem. To see how, we recall that the plane T0 was chosen arbitrarily. If Ω is
symmetric about T ′, then Ω is symmetric in all possible directions. Since Ω is
simply connected and has this strong symmetry property, it must be a ball.

T0

T ′

P

Σ′

Σ
(
T ′)

Ω
Q

T ′

T0

Σ′

Σ
(
T ′)

Ω

case i case ii

To prove this, we introduce the function v : Σ′ → R defined by v(x) = u(x′) for
x ∈ Σ′, where x′ is the reflection of x across T ′. By the maximum principle, we
deduce that u− v > 0 or u− v = 0 in Σ′. For the sake of contradiction, suppose
that u − v > 0. If Σ′ is internally tangent to Ω at some point P , then we may
appeal to the boundary point maximum principle to deduce that ∂

∂ν(u − v) > 0
at P [1]. However, we know that ∂u/∂ν = ∂v/∂ν = c. Thus we have reached
a contradiction. If T ′ is orthogonal to the boundary of Ω at some point Q, then
we show that u and v have the same first and second derivatives at Q. Using a
modified version of the boundary point maximum principle, we can also show that
∂
∂s(u− v) > 0 or ∂2

∂2s
(u− v) > 0 for any direction s that enters Σ′ non-tangentially

at Q. However, this directly contradicts the fact that u and v have the same first
and second derivatives at Q. We may thus conclude that u = v and that Ω is
symmetric about T ′.

Second Proof

The second proof we present is from Weinberger [2]. To start, we first compute

∆

(
r
∂u

∂r

)
= r

∂

∂r
(∆u) + 2∆u = −2,

where r is the distance to the origin. Using this and the fact that ∆u = −1, we obtain∫
Ω

[
2u− r

∂u

∂r

]
dx =

∫
Ω

[
− u∆

(
r
∂u

∂r

)
+ r

∂u

∂r
∆u

]
dx

Using Green’s identity yields∫
Ω

[
− u∆

(
r
∂u

∂r

)
+ r

∂u

∂r
∆u

]
dx =

∫
∂Ω

[
− u

∂

∂ν

(
r
∂u

∂r

)
+ r

∂u

∂r

∂u

∂ν

]
dS

By assumption, we have u = 0 on ∂Ω. Thus, we find that∫
∂Ω

[
− u

∂

∂ν

(
r
∂u

∂r

)
+ r

∂u

∂r

∂u

∂ν

]
dS =

∫
∂Ω

r
∂r

∂ν

(
∂u

∂ν

)2

dS

By assumption, we know that ∂u/∂ν = c on ∂Ω. Thus, we find that∫
∂Ω

r
∂r

∂ν

(
∂u

∂ν

)2

dS = c2
∫
∂Ω

r
∂r

∂ν
dS = c2n

∫
Ω
dx = nc2V

where V is the volume of Ω. Green’s theorem also implies∫
Ω
r
∂u

∂r
dx = −n

∫
Ω
udx

so that substitution yields

(n + 2)

∫
Ω
udx = nc2V

However, we also note that

1 = (∆u)2 ≤ n

n∑
i=1

u2ii ≤ n
∑
i,j

u2ij

by the Cauchy-Schwarz inequality. From this, we deduce that

∆

(
|∇u|2 + 2

n
u

)
= 2

∑
i,j

u2ij −
2

n
≥ 0

Using this and the fact that |∇u|2 + (2/n)u = c2 on ∂Ω, we may appeal to the maximum
principle to deduce that |∇u|+ (2/n)u < c2 in Ω or |∇u|+ (2/n)u = c2 in Ω. If the inequality
held, then we could integrate over Ω to deduce that

(n + 2)

∫
Ω
udx < nc2V

This contradiction informs us that |∇u|2 + (2/n)u = c2 in Ω so that

∆

(
|∇u|2 + 2

n
u

)
= 2

∑
i,j

u2ij −
2

n
= 0

and

1 = n

n∑
i=1

u2ii =
∑
i,j

u2ij

which implies that uij = −δij/n. Solving the corresponding partial differential equations
yields

u =
1

2n
(B − r2)

where B is a constant. Since u = 0 on ∂Ω, B is positive and Ω is a ball of radius B1/2.

Applications

This theorem is significant because it allows us to determine the shape of Ω
from properties of u. It also has many applications in physics. For example, we
may consider an incompressible viscous fluid moving through a straight pipe of
cross sectional form Ω. If we fix a rectangular coordinate system with the z-axis
directed along the pipe, then the velocity u depends only on x and y, and it
satisfies the differential equation ∆u = −A for some constant A. Furthermore,
because the fluid is viscous, we know that u = 0 on ∂Ω; that is, there is no
movement on the boundary of the pipe. Finally, we note that µ∂u/∂ν is the
tangential stress on the pipe wall, where µ is the viscosity constant. If the
tangential stress is constant, then we may apply the above theorem to conclude
that Ω is a circular cross section.

Further Results

A similar result was proved by Wolfgang Reichel [4]. Let Ω0 and Ω1 be smooth
domains in Rn and let Ω = Ω0 \ Ω1 be connected. Suppose that f ∈ C1 is a
function satisfying ∆u+f (u, |∇u|) = 0 in Ω, 0 < u < a in Ω, u = 0 on ∂Ω0, u = a
on ∂Ω1, and ∂u/∂ν = ci on ∂Ωi. Then, we conclude that Ω is an annulus and u
is radially symmetric and decreasing in r.

Ω0

Ω

Ω1

Ω

Ω0

Ω1

The above picture demonstrates the theorem. On the left-hand side, we see our
hypotheses. On the right-hand side, we see the conclusion.
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Introduction

In this project, we aim to solve the PDE describing the
ground state for Hydrogen (1) by using the direct
method of the calculus of variations.(

−1
2
∆ − 1

|x|

)
ψ(x) = ϵψ(x) (with x ∈ R3) (1)

||ψ||2 = 1 (2)

This is an eigenvalue problem for a time-independent
Schrodinger equation. Since we are solving this equation
for the ground state, seek to find the minimal ϵ in the
spectrum of the operator in (1).

This PDE comes from finding the Euler-Lagrange
equation for the energy functional,

F (ψ) := ||∇ψ||22 −
∫
R3

|ψ(x)|2

|x|
dx (3)

The Euler-Lagrange equation (3) connects a potential so-
lution to the PDE (1) to a minimization problem over an
appropriate domain. In this case, we minimize over a re-
laxed domain ||ψ||2 ≤ 1.

There are several difficulties regarding solving the PDE.
1 The second-order differentiability of ψ(x) is too strong

to be used to find the solution directly.
2 The behavior of coulomb potential 1

|x| near x = 0 needs
to be addressed.

3 The problem is posed over R3 rather than a bounded
domain, so typical functional analysis tools on bounded
domains do not apply to this problem.

PDEs that resemble equation (1) can be solved analyti-
cally for certain potentials, but it is not possible to solve
them analytically for many-body systems. Nonetheless,
we can use the calculus of variations to analyze atoms in
a multi-electron system, using a similar approach to that
of Hydrogen in this project.

Overview of the Direct Method

The direct method changes the focus of solving (1) to find-
ing a critical points of it’s corresponding energy functional
F , as defined in (3). The direct method requires we prove,
1 The energy functional F is coercive.
2 F is weakly lower semi-continuous. The kinetic term is

weakly lower semi-continuous, but in fact the potential
term is weakly continuous.

Then, given a minimizing sequence {ψn} associated with
(3), the Banach-Alaoglu theorem along with our coercivity
condition implies that, since {ψn} is bounded in H1(R3),
it admits a weak limit ψ, up to a subsequence. We then
use lower semi-continuity of (3) to prove that ψ is in fact
the minimizer. The last step of showing the existence of
the minimizer which will solve (1) with condition (2) will
be proving the minimizer necessarily has unit norm.

Coercivity

To show F is coercive, we want to show there exists a >
0, b ≥ 0 such that:
For all f in our domain of F : F (f ) ≥ a||∇f ||22 − b (4)

Showing coercivity requires another result, Hardy’s in-
equality:

∫
R3

|ψ(x)|2

|x|2
dx ≤ 4||∇ψ||22 (5)

Using Holder’s inequality, we can express the integral in
(3) as:

∫
R3

|ψ(x)|2

|x|
dx ≤ ||ψ||2

∣∣∣∣∣
∣∣∣∣∣ ψ|x|

∣∣∣∣∣
∣∣∣∣∣
2

(6)

Young’s inequality and (6) implies for all positive ε:

∫
R3

|ψ|2

|x|
dx ≤ ε

2

∣∣∣∣∣
∣∣∣∣∣ ψ|x|

∣∣∣∣∣
∣∣∣∣∣
2

2
+ 1

2ε
||ψ||22 (7)

Since our domain for ψ is constricted to ||ψ||2 ≤ 1, com-
bining (5) and (7) implies:

∫
R3

|ψ|2

|x|
dx ≤ 2ε||∇ψ||22 + 1

2ε
(8)

Thus, setting ε = 1
4 we obtain:

F (f ) ≥ 1
2
||∇ψ||22 − 2 (9)

Weak Lower Semi-Continuity

Showing weak lower semi-continuity of F requires showing
weak lower semi-continuity of both the kinetic and poten-
tial terms.
Given our minimizing sequence {ψn} combined with a
result from [2], we get ||ψn|| is bounded in H1, where:

||ψn||2H1(R3) = ||∇ψn||22 + ||ψn||22 (10)
Given ||∇ψ||2 is also convex, another result from [2] im-
plies the kinetic term is weakly lower semi-continuous.
To show the weak continuity of the potential term, we’ll
split the integral into two pieces to evaluate how the inte-
grand behaves close to and away from the origin.

∫
R3

|ψn(x)|2

|x|
dx =

∫
|x|≤1

ε

|ψn(x)|2

|x|
dx +

∫
|x|>1

ε

|ψn(x)|2

|x|
dx

(11)
Since ψ is restricted to ||ψ||2 ≤ 1, away from the origin:

∫
|x|>1

ε

|ψn(x)|2

|x|
dx < ε

∫
|x|>1

ε

|ψn(x)|2dx ≤ ε (12)

For the region close to the origin, we first observe that

∫
|x|≤1

ε

1
|x|p

dx =
∫ 2π

0

∫ π

0

∫ 1/ε

0

1
pp
p2sinϕdρdϕdθ (13)

The integral converges for p < 3, which implies 1
|x| ∈

Lp(|x| ≤ 1
ε) for 1 < p < 3. Using Sobolev’s inequal-

ity, we observe:

||ψn||L6(|x|≤1
ε)

≤ C||Dψn||L2(|x|≤1
ε)

≤ C||ψn||H1(|x|≤1
ε)
(14)

(14) implies ψn’s are uniformly bounded in L6, implying
|ψn|2’s are uniformly bounded in L3.
Since our minimizing sequence is weakly convergent, i.e.
ψn ⇀ ψ (in L6, not just H1), ⟨f, ψn⟩ → ⟨f, ψ⟩ for all
f in ψ’s dual space, in this case L3/2. (13) implies 1

|x| ∈
L3/2(|x| ≤ 1

ε), so the previous result can applied with 1
|x|,

implying integral is strongly convergent.
Since F has been shown to be weakly lower semi-
continuous and coercive, a minimizer for the functional
exists. The last step is showing the minimizer necessarily
has unit norm. Using a smooth, compact test function:

ψλ(x) := 1
λ3/2ψ(x) (15)

It can be shown a large enough λ will eventually make F
negative. Combined with the fact F ( ϕ

||ϕ||2) = 1
||ϕ||2F (ϕ),

any minimizer with a norm less than one would cause a
contradiction.

Conclusion

Using the Direct Method, we have shown through the last
few steps that a solution to the problem layed out in the
introduction exists.
An important take-away from this result is given a PDE
with difficult properties such as differentiability it is pos-
sible to show the existence of a solution by weakening the
properties of the solution and working within a different
space of functions. Using the Direct Method of the Calcu-
lus of Variations, we were able to reframe the problem and
use properties of the weak topology to fulfill the original
goal.
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What is Knot Theory?

Knot theory is a sub-field of Topology that deals with the study of
mathematical knots. It allows us to classify knots based on their
properties and helps us explain how knots are transformed within
space. Although there are many definitions of a knot, in knot theory,

Figure 1.1

Figure 1.2

a knot is the cross-section of a single point. To help
us study knots, knots are drawn into projections where
we can clearly see the crossing. There are several ways
to project a knot whether that be through sticks, tricol-
orability, or planar graph (mentioned later on). These
knot projections help us classify the types of knots such
as the unknot/trivial knot which is the simplest knot (Fig-
ure 1.1) or trefoil knot which is the simplest non-trivial
knot (figure 1.2).

Reidemeister Moves

More often than knot (pun intended), a knot is not as simple as
the figure above. When knots are more complicated, it is harder to
determine the types of know they are including whether it is a knot
or an unknot. Hence, the Reidemeister moves is a method used to
help us classify whether a knot is an unknot. It allows us to alter the
knot without changing its properties. There are three Reidemeister
moves.

• The first Reidemeister move allows us to put in or take out a twist
in the knot (Figure 2.1).

Figure 2.1

• The second Reidemeister move allows us to either add two cross-
ings or remove two crossings (Figure 2.2).

Figure 2.2

• The third Reidemeister move allows us to slide a strand of the
knot from one side of a crossing to the other side of the crossing
(Figure 2.3).

Figure 2.3

Try It Yourself

Prove that the knot below is an unknot using the Reidemeister moves.

Planar Graphs

A planar graph explains itself in its name - a graph that lies in the plane. It
can be created from a projection of a knot or link in the following steps. A
link is a set of knots all tangled up together.

• Shade every other region of the link projection (Figure 3.1).

• Put a vertex at the center of each shaded region and connect with an edge
any two vertices that are in regions that share a crossing (Figure 3.2).

• Define crossings to be positive or negative (Figure 3.4).

• The result is a signed planar graph (Figure 3.3).

Figure 3.1 Figure 3.2 Figure 3.3 Figure 3.4
We can also go in the other direction - turning a signed planar graph into a
knot projection. Just follow these steps:

• Put an X across each edge in the singed planar graph (Figure 4.1).

• Connect the edges formed by X inside each region (Figure 4.2).

• Shade the areas that contain a vertex (Figure 4.3).

• At each of the X’s, put in a crossing corresponding to whether the edge is
a + or a - edge (Figure 4.4).

Figure 4.1 Figure 4.2 Figure 4.3 Figure 4.4
Try it yourself: Turn the signed planar graph in Figure 4.5 into the corre-
sponding link projection.

Figure 4.5

Knots vs. Graphs

Why do we want to convert knot projections into planar graphs and
vice versa? Sometimes the problems in knot theory can be easier
to solve if we turn the knot projections into signed planar graphs.
For instance, there is an open problem that aims to find a practi-
cal algorithm for determining if a projection is a projection of the
unknot. This is equivalent to asking if there is a sequence of Rei-
demeister moves that can convert the given projection to the pro-
jection of the unknot. By turning knot projections into signed planar
graphs, this problem becomes determining the induced Reidemeis-
ter moves in the signed planar graph.

The planar graphs also have real-world applications in fields such
as Chemistry, machine learning, statistical mechanics, and hy-
draulic engineering. Here we discuss a mathematical model of fer-
romagnetism in statistical mechanics known as the Ising model.
It models a system where particles only interact with nearby ones.
Two particles that are not neighbors have no effect on one another.

Figure 5.1

Figure 5.2

Take the magnetization of a metal as an example: each
molecule of the metal is considered to be a vertex of
a graph. The interactions between adjacent molecules
are represented by the edges of the planar graph. Only
two molecules connected by an edge can interact.
Lattice is a particular type of the Ising model, where
the vertices and edges form a regular repeating in two-
dimensional space (Figure 5.1). To relate this concept
to the real world, metals consist of molecules that are
at the vertices of a lattice in three-dimensional space
(Figure 5.2).

Conclusion

Although we only covered Reidmeister moves and planar graphs,
the world of knot theory is endless. There are several other meth-
ods to understand how knots interact with space that we unfor-
tunately cannot cover today. Moreover, knot theory can apply to
graph theory, quantum theory, DNA modeling, and in everyday in-
teractions. So the next time you are tying up your shoelaces or
your charging cords, try thinking through the lenses of a topologist.
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Introduction

Seiberg-Witten theory in physics was developed in the mid-1990s as an exact solution
to 4d N = 2 supersymmetric gauge theory at IR fixed point. The IR Wilson effective
action is obtained by integrating over heavy modes. In gauge theory there are infinite
gauge inequivalent vacua which form the moduli space of the theory. Singularities
exist in the moduli space. To compute the infrared effective action, we can study the
behavior of the functions of interest (prepotential and vacuum expectation value of
the scalar field) on the moduli space, particularly focusing on the monodromy near
the singular points, i.e., the variations around the singularity as one goes around it.
Seiberg and Witten interpret the singularities in moduli space as magnetic monopoles,
a type of soliton. A set of functions satisfying specific monodromy conditions can
be found using Riemann-Hilbert correspondence, which involves the application of
elliptic curves. Thus, through the aforementioned method, we obtain exact solutions
for the IR dynamics.
In mathematics, searching for topological invariants of manifolds can be used to clas-
sify and characterize them. Utilizing equivalence classes of solutions to PDEs to de-
rive topological invariants is an important approach in this regard.For example, the
Atiyah-Singer index theorem analyzes the solution space of linear partial differential
equations to obtain topological invariants, which subsequently have geometric ap-
plications. Similarly, employing nonlinear PDEs would yield additional invariants.
Donaldson invariants describe the topological properties of four-dimensional com-
pact oriented manifolds, but computing them can be quite involved in some cases.
Seiberg-Witten invariants, to some extent, offer a simpler means of obtaining topolog-
ical invariants.

Different Structures of Manifolds

Riemannian Structure
The structure group of the tangent bundle TM can be reduced from GL(n,R) to
O(n) due to Riemann metric.
Orientable Structure
The structure group can be reduced form O(n) to SO(n).
Symplectic Structure
The structure group (of an even dimensional manifold) of the tangent bundle
TM can be reduced form GL(2n,R) to Sp(2n,R).
Almost Complex Structure
The structure group (of an even dimensional Riemannian manifold) of the
tangent bundle TM can be reduced form SO(2n,R) to U(n).
Spin Structure The structure group of the tangent bundle TM can be reduced
form GL(n,R) to Spin(n). Alternatively, the spin structure of an oriented
Riemannian manifold allows us to lift the structure group of the manifold’s
tangent bundle from SO(n) to Spin(n).

To ascertain whether different manifolds possess certain structures, or, in other
words, to detect the topological obstructions when reducing the structure group
from GL(n) to a subgroup, we can employ characteristic classes.
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Spin Structure and Spinc Structure

It is well known that we can establish a bĳective correspondence between R2 and C
by selecting the basis vectors (e1, e2) in R2 and setting e2 = ie1. Similarly, we can
utilize quaternions to establish a one-to-one correspondence between R4 and 2 × 2
anti-Hermitian matrices.

Q(t, x, y, z) =
(
t + iz −x + iy
x + iy t− iz

)
Hence, we can define Spin(4) = SU+(2) × SU−(2) as the direct product of two copies
of SU(2), and rewrite the action of SO(4) on R4 as the adjoint action of two copies of
SU(2) on the quaternions.

ρg(Q) = A−Q(A+)−1, where g = (A−, A+) ∈ Spin(4).

Furthermore, we can demonstrate that each element of SO(4) correspond to two ele-
ments in Spin(4), which is known as the double covering of SO(4) by Spin(4). Specif-
ically, the identity element e of SO(4) corresponds to the elements {(I, I), (I, I)} in
Spin(4).
If we multiply both SU(2) factors of Spin(4) by the same factor λ ∈ U(1), we obtain
Spinc(4).

Spinc(4) = {(λA−, λA+), A± ∈ SU(2), λ ∈ U(1)} .

Thus, we can obtain short exact sequences for Spin(4) and Spinc(4).
0 → Z2 → Spin(4) → SO(4) → 0

0 → Z2 → Spinc(4) → SO(4) × U(1) → 0

Instead of using adjoint representation, we can consider fundamental representation
of Spin(4) which acts on two copies ofC2. We denoteW+ andW− as the representation
space which acted by SU+(2) and SU−(2). Similarly, the representation of Spinc(4) acts
on W+ ⊗ L and W− ⊗ L.
Suppose that M is an 4d oriented Riemannian manifold. A Spin structure is given by
local trivialization with a collection of transition functions satisfying proper conditions
such as cocycle condition.

g̃αβ : Uα ∩ Uβ → Spin(4).
But since the spin group is the double cover of the SO(4) group guaranteed by Rie-
mannian structure, the cocyle condition is only satisfied up to Z2.

g̃αβg̃βγg̃γα = ±1 on Uα ∩ Uβ ∩ Uγ.

Thus, there should be some conditions for a Riemannian manifold to have aSpin struc-
ture. And as we mentioned before, characteristic class might be a good choice. Topol-
ogists have found a nice necessary and sufficient condition for it: the second Stiefel-
Whitney class of tangent bundle w2(TM) = 0.
Similarly, the manifold is said to have a Spinc structure if we have transition functions
with proper condition.

g̃αβ : Uα ∩ Uβ → Spinc(4).

It comes to our attention that for Spinc(4) which has one more degree of freedom than
Spin(4). Thus we can expect that it is more likely to satisfy the cocycle condition by
adjusting the overall phase comparing with Spin structure.
Indeed, every compact oriented four-manifold possesses a Spinc structure.

Spin Connection and Dirac Operators

A element of Euclidean space V can be regarded as a element inHom(W−,W+). Then,
we can define a map θ : V ⊗ C → End(W = W+ ⊕W−)

θ(Q) =
(

0 −Q†

Q 0

)
.

We can construct a set of basis in End(W ) using Clifford algebra. Let’s define complex
4 × 4 matrices satisfying relation

{
ei, ej

}
= −2δij. Here, {} denotes anti-commutator.

And these matrices are the image of basis of V . These matrices with matrix multipli-
cation generate the basis of linear space End(W ).

I, ei, eiej, eiejek, for i < j < k, e1e2e3e4

Thus we can identify the exterior power of V and the complex subspace of End(W ) by
identifying the image of wedge product as Clifford multiplication. Indeed, we have a
direct sum decomposition

End(W ) =
4⊕
k=0

ΛkV.

With the direct sum decomposition, we can easily construct a connection on End(W )
using Levi-Civita connection on V = T ∗M. Furthermore, one can claim that given
a Spin(4) connection on W , there is a unique corresponding connection on End(W )
satisfies the Leibniz rule. Thus, we can give a unique Spin(4) connection on W .
Similarly, for a Spinc manifold with a connection d2A on the line bundle, there is also
a unique connection on W ⊗ L.
Also we can define a quadratic map σ : W+ → Λ2

+V by

σ(ψ) = − i

2
∑
i<j

(ei · ej · ψ, ψ)ei · ej.

Here, Λ2
+V is the self-dual form.

With a given connection dA on Spinc bundle W ⊗ L, we can define the Dirac operator
DA : Γ(W ⊗ L) → Γ(W ⊗ L)

DA(ψ) =
4∑
i=1

ei · ∇A
eiψ.

For the special case where M is a four-dimensional Euclidean space and L as the triv-
ial line bundle, the Dirac operator becomes the same form as it in Dirac equation in
physics DA → /∂.
The Dirac operator divides into two pieces connected by adjoint.

D+
A : Γ(W+ ⊗ L) → Γ(W− ⊗ L), D−

A : Γ(W− ⊗ L) → Γ(W+ ⊗ L).
And the Seiberg-Witten equations are

D+
Aψ = 0, F+

A = σ(ψ) + ϕ.

Here, F+
A = (1/2)F+

2A and F+
2A is the self-dual part of the curvature on the line bundle

L2 (just the square of L). The solutions to the equations form the moduli space (A,ψ).

References

[1] John Douglas Moore.
Lectures on Seiberg-Witten Invariants.
Springer Berlin, Heidelberg, 2001.



AN INTRODUCTION TO STOCHASTIC CALCULUS

John Lain and Dalina Sinn
2024 Mathematics Directed Reading Program - UC Santa Barbara

AN INTRODUCTION TO STOCHASTIC CALCULUS

John Lain and Dalina Sinn
2024 Mathematics Directed Reading Program - UC Santa Barbara

Probability Spaces

On a measurable space (Ω, F ), the probability measure is P : F → [0, 1]. The
following conditions apply:

a. P (∅) = 0, P (Ω) = 1

b. if A1, A2, ... ∈ F and (Ai)
∞
i=1 is disjoint, then P (

∞⋃
i=1

Ai) =
∞∑
i=1

P (Ai).

A probability space contains (Ω, F, P ) which the variables indicating:
• P is the exact probability measure

• Ω is the a space with all the possible outcomes

• F is the collection of possible events where each event is a subset of Ω

Stochastic Processes and Brownian Motion

A stochastic process is a parameterized collection of random variables {Xt}, de-
fined on a probability space (Ω, F, P ) with values in Rn. We often have t ∈ [0,∞)
for the case of continuous stochastic processes. This can be thought of a function
of time, where the outcome at each time is a random variable.

Brownian Motion
Brownian motion was observed by botanist Robert Brown while studying pollen
grains, which moved in liquid in a jittery motion. This movement can be described
mathematically by a 2 dimensional Brownian motion.
A sequence of random variables, Bt, for t ≥ 0, is defined as a standard Brownian
motion if:

1. B0 = 0
2. Bt has continuous sample paths
3. For every t and s, with s < t, we have that Bt−Bs is has a normal distribution

with variance t− s and mean 0.
4. The distribution of Bt −Bs is independent of the behavior of Br, for r < s.

The result of these properties is that Brownian Motion has independent, sta-
tionary increments with mean zero.

Quadratic Variation
Let 0 = t0 < t1 < t2 < ... < tn = T be a partition of a time interval [0, T ]. For
some stochastic process Xt, let

Qn(T,X) =

n−1∑
i=0

(Xti+1 −Xti)
2

The quadratic variation of Xt on the interval is the limit of Qn(T,X) as n gets large
(or as ∆t gets small). For a Brownian motion {Bt}t≥0 the quadratic variation is
equal to T with probability 1, as the expected value of quadratic variation is T
and the limit of the variance of Qn(T,B) approaches 0. One can show that the
total variation of the path is infinite, with probability 1, and the paths t → Bt of
Brownian motion are nowhere differentiable. The total variation of a process, Xt,
on [0, T ], is defined as

lim
∆t→0

n−1∑
i=1

|Xti+1 −Xti|

Stochastic Integration and the Itô Integral

We will now define the Itô Integral of a stochastic process (under certain conditions that we
omit for simplicity). It is possible to generalize the following definitions to multiple dimen-
sions, but we will only focus on the one dimensional case. It is also important to note that
this integral is a random variable.

Definition of the Itô Integral
A elementary function h has the form ht =

∑
i eiI[ti,ti+1)(t), where I is the indicator func-

tion. Note that ht is a piece wise continuous random process. We define the Itô integral of
elementary functions as ∫ T

S
htdBt =

n−1∑
i=0

ei(Bti+1 −Bti)

Then, for a more general process, Xt, we define∫ T

S
XtdBt = lim

n→∞

∫ T

S
X

(n)
t dBt

where X
(n)
t is a elementary function such that

E[
∫ T

S
(Xt −X

(n)
t )2dt] → 0 as n → 0

When computing the Itô integral, the ei term for our elementary process X
(n)
t becomes Xti,

which is a left endpoint definition. Another seemingly reasonable choice would be to use to
use Xti+1, which is the right endpoint. Under the Riemann-Stieltjes integral for a real valued
function, this choice does not change the result of the integral. However, due to the large
variations of the paths of Bt this choice results in different solutions to the integrals. The
choice of a midpoint ti+ti+12 leads to the Stratonovich integral, which has different properties
than the Itô integral. For example, the Itô integral is a martingale whereas the Stratonovich
integral is not.

Computing the Itô integral of Brownian motion: As an example, we compute the value
of
∫ T
0 BtdBt. Let B(n)

t =
∑n

i=0BtiI[ti,ti+1)(t), then

∫ T

0
BtdBt = lim

n→∞

∫ T

0
B
(n)
t dBt (1)

= lim
n→∞

n−1∑
i=0

Bti(Bti+1 −Bti) (2)

= lim
n→∞

(
1

2
B2
T − 1

2

n−1∑
i=0

(Bti+1 −Bti)
2) (3)

=
1

2
B2
T − 1

2
T (4)

because the quadratic variation of Brownian motion is T almost surely. In line (3) we also
use that:

B2
T =

n−1∑
i=0

(B2
ti+1

−B2
ti
) =

n−1∑
i=0

((Bti+1 −Bti)
2 − 2Bti(Bti+1 −Bti))

Properties of the Itô Integral:
For f and g that are stochastic processes, and 0 ≤ S < U < T , we have

i.
∫ T
S fdBt =

∫ U
S fdBt +

∫ T
U fdBt

ii.
∫ T
S (cf + g)dBt = c

∫ T
S fdBt +

∫ T
S gdBt, where c is a constant

iii. E[
∫ T
S fdBt] = 0

iv.
∫ T
S fdBt is FT -measurable

(Intuitively, a function is Ft-measurable if its value can be determined from the path of a
Brownian Motion up to t. For example, B2t is not Ft-measurable.)

Itô Processes and Stochastic Differential
Equations

An Itô process Xt is a stochastic process that can be written as

Xt = X0 +

∫ t

0
asds +

∫ t

0
bsdBs,

with special conditions on at and bt which are random functions of time. We can
write the above equality in a shorthand differential form:

dXt = atdt + btdBt

Itô’s Lemma
Given a 1-dimensional Itô Process Xt and f (t, x) : [0,∞) × R → R a twice
continuously differentiable function, if Zt := f (t,Xt), then we have that:

dZt =
∂f

∂t
(t,Xt)dt +

∂f

∂x
(t,Xt)dXt +

1

2

∂2f

∂x2
(t,Xt)(dXt)

2

=

(
∂f

∂t
(t,Xt) + at

∂f

∂x
(t,Xt) +

1

2
b2t
∂2f

∂x2
(t,Xt)

)
dt + bt

∂f

∂x
(t,Xt)dBt

Stochastic Differential Equations
A stochastic differential equation (SDE) describes a stochastic process which is
equal to an Itô integral of a function of that process. A SDE has the form:

Xt = X0 +

∫ t

0
a(Xs, s)ds +

∫ t

0
b(Xs, s)dBs

This can be written in differential notation as:

dXt = a(Xt, t)dt + b(Xt, t)dBt; X0 = x

Geometric Brownian Motion: A SDE which models asset prices in finance is

ST = S0 +

∫ T

0
rStdt +

∫ T

0
σStdBt

which is written in differential form as

dSt = rStdt + σStdBt

This model, called geometric Brownian motion, describes a stochastic process
which grows at a rate of r plus some random "noise". In finance, this r term
represents an interest rate and σ represents the volatility of the asset. If we let
Yt = Y0e

(r−1
2σ

2)t+σBt and apply Itô’s Lemma, we will see that Yt satisfies the
SDE described above.

dYt = (r − 1

2
σ2)Y0e

(r−1
2σ

2)t+σBtdt + σY0e
(r−1

2σ
2)t+σBtdBt (5)

+
1

2
σ2Y0e

(r−1
2σ

2)t+σBt(dBt)
2) (6)

= (rY0e
(r−1

2σ
2)t+σBtdt + σY0e

(r−1
2σ

2)t+σBtdBt) (7)
= rYtdt + σYtdBt (8)

where we use that (dBt)
2 = dt. So, Yt = Y0e

(r−1
2σ

2)t+σBt solves the SDE.
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Interesting Arithmetic Functions

"A real- or complex-valued function defined on the positive integers is called an
arithmetical function or a number-theoretic function." [1] Here, we will explore
several arithmetical functions which help us better understand the properties of
the natural numbers.
Mobius Function

µ(1) = 1

For n > 1, write n = p
α1
1 p

α2
2 ...p

αk
k

µ(n) = (−1)k, if a1 = a1 = ... = ak = 1

µ(n) = 0, otherwise

Something interesting occurs when we sum µ over the divisors of a number n.
For n ≥ 1, ∑

d|n
µ(d) =

⌊
1

n

⌋
=

{
1 if n = 1

0 otherwise

Euler Totient Function
This function counts the positive integers up to n, that are relatively prime to n.

ϕ(n) =
n∑

k=1,(k,n)=1

1

Taking the sum of ϕ over the divisors of n gives, for n ≥ 1,∑
d|n

ϕ(d) = n

Mangoldt Function

Λ(1) = 0

Λ(n) = log(p), if n = pk for some prime p and m ≥ 1

Λ(n) = 0, otherwise

Taking the sum of Λ over divisors of n gives, for n ≥ 1∑
d|n

Λ(d) = log(n)

Liouville Function

λ(1) = 1

For n > 1, write n = p
α1
1 p

α2
2 ...p

αk
k

λ(n) = (−1)a1+a2+...+ak

Taking the sum of λ over divisors of n gives, for n ≥ 1∑
d|n

λ(d) =

{
1 if n is a square
0 otherwise

Divisor Function

σα(n) =
∑
d|n

dα

We can define the divisor function for any complex number α. The two most
common ones are for α = 0 and α = 1. They are represented as d(n) = σ0(n),
which counts the number of divisors of n and σ(n) = σ1(n), which is the sum of
the divisors of n.

Introduction to Analytic Number Theory

Analysis and Number Theory at first glance seem antithetical. Analysis is concerned with
the continuous, while Number Theory is concerned with the discrete. However, mathemati-
cians never take things at first glance. An active field of research for centuries, Analytic
Number Theory has employed the work of mathematical giants such as Euclid, Gauss,
Dirichlet, Riemann, and Chebyshev. Many problems remain unsolved today, the most fa-
mous being the Riemann hypothesis, rendering this sect of mathematics a curious field for
newcomers. Beyond providing deep insights into the structure of primes and integers, Ana-
lytic Number Theory’s rich tapestry extends to algebraic geometry and theoretical physics,
making it evident that these topics are at the crux of many contemporary problems. In this
project, we discuss some of the critical results of Analytic Number Theory that hold up much
of the modern research in the field.

Average Order of Arithmetic Functions

We introduce an important notation, the "big-oh." For real functions f and g, we denote

f (x) = O(g(x))

If there exists some M > 0 and a such that |f (x)| ≤ Mg(x),∀x ≥ a. This gives us a good
way to compare the growth rates of functions.
If f has a continuous derivative f ′ on the interval [y, x] with 0 < y < x, then∑

y<n≤x
f (n) =

∫ x

y
f (t)dt +

∫ x

y
(t− [t])f ′(t)dt− f (x)(x− [x]) + f (y)(y − [y])

This is Euler’s summation formula, which allows us to approximate a finite or infinite sum
with integrals. Using this formula, we obtain the following results: for x ≥ 1,∑

n≤x

1

n
= log x + C +O(

1

x
)

∑
n≤x

1

ns
=
x1−s

1− s
+ ζ(s) +O(x−s) if s > 0, s ̸= 1

∑
n≤x

1

ns
= O(x1−s) if s > 1

∑
n≤x

1

ns
=
x1−s

1− s
+O(x−s) if s ≤ 0

where C = limn→∞(1 + 1
2 + ... + 1

n − log n) and ζ is the Riemann-zeta function.
We can now derive the asymptotic formula for the partial sums of σα(n). For all x > 1,∑

n≤x
σ0(n) =

∑
n≤x

d(n) = x log x + (2C − 1)x +O(
√
x)

∑
n≤x

σ1(n) =
∑
n≤x

σ(n) =
1

2
ζ(2)x2 +O(x log x)

∑
n≤x

σα(n) =
ζ(α + 1)

α + 1
xα+1 +O(xβ) , where α > 0, α ̸= 1, β = max{1, α}∑

n≤x
σ−1(n) = ζ(2)x +O(log x)∑

n≤x
σα(n) = ζ(1− α)x +O(xδ) , where α < 0, α ̸= −1, δ = max{0, 1 + α}

We may also obtain an asymptotic formula for the Euler function, φ(n). For x > 1, we have∑
n≤x

φ(n) =
3

π2
x2 +O(x log x)

With the above result, we may show that
Theorem The set of lattice points visible from the origin has density 6

π2
.

The Distribution of Prime Numbers

Counting the prime numbers and finding the distribution they hold across the in-
tegers has been studied extensively for many centuries, Prime Number Theorem
currently being one of the crown jewels of all of these mathematical endeavours.
To start, we must begin with the analysis of certain arithmetical functions such
as Chebyshev’s θ(x) and ψ(x) functions. Chebyshev’s funtions are defined as:

ϑ(x) :=
∑
p≤x

log p ψ(x) :=
∑
n≤x

Λ(n)

The majority of our results come from observing the asymptotic behaviours of
said functions, those being:

lim
x→∞

(
ψ(x)

x

)
= 1 lim

x→∞

(
θ(x)

x

)
= 1

We also take use of Abel’s Identity, which is a powerful method of relating these
arithmetical functions:∑

y<n≤x
a(n)f (n) = A(x)f (x)− A(y)f (y)−

∫ y

x
A(t)f ′(t) dt

Now employing our vast knowledge of the subject matter and a little bit of rudi-
mentary algebra, we get the following equivalences:

lim
x→∞

(
π(x)log(x)

x

)
= 1 lim

x→∞

(
π(x)log(π(x))

x

)
= 1 lim

x→∞

(
pn

n log(n)

)
= 1

where π(x) represents the prime number counting function and pn is the nth

prime number. All of the limit relations stated are equivalent to Prime Number
Theorem, meaning showing one of these relations proves all. From all of this
analysis, we get a few rewards in the form of the Shapiro’s Theorem, partial
sums of the Möbius function, Selberg’s asymptotic formula, etc. With these tools
we can know draw a sketch for an elementary proof for Prime Number Theorem.
We start by defining the function

σ(x) := e−xψ(ex)− 1

And now with Selberg’s formula we can characterize this as

|σ(x)|x2 ≤ 2

∫ x

0

∫ y

0
|σ(u)| du dy +O(x)

Because we have shown that prime number theorem is equivalent to showing
σ(x) → 0 as x→ ∞ if we show that

C := lim sup
x→∞

|σ(x)| = 0

we are done. Now, let C > 0 by assumption and by definition we get that

|σ(x)| ≤ C + g(x) where g(x) → 0 as x→ ∞

Our earlier characterization of σ(x) gives a similar inequality

|σ(x)| ≤ C ′ + h(x) where 0 < C ′ < C and h(x) → 0 as x→ ∞

Letting x→ ∞ we find that C ≤ C ′, meaning we have run into a contradiction.
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Cryptography Before Computers

As long as people have needed to share secrets, there has been some cryptosys-

tem, a way of encrypting a message so no one except specific parties with a key

can decrypt it. Then, as long as there have been cryptosystems, there have been

attacks to decrypt these messages without a key. Here are some of the original

examples of cryptosystems. Note, we encode letters of the alphabet as numbers

modulo 26 so we can add them and describe permutations of them.

1. Caesar Cipher - Shift every letter by some fixed number k. We denote this
encryption by φk. Here’s an example:

φ1(SECRET ) = TFDSFU

2. Substitution Cipher - Create some random permutation of your alphabet and

apply that permutation to each letter.

σ ∈ S26 SECRET → σ(S)σ(E)σ(C)σ(R)σ(E)σ(T )
3. Vigenère Cipher - Use a repeated key as a more complex Caesar cipher:

SECRET

+KEY KEY

CIABIR

The key to breaking these ciphers was frequency analysis and the index of coin-

cidence.

FrequencyAnalysis and Index of Coincidence

Frequency Analysis

Comparing the frequencies of letters and letter combinations in normal language

to those of a ciphertext to break a substitution cipher.

For example, e is the most common English letter with a frequency of 11.16%. If
we had a ciphertext from a substitution cipher where g has a frequency of around
11.6% we can deduce that σ(e) = g.

Even though a substitution cipher has 26! ≈ 4 · 1026 keys, but frequencey makes

solving the key quite easy.

Index of Coincidence

Notated IC , it is the probability that two randomly chosen letters from a sample

are the same.

If we had a true random sample then IR = 1/26 ≈ 0.0385, but English isn’t random
sowe get IE = 0.0656. Since this only depends on probabilities, it is invariant under
a substitution cipher. With this fact we can find the key size of a vigenere cipher:

key len = min
k∈N

∣∣∣∣IE −
∑

k Ik

k

∣∣∣∣
This works because if we have the right key size, each group should be a Caesar

cipher, so the IC should be close to IE for every group, so our average should be

close to zero.

The Enigma

The enigmawas a complexmachine that performedmultiple substitution ciphers

on each character, and then changed the substitutions with each letter! In it’s

military usage by the Nazi’s the number of possible keys was...

159, 000, 000, 000, 000, 000, 000

This number on it’s own is infeasible even for modern computers. But through

some clever work by British cryptographers this task could be broken into two

parts. One which was broken by the first computers and Alan Turing and the

other could be broken by frequency analysis

CryptograhyWith Computers and Public Keys

As the technology to communicate, encrypt, and decrypt progressed, there be-

came a need to have a secure exchange with someone you have not met, with no

pre-established key. Ex. sending credit card info to an online store.

This led to the development of Public Key Cryptography. These are what we use

today, and their security relies on “hard problems” which we assume people can’t

solve. So if we can solve the following “hard problems” we can decrypt the cipher.

Discrete Log/ Diffie-Hellman Problem: “Given a cyclic groupG, a generator g, and
an element x, find n such that x = gn.”

Factoring Problem: “Given n = p · q, find primes p and q”

Index Calculus

If we wish to find x such that gx ≡ h (mod p) We start by picking a factor base,
which is typically chosen to be the first r primes: F = {2, 3, 5, 7, ..., pr}. Then, we
search for values of k such that:

gk(mod p) = 2e23e35e5 . . . p
epr
r

Such values of k are rare but is discoverable. We keep track of the gk(mod p)
which do factor in our base. Once we have enough of these relations, we can

solve a system of equations to determine, lf for every f ∈ F such that

glf ≡ f (mod p)
Once that is done, we start again, trying possible m such that:

gmh(mod p) = 2e23e35e5 . . . p
epr
r

If we find a factorization of such an element, then it is easy to compute the discrete

logarithm of h because we know all the ei and the li, and once we have an m then

we can finish with the following:

gmh(mod p) = gm+x(mod p) ≡ 2e23e35e5 . . . p
epr
r

gm+x(mod p) ≡ gl2e2gl2e3gl5e5 . . . glprepr

x = −m + l2e2 + l3e3 + · · · + lpr
epr

The Quad-Sieve

The quad-sieve tries to factor numbers by trying to describe them as a difference

of squares. For example, we can factor 899 as follows:
899 = 900 − 1 = 302 − 12 = (30 − 1)(30 + 1) = 29 · 31

We start by choosing some boundB andwewant to consider all the primes smaller
than B. We denote the number of primes smaller than B as π(B). Then we find
π(B) + 1 numbers ai such that bi ≡ (ai)2 (mod n) and bi only has prime factors

smaller than B.
bi = 2i23i2 . . . p

iπ(B)
π(B)

If we can find two or more bi and bj which multiply to a square then we have that

bibj = c2 and bibj ≡ (aiaj)2 (mod n) therefore we have that c2 ≡ (aiaj)2 (mod n)
which means:

(c − aiaj)(c + aiaj) = k · n

To find which of these biwe can multiply to a square we use linear algebra. We can

describe each of our bi in terms of the π(B) prime factors and we have π(B) + 1
of them so our matrix must have a linear dependence, which will be a product that

gives a square.
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Quantum Cryptography

Quantum computing shakes up classical cryptographywith two major results; “per-

fect” key exchange and Shor’s algorithm. Before we can describe those, here’s

some background on quantum computing.

Where classical computers use a bit being a 0 or 1, quantum computers use qubits
which can be anywhere in between. Let q be a qubit, then we can describe it in
some basis:

q = a|0〉 + b|1〉 a, b ∈ C a2 + b2 = 1

But we can also describe it in terms of some other basis:

q = c|+〉 + d|−〉 c, d ∈ C c2 + d2 = 1
Importantly if we “observe” our qubit we can only do so in terms of one basis. So

either(|+〉, |−〉) or (|0〉, |1〉) and if we do this and find out that q = |+〉 then the
other basis resets to q = 1√

2|1〉 + 1√
2|0〉. This property of “resetting” is the basis of

quantum key exchange.

Quantum Key Exchange

Alice starts by taking two random strings of 0’s and 1’s. Then she uses the first

set to pick between the two possible basis (|+〉, |−〉) vs |1〉, |0〉), and the second
to pick which state (|+〉, |0〉) or (|−〉, |1〉) this describes a string of qubits, for
example: {

Basis Choice: 110010
State Choice: 101000

−→ |1〉|0〉|−〉|+〉|0〉|+〉

After Bob observes the qubits, Alice shares her basis bits. This way Bob and

Alice know which of the qubits they have are the same, therefore Bob can de-

duce what Alice’s state bits are for the places where the basis bits match. These

matching bits are the key!

If Eve had intercepted Alice’s qubits, she can’t make a copy and wait for the basis

bits since you can’t clone qubits. So Eve makes random guesses like bob. After

Bob and Alice have their matching state bits, they can share a couple of them, if

they ever share two bits that are different, they know Eve must have observed

that qubit in the wrong basis and reset it’s value.

Shor’s Algorithm

Shor’s algorithm uses a subroutine that can find the order of an element. So given

an abelian group G and a element g ∈ G find x ∈ N such that gx = 1
The algorithm starts by describing a periodic function as a sum of many simpler

functions. (A quantum version of the Fourier transform). Then it maximizes a par-

ticular inner product on this Fourier transform. Similar to the index of coincidence,

this maximum value will be where all the components of your Fourier transform

have similar values, which will be the period of your function!

Suppose we wanted to factor

n ∈ Z. Choose a random:
a ∈ Z/nZ

Then we use the above to get r
such that ar ≡ 1 (mod n). If r is
odd, start over. If r is even then
we have that(

ar/2
)2

≡ 1 (mod n)

(ar/2 − 1)(ar/2 + 1) = kn

Unless a factor is 1, which has
low odds, we have factored n.

Runtime of factoring algorithms

# of bits vs runtime
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Introduction

Curvature is a central concept in Riemannian geometry, and bounds on the various cur‐
vatures of a manifold M translate into useful constraints on the geometry and topology
of M . In particular, lower bounds on the Ricci curvature RicM of M play a key role in
many important theorems.

We discuss an alternate notion of “curvature bounded below by K” for compact Rie‐
mannian manifolds, which only involves the distance on the manifold and the volume
measure of the manifold. We will show that in the Riemannian setting, a manifold has
Ricci curvature ≥ K if and only if it satisfies this alternate condition. This new defini‐
tion does not explicitly use the Riemannian structure, and thus can be generalized to a
broader, nonsmooth class of metric measure spaces.

Comparison Geometry

To get an idea of manifolds with RicM ≥ K , we can look at the model spaces Mn
K of

constant sectional curvature K , where

Mn
K =


the sphere Sn(K), K > 0
Euclidean space Rn, K = 0
hyperbolic space Hn(K), K < 0.

Intuitively, in positive curvature geodesics diverge then converge, in zero curvature they
diverge at a constant rate, and in negative curvature they diverge increasingly rapidly.

Figure 1. Geodesics in positive, zero, and negative curvature. Image from [3].

Optimal Transport

Optimal transport studies the most efficient way to transport some amount of mass from
one configuration to another, such as moving a pile of sand to build a sandcastle:

We can view the configurations of masses as probability measures µ and ν on M and
measure efficiency via minimizing the cost∫

M
d(x, T (x))2dµ(x)

over maps T : M → M satisfying T♯µ = ν. McCann showed that if M is compact and
µ = ρ0 vol, ν = ρ1 vol, where vol is the normalized volume measure on M , then there
exists a unique optimal transport map T minimizing the above cost. Moreover, T is of
the form

T (x) = expx(∇φ(x))

for some semiconvex φ : M → R, and the Jacobian determinant of T at x is equal to
ρ0(x)/ρ1(T (x)) µ‐almost everywhere.

TheWasserstein 2-Distance

Let Pac
2 (M) be the set of all probability measures on a compact manifold M which are

absolutely continuous with respect to vol, meaning measures for which we can write
µ = ρ vol for some density ρ. We can give this space a metric by defining

W2(µ, ν) =
(∫

M
d(x, T (x))2dµ(x)

)1
2
,

where T is the optimal transport map from µ to ν. This distance is called the 2‐
Wasserstein distance, and can be defined more generally for metric measure spaces
via an alternate formulation of the optimal transport problem.

By the work ofMcCann, for any twomeasures µ0, µ1 ∈ Pac
2 there is a uniqueWasserstein

geodesic (µt)0≤t≤1 between them, so that W2(µs, µt) = |t−s|W2(µ0, µ1) for all 0 ≤ s, t ≤
1. Moreover, there must exist T : [0, 1] × M → M given by

T (t, x) = expx(t∇φ(x)),
so that for each t ∈ [0, 1], the map Tt : M → M defined by Tt(x) = T (t, x) is the optimal
transport map from µ0 to µt. Therefore, we can write µt = (Tt)♯µ0, and for each t the
Jacobian determinant of Tt at x is ρ0(x)/ρt(Tt(x)) µ0‐almost everywhere. Observe that
by properties of the exponential map, d(x, T1(x)) = |∇φ(x)| for all x, hence

W2(µ0, µ1)2 =
∫

M
|∇φ|2dµ.

Optimal Transport Maps and Ricci Curvature

The key connection between optimal transport on M and the Ricci curvature of M is
that Ricci curvature features in a differential inequality for the Jacobian determinant of
the map T (t, x) = expx(t∇φ(x)).
Let Jt(x) be the Jacobian of Tt at x, and let Jt(x) = det Jt(x). We can write Jt(x) in terms
of Jacobi fields along the geodesic γ(t) = expx(t∇φ(x)). Then, via the Jacobi equation
and the Cauchy‐Schwarz inequality, we obtain the inequality

J ′′
t

Jt
−
(

J ′
t

Jt

)2
≤

J ′′
t

Jt
−
(

1 − 1
n

)(
J ′

t

Jt

)2
≤ − Ric(∇φ, ∇φ).

Curvature Bounded Below by K

For µ ∈ Pac
2 (M), define the entropy of µ by

H(µ) =
∫

M
ρ log ρd vol,

where µ = ρ vol. We say M has curvature bounded below by K if for any measures
µ0, µ1 ∈ Pac

2 (M), the unique Wasserstein geodesic (µt)0≤t≤1 satisfies

H(µt) ≤ (1 − t)H(µ0) + tH(µ1) − K
t(1 − t)

2
W2(µ0, µ1)2

for all 0 ≤ t ≤ 1.
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The Main Theorem

Theorem 1 (Equivalence of RicM ≥ K and Curvature Bounded Below By K). A compact
Riemannian manifold Mn satisfies RicM ≥ K if and only if it has curvature bounded below
by K .

Proof. First, suppose RicM ≥ K . Let µ0, µ1 ∈ Pac
2 (M) be arbitrary, and let T (t, x) =

expx(t∇φ(x)) the map associated with the uniqueWasserstein geodesic (µt)0≤t≤1. Then
we have ρt(Tt(x)) = ρ0(x)/Jt(x), and so by this change of variables we have

d

dt
H(µt) = d

dt

∫
M

ρ0
Jt

log ρ0
Jt

Jtd vol = −
∫

M

J ′
t

Jt
ρ0d vol,

d2

dt2
H(µt) = −

∫
M

(
J ′′

t

Jt
−
(

J ′
t

Jt

)2)
ρ0d vol .

By the differential inequality for J , we have
d2

dt2
H(µt) ≥

∫
M

Ric(∇φ, ∇φ)d vol ≥ K

∫
M

|∇φ|2d vol = KW2(µ0, µ1)2.

Defining f (t) = H(µt) + K
t(1−t)

2 W2(µ0, µ1)2, we see that d2
dt2

f (t) = d2
dt2

H(µt) −
KW2(µ0, µ1)2 ≥ 0. Therefore f is convex, and for any t ∈ [0, 1] we have

H(µt) + K
t(1 − t)

2
W2(µ0, µ1)2 = f (t) ≤ (1 − t)f (0) + tf (1) = (1 − t)H(µ0) + tH(µ1),

as desired.

The other direction is more complicated, so we only sketch an outline here. A more
detailed account can be found in [5]. Suppose M has curvature bounded below by K .
Let x ∈ M , v ∈ TxM be arbitrary. Take µ0 to be the normalized volume measure on a
small ball Bε(x), and take the transport map to be Tt(x) = expx(tδ∇φ(x)) for some small
δ and suitable φ satisfying ∇(φ(x0)) = v. From this we obtain a Wasserstein geodesic
(µt)0≤t≤1 given by µt = (Tt)♯µ0, and choosing ε, δ, and φ carefully, the inequality for
H(µt) gives us the desired Ricci curvature bound Ric(v, v) ≥ K|v|2.

Brunn-Minkowski

One geometric consequence of curvature ≥ K is the following Brunn‐Minkowski in‐
equality, generalizing the classic Brunn‐Minkowski inequality in Rn.

Theorem 2 (Generalized Brunn‐Minkowski). Suppose that M has curvature bounded below
by K . For nonempty, compact A0, A1 ⊆ M and t ∈ (0, 1), let At be the set of all points γ(t),
where γ runs over all unit‐length geodesics with γ(0) ∈ A0, γ(1) ∈ A1. Then

ln Vol(At) ≥ (1 − t) ln Vol(A0) + t ln Vol(A1) + K
t(1 − t)

2
d(A0, A1)2.

The following diagram depicts this inequality in the case K > 0, reflecting the fact that
geodesics spread out and then return back together in positive curvature.

Figure 2. Brunn‐Minkowski when K > 0. Image from [5].

This inequality can be improved if we introduce a CD(K, N) condition, which encapsu‐
lates both “curvature bounded below by K” and “dimension bounded above by N ”, and
in fact the validity of this improved inequality is equivalent to the CD(K, N) condition.



EXPLORING RATIONAL POINTS ON ELLIPTIC CURVES

Catherine Chen and Anna Li, mentored by Marcos Reyes
University of California, Santa Barbara

EXPLORING RATIONAL POINTS ON ELLIPTIC CURVES

Catherine Chen and Anna Li, mentored by Marcos Reyes
University of California, Santa Barbara

Introduction to Elliptic Curves

By definition, elliptic curves are smooth, projective, cubic curves with at least one
rational point, denoted by the origin, O [2]

Throughout history, mathematicians have been interested in finding integer solu-
tions to polynomial equations. However, there’s no concrete algorithm for com-
puting rational solutions of cubic equations with two variables. The main focus of
this poster will be surrounding curves written in the normal Weierstrass form and
their torsion points:

y2 = x3 + Ax2 +Bx + C where A, B, and C are integers

This form can be achieved from the general form through a change of variables.
Our reading has been centered around investigating strategies to compute the
rational points on ellipical curves by utilizing the properties of the finite torsion
subgroup.

Basics of Groups

What is a group? A group is a set with a binary operation or a law of composition
on a pair of elements (i.e. (5, 3) → (8)), where the group is defined by addition)
that it satisfies the associative property, contains an identity element, and contains
an inverse.[3]
Additionally, if a group satisfies the commutative property, then it is considered an
abelian group.
Torsion Subgroup
We’ll be looking at the torsion subgroup of an elliptic curve. It is defined as:

E(Q) = {P ∈ E(Q) : n ∈ N, s.t. nP = O }

Simply put, a torsion subgroup is a collection of elements each with a finite order.
Order
The order of a point P on an elliptic curve is the smallest positive integer n such
that nP = O. ie: The curve y2 = x3 − 15x + 22 would have a torsion of Z/Z6
Cyclic Group
A Cyclic Group is an abelian group with a generator that can "generate" every
point in the group.
Example: the group, 7Z = {..., -7, 0, 7, 14, ...} is generated by the element 7 since
every number in the group is a multiple of 7. [3]

Fundamental Theorem of Finitely Generated Abelian Groups
Theorem 13.5: Every finitely generated abelian group G is isomorphic to a direct
product of cyclic groups of the form

Z
p
α1
1

× Z
p
α2
2

× · · · × Zpαnn
× Z× · · · × Z

where the Zpi ’s are primes.

Applying this to elliptic curves, the torsion points on the curve generate the entire
torsion subgroup by repeated addition under the group operation. In this case,
the inverse element will be the reflection of the point across the x-axis, denoted
−P and the identity would be the point at infinity O. The order can be determined
based on the largest order of the individual elements within the cyclic group.

Computing the Rational Points via Group Structure

One way to compute the rational points of an elliptic curve, E, is by acknowledging the
group structure of an elliptic curve’s rational points. Suppose P,Q ∈ E. Since E is a cubic
function, then there must exist a third rational point on the secant line between P and Q
(tangent if we’re just working with P). Let R be the reflection of this third point over the x-axis
where P + Q = R. Thus, it is possible to prove (E, +) is a finitely generated abelian group. [2]

Example Let’s look at the curve E: y2 = x3 − 15x + 22 and take the point P: (-1, 6)
as our starting point. We want to compute P + P as defined above. To compute the tangent
line of P on E, take the derivative dy

dx to get:

dy

dx
=

(3x2 − 15)

2y

Plugging in the torsion generator (-1, 6), we get a system of equations:{
1. y2 = x3 − 15x + 22

2. y = −x + 5

By substituting equation 1. into 2., P + P = 2P = (3, -2). Then, to compute 3P, we solve for
P + 2P by finding the secant line between the two points and finding the third point. This
process ends once the point -P is reached. For this curve, the order of this cyclic group is
6, since 5P = -P, and 6P = O

Relevant Theorems

Some important theorems related to finding the torsion of elliptic curves are as follows:

Mordell-Weil Theorem
E(Q) is a finitely generated abelian group, meaning that a finite set of points can generate
all other rational points on the elliptic curve over the rationals. [1] Thus, it follows that:

E(Q) ∼= E(Q)torsion ⊕ ZrE

ZrE is the points generated by the points of infinite order. We will only be focused on the
first part of this equation, the elements of torsion groups since it’s finite.

Nagell-Lutz Theorem
Let E(Q) be a Weierstrass elliptic curve. Then, every torsion point P ̸= O of E satisfies:

1. The coordinates of P are integers

2. If y = 0, then it is a point of order 2.

3. If y ̸= 0, then y divides D.

Mazur’s Theorem
Let E(Q) be a non-singular rational cubic curve containing a point of finite order m. Then:

1 ≤ m ≤ 10 or m = 12, or
Z/2Z× Z/2MZ where 1 ≤ M ≤ 4

The Consequence of Nagell-Lutz

Because of the Nagell-Lutz Theorem, there is a way to determine a starting
point with which we can use to generate the other rational points using the
discriminant of the curve.

The discriminant is defined as follows:

D = 4a3c + a2b2 + 18abc− 4b3 − 27c2

Suppose integer D is the discriminant of the elliptic curve E with the polynomial
f(x). Then, find the finite amount of integers, y, such that y2 divides D. Afterwards,
take these y values and substitute them into the equation y2 = f (x) to solve for
integer roots. If D ̸= 0, then the roots of f(x) are distinct and the curve is smooth.

This is useful for figuring out the possible torsion points of a given elliptic curve,
providing a reliable way to calculate a starting point P when we don’t know any
rational points off the top of our head. [1]

Example: Let’s look at the elliptic curve E: y2 = x3 + 1. Using the for-
mula from above, we see that the discriminant is -27. The multiples of 27 are:
1, 3, 9, and 27. The only numbers that satisfy our criteria above are ±1 and
±3. Then, we substitute these y-values into E to see what yields us an integer
solution for x. Thus, the possible torsion points of this elliptic curve are (−1, 0)
and (2, 3). Subsequently, we can generate a list of rational points and check the
order for these points to determine the torsion.

To calculate 2P, the following equation, called the duplication formula, can be
used to determine the slope of the tangent line:

λ = 3x2+2Ax+B
2y

Calculating P + nP can subsequently be done by the same method of calculating
the slope between the two points and solving for the systems of equations. We
have created an algorithm modeled after this strategy to compute the torsion
group of elliptic curves. Scan the QR code below to access the website.
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Introduction to Generating Functions

An ordinary generating function is a formal power series f (x) =
∑∞

k=0 akxk whose coefficients
correspond to terms of a sequence {ak}. Since generating functions are formal power series,
they can be added, multiplied, divided, etc. without considering issues of convergence. One
of the main uses of generating functions is solving recurrence equations. Their power stems
from the fact that they contain all the information of a sequence in a single series, whereas
recurrence relations can only relate a few terms.

Interesting Examples of Generating Functions

We can use generating functions to find a closed form expression for the Fibonacci
numbers, which are defined by F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2. Let
f (x) =

∑∞
k=0 Fkxk be the generating function for the Fibonacci numbers. We multiply

both sides of the recurrence relation by xk and sum over k to obtain:
∞∑

k=0
Fk+2x

k =
∞∑

k=0
Fk+1x

k +
∞∑

k=0
Fkxk

1
x2(f (x) − x) = 1

x
f (x) + f (x)

Solving this equation yields a closed form expression for the generating function:
f (x) = x

1−x−x2.
By computing the formal power series expansion of f (x) about x = 0, we find

Fk = [xk]f (x) = [xk] x

1 − x − x2 = 1√
5

(
1 +

√
5

2

)k

− 1√
5

(
1 −

√
5

2

)k

(Here we use the coefficient operator [xk], which extracts the coefficient of xk in a formal
power series A(x) so that [xk]A(x) = ak.)
As another application of generating functions, we will count the number of binary trees
with k + 1 leaves, denoting this number by Ck. From this definition, we obtain the following
recurrence relation:

C0 = 1 and Ck+1 =
k∑

n=0
CnCk−n

The numbers solving this recurrence are the Catalan numbers, and they appear in many
different counting problems. We can also obtain a closed form expression for the Catalan
Numbers by using generating functions.
Theorem: If Ck is the kth Catalan number, then

∞∑
k=0

Ckxk = 1 −
√

1 − 4x

2x
and Ck = 1

k

(
2k

k − 1

)

Key Definitions and Notation

Having familiarized ourselves with generating functions, we will apply this knowledge to a
problem in graph theory. We’ll derive a recurrence relation, and use a generating function to
find a closed-form expression for the solution. To state the problem, we need some definitions:

P-percolation: Given a graph G with vertex set V (G), a p-percolation is a random
graph on V (G), where each edge in E(G) has a probability p of being open, or included
in the p-percolation, and a probability 1 − p of being closed, or deleted.
Rooted Graph: A rooted graph is a graph with a specified vertex v called the root.
Cluster size: The cluster size, denoted Kp(G), of a p-percolation on a rooted graph
G is the random variable counting how many vertices remain in the same connected
component of the root v. This includes v itself.
Mass spectrum: The mass spectrum is the probability distribution of Kp(G).
D-regular tree: A d-regular tree is a rooted infinite tree where every vertex is
adjacent to d vertices. Up to isomorphism, there is only one d-regular tree, denoted Vd.

Setup of the Main Problem

For the purpose of this poster, we consider d-regular trees, Vd. Our final goal is to compute
the mass spectrum of a p-percolation on Vd. We will first construct a recurrence relation
for the number of ways a cluster of a specific size can occur in our p-percolation, then use
generating functions to obtain an explicit formula for the solution to the recurrence. We
conclude, by using this formula, to compute the mass spectrum of a cluster size Kp(G).
To construct the recurrence we need to establish some notation. Let d, k ∈ N and define the
numbers Cd,k and Dd,k as follows:
Cd,k: Fixing an arbitrary neighboring vertex v′ of the root v, let Cd,k be the number of
connected subtrees of Vd with k vertices containing v but not containing v′. Note that the
value of Cd,k is independent of the choice of v′ due to the symmetry of Vd.

Observe C3,3 = 5. Root vertex v denoted by
Dd,k: Let this be the number of connected subtrees of Vd with k vertices containing v

Observe that D3,3 = 9. Root vertex v denoted by

Counting Subtrees

We will construct a recurrence relation for the numbers
Cd,k. As an example, we’ll start by considering V4 and
show how to write C4,4 in terms of C4,0, C4,1, C4,2, and
C4,3. Consider the set of all possible (d − 1) = 3-tuples
summing to k − 1 = 3:
Kd,k = K4,4 = {(k1, k2, k3) ∈ N3 : k1 + k2 + k3 = 3}

Essentially, the tuples tell us what size subtree we want
from each immediate branch of the root, which we can
visualize with k1, k2, k3 in the diagram to the right.
Since, within each branch, there are Cd,ki

different sub-
trees with ki vertices, there are Cd,k1 ∗ Cd,k2 ∗ Cd,k3 ways to choose one subtree from each
branch (that satisfy the constraints of the tuple) and glue them together.
For example, for the tuple (0, 1, 2), we want zero vertices from the k1 branch, one vertex from
the k2 branch, and two vertices from the k3 branch. There are C4,0 ∗C4,1 ∗C4,2 = 1∗1∗3 = 3
ways to construct such a subtree, pictured below:

Summing over the tuples,

C4,4 =
∑

(k1,k2,k3)∈K4,4

Cd,k1 ∗ Cd,k2 ∗ Cd,k3 =
∑

(k1,k2,k3)∈K4,4

d−1=3∏
i=1

Cd,ki

Counting Subtrees (Continued)

To generalize this example, to create a subtree of size k, we need k − 1 additional vertices.
We consider elements, −→

k , of Kd,k = {(k1, ..., kd−1) ∈ Nd−1 :
∑

ki = k − 1}. Now for each
branch, there are Cd,ki

ways to choose a subtree of size ki within each branch. Using the same
reasoning we followed for V4, we conclude:
Theorem: For k ≥ 1, Cd,k is recursively given by:

Cd,k =
∑

−→
k ∈Kd,k

d−1∏
i=1

Cd,ki

Now that we have obtained a recursive formula for Cd,k, we aim to use this to reach an explicit
one. Let’s setup the generating function Cd(t) =

∑
k≥0

Cd,ktk and observe:

Cd(t) =
∞∑

k=0
Cd,ktk = 1 + t

∞∑
k=1

tk−1
( ∑

−→
k ∈Kd,k

d−1∏
i=1

Cd,ki

)
= 1 + tCd(t)d−1

To extract the coefficients of Cd(t) from this equation, we need the following theorem:

Lagrange Inversion Theorem
Suppose Zd(t) and G(x) are power series, and G(0) = 1. If If t G(Zd(t)) = Zd(t), then

[tk]Zd(t) =
(

1
k

)
[xk−1]G(x)k

Let Zd(t) = Cd(t) − 1 and G(x) = (x + 1)d−1, so that
Zd(t) = t(Zd(t) + 1)d−1 = tG(Zd(t))

Now, we may apply Lagrange Inversion theorem to obtain that for k ≥ 1,

Cd,k = [tk]Zd(t) =
(

1
k

)
[xk−1]G(x)k = 1

k

(
k(d − 1)

k − 1

)
Here, we can note that for 3-regular trees, C3,k is the kth Catalan number!

Computing the Mass Spectrum

Now we can use the same logic that we used earlier to find the recurrence for Cd,k in order
to get a recurrence for Dd,k in terms of Cd,k and then simplify to obtain the following:

Dd,k =
∑

−→
k ∈Kd,k

d∏
i=1

Cd,ki
=

k−1∑
s=0

(s(d−1)
s−1

)((k−s)(d−1)
k−s−1

)
s(k − s)

Lastly, we compute the mass spectrum P(Kp(Vd) = k). Well, this is the sum of probabilities
of occurrence for each tree counted by Dd,k. Each of these trees has k − 1 edges we want
open in the percolation, and dk − 2(k − 1) edges we want closed. Moreover, each tree has
an equal chance of occurring, so we multiply Dd,k by the probability of these edges being
open or closed and conclude:

P(Kp(Vd) = k) = (Dd,k)pk−1(1 − p)dk−2(k−1)
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Abstract

This poster will explore various algebraic structures and, in particular, Hopf al-
gebras, a special algebraic structure that plays an important role in a variety of
fields due to its algebraic properties. We will also discuss its representation the-
ory, and study these fields with examples. A website containing more information
and complementary code can be accessed through the QR code at the end of the
poster.

Unital Associative Algebra

We start with unital associative
algebra, a mathematical structure
where elements interact with a binary
operation, multiplication, and con-
tains a multiplicative identity element,
the unit. Multiplication is an opera-
tion used in many other mathematical
structures that takes two elements to
construct a new element in the alge-
bra.

We can write these algebraic axioms
diagrammatically, as seen in the right
column. This diagrammatic notation
will follow us throughout the poster,
and all operations are assumed
to be linear. Studying such alge-
braic structures can serve as powerful
tools to uncover underlying patterns
and abstracted relationships in vari-
ous mathematical systems.

multiplication unit
m : H ⊗H → H 1 : C → H

= =

unital axiom

1 · h = h = h · 1

=

associativity axiom

(g · h) · k = g · (h · k)

Counital Coassociative Coalgebra

Another interesting structure is the
dual of unital associative algebras,
counital coassociative coalgebra.
The "co-" prefix indicates swapping
the domain and codomain of our oper-
ations, namely the multiplication and
unit of the algebra.

To motivate the concept of coalgebra,
note that defining a tensor product
of modules requires a method to dis-
tribute scalar multiplication over each
tensor component. Comultiplication,
defined as ∆(h) =

∑
i h

(1)
i ⊗h

(2)
i , pro-

vides a natural mechanism for achiev-
ing such distribution. This will also be
further discussed in the representa-
tion theory section.

comultiplication counit
∆ : H → H ⊗H ε : H → C

= =

counital axiom∑
i ε(h

(1)
i )h

(2)
i = h =

∑
i h

(1)
i ε(h

(2)
i )

=

coassociativity axiom∑
i∆(h

(1)
i )⊗ h

(2)
i =

∑
i h

(1)
i ⊗∆(h

(2)
i )

Bialgebra

Combining these definitions of two important algebraic building blocks, we can create a bial-
gebra, a mathematical structure that is a unital associative algebra and a counital coasso-
ciative coalgebra with compatible operations. This compatability is encoded in the diagrams
below.

= 1

ε(1) = 1

=

∆(1) = 1⊗ 1

=

∆(hk) = ∆(h)∆(k) Braid:

=

ε(hk) = ε(h)ε(k)

Hopf Algebras

We now have built a foundation to define
Hopf algebras. A Hopf algebra is a struc-
ture that is a bialgebra, and it contains an
additional linear operation – the antipode
S : H → H.

The antipode operation acts similar to the
inverse operation of groups, except that it
is linear and adapts to the counit and co-
multiplication operations.

S = S =

antipode axiom

∑
i h

(1)
i S(h

(2)
i ) =

∑
i S(h

(1)
i )h

(2)
i = ε(h)1

Given a group G, we can define a group
Hopf algebra C[G], a complex vector
space with basis G and multiplication in-
duced by the group multiplication. C[G] is
always cocommutative. Cocommutativity is
analagous to commutivity, but with comulti-
plication instead. On group elements g, co-
multiplication ∆ is defined as ∆(g) = g⊗ g,
counit ε is defined as ε(g) = 1, and an-
tipode S is defined as S(g) = g−1. These
operations can be computed on arbitrary
elements by linearity.

Let G = D3, then C[D3] has basis
{1G, s, r, r2, sr, sr2}. The multiplication is
the same as the group operation:

s2 = r3 = (sr)3 = 1G,
and comultiplication, counit, and antipode
are defined as follows:

∆(r) = r ⊗ r, ε(r) = 1,
S(r) = r−1.

The cocommutativity of C[G] can be shown
as

∆(r) = r ⊗ r = ∆op(r).

Sweedler’s Hopf algebra, denoted as H4,
is the smallest Hopf algebra that is both
noncommutative and noncocommutative -
meaning that elements neither commute
nor cocommute. For example, ∆(θ) 6=
∆op(θ). Studying Hopf algebras gives a
deeper understanding for how such prop-
erties behave and gain insight to represen-
tations of quantum groups and other impor-
tant structures.

The basis of H4 consists of {1, K, θ,Kθ}.
With this basis, multiplication is subject to
the following constraints:

K2 = 1, Kθ = −θK, θ2 = 0.

We define comultiplication, counit, and the
antipode identity as follows (note these are
all linear maps):

∆(K) = K ⊗K, ∆(θ) = K ⊗ θ + θ ⊗ 1,

ϵ(K) = 1, ϵ(θ) = 0,

S(K) = K, S(θ) = θK.

Representation Theory

Representation theory studies abstract algebraic structures by representing
their elements as linear transformations of vector spaces. Motivating with
representations of groups, we will see how the representations of Hopf algebras
are defined analogously.

Definitions

A representation for a group G is
equivalent to a G-module. A G-
module M is a vector space with a
map defined as

ρ : G×M → M,

(g,m) 7→ g ·m,

such that as ρ is linear in M and

(g1 · g2) ·m = g1 · (g2 ·m),

1G ·m = m,

for g1, g2 ∈ G, and m ∈ M .

A representation for a Hopf algebra
H is equivalent to an H-module. An
H-module M is a vector space with
a linear map defined as

t : H ⊗M → M,

h⊗m 7→ h ·m,

such that

(h · k) ·m = h · (k ·m),

1H ·m = m,

for h, k ∈ H, and m ∈ M .

Example

An example of a 2-D D3-module is
the vector space C2

rot with multiplica-
tion

s · v =

[
−1 0
0 1

]
· v,

r · v =

[
cos 2π3 sin 2π

3
− sin 2π

3 cos 2π3

]
· v,

for v ∈ C2
rot.

An example of a 1-D D3-module is
the vector space Csign with multipli-
cation

s · λ = −λ, r · λ = λ,

for λ ∈ Csign.

An example of a 1-D H4-module is
the vector space Cε with multiplica-
tion

K · λ = ε(K)λ = λ,

θ · λ = ε(θ)λ = 0,

for λ ∈ Cε.

Another example of a 1-D H4-module
is the vector space Ck with multiplica-
tion

1 · λ = λ, K · λ = −λ,

θ · λ = 0, Kθ · λ = 0,

for λ ∈ CK .

Tensor Product

Given M,N are G-modules, we can
make M ⊗N a G-module by

g · (m⊗ n) = (gm)⊗ (gn).

Given M,N are H-modules, we can
make M ⊗N an H-module by

h · (m⊗ n) = ∆(h)(m⊗ n).

Example

Using the D3-module examples
above, Csign ⊗ C2

rot
∼= C2

rot as D3-
modules.

Using the H4-module examples
above, CK ⊗ CK

∼= Cε as H4-
modules.
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Objective

Welcome to Kirby’s dream land. Your goal is to distinguish 3-manifolds through the Kirby

Calculus!

Background

The sphere S3 can be obtained by gluing together two solid tori along the homeomor-

phism on their boundaries that interchanges longitudes and meridians.

Figure 1. Demonstration of S3

In fact, any orientable 3-manifold M3 may be obtained by cutting out some solid tori from

the 3-sphere S3 and then pasting them back in, but along different homeomorphisms of

their boundaries. This process is called a surgery on S3.

We can describe the resulting 3-manifold entirely by the image of the meridian α under

the attaching homeomorphism of the boundary torus S1×S1. Suppose that the meridian

is sent to the curve J = pα + qβ, then J is the closed curve that winds around the

boundary torus p times around the meridian and q times around the longitude.

Figure 2. The meridian α is being sent to the curve J

The framing of the trivial knot is a rational number r = p/q that determines the surgery

of the 3-sphere.

We will consider the case of integer surgery, in which we choose q to be 1 so that the

framing r is an integer. In fact, any knot diagrams has a natural framing coming from the

number of times the normal vector turns when we draw the knot, called the blackboard

framing. You can think of it as adding twists or kinks to the knot.

Figure 3. trivial knot with framing +1 and -1, denoted U+ and U−, respectively

Theorem (Dehn-Lickorish): Any compact orientable 3-manifold without boundary can be ob-

tained from the sphere S3 by integer surgery on a framed link.
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Happy problem-solving!

The Kirby Calculus

Manifolds of the same type can have extremely varied presentations by framed links. We

want to find a systematic way to modify framed links so that they represent the same

manifold. Here are your allowed moves:

1. The Kirby Moves:

The First Kirby Move: Adding (or deleting) an unknotted circle with framing +- 1 that

is unlinked with the other component of the given framed link L ∈ S3.

The Second Kirby Move (“handle-slide”): In a given framed link diagram with two

distinguished unlinked components C and K , with framing indices n and k,
respectively, we can slide the first curve C over K so that it encircles K and picking

up the framing of K , while leaving the other components unchanged.

Figure 4. Kirby II

2. The Reidemeister Moves:

The Modified First Reidemeister Move: The original first reidemeister move for knot

diagrams involves resolving kinks. In the context of framed links, resolving kinks will

result in a change of framing by ±1. But we can, on the other hand, resolving two

kinks with opposite orientations.

The Second and Third Reidemeister Move:

Figure 5. The double twist move Ω′
1, Ω2, and Ω3

3. Planer Isotopies: The action of ”smoothing out” the curves.

Theorem (The Kirby Calculus): Two framed links in S3 produce the same 3-manifold if and

only if they can be obtained from each other by a finite sequence of the Kirby moves, the

moves Ω′
1, Ω2, and Ω3 and planer isotopies.

Example

The following framed link diagrams represent the same 3-manifolds. They can be ob-

tained from each other by a finite sequence of the Kirby moves and the Reidemeister

moves.

Figure 6. Two modifications of the Whitehead link

Applications

Analogous to building knot invariants with the Jones polynomial, we can build 3-manifold

invariants with the Kirby calculus. An example would be the complex-valued 3-manifold

invariant I(D) that arises from the Temperley-Lieb algebra TLn. The idea is as follows:

given a framed link presentation of a 3-manifold, we can compute a polynomial bymeans

similar to the Jones polynomial, and with a certain choice of coefficients (primitive 4rth
root of unity), we obtain a complex number that stays invariant under both the Kirby

moves and the Reidemeister moves.

We first define the Jones-Wenzl idempotent f (n) by a recursive formula:

f (n+1) = f
(n)
1 −

∆(n−1)
∆n

(fn
1 enf

(n)
1 )

where fn
1 is f (n) with a strand added on top, and en is the generator of TLn

We then define the element ω =
∑r−2

n=0 ∆nSn(α), where Sn(α) is the image of the closure

of f (n) under the map TLn → S(S1 × I), and ∆n is a complex number obtained from

computing the polynomial of the closure of f (n) under the map TLn → S(R2)

Theorem: Suppose that a closed oriented 3-manifold M is obtained by surgery on a framed

link represented by a planar diagram D. Let b+ be the number of positive eigenvalues and b−
be the number of negative eigenvalues of the linking matrix of this link. Suppose r > 3 and

that A is a primitive 4rth root of unity. Then

I(D) = 〈ω, . . . ω〉D〈ω〉−b+
U+

〈ω〉−b−
U−

is a well-defined invariant of M.

Let’s do an example.

Example Let r = 4, and let D to be this diagram:

We will compute f (2) first:

Then ω =
∑2

n=0 ∆nSn(α) = ∆0α0 + ∆1α1 + ∆2α2

Plug in f (n) into the square, and do the same operation to 〈ω〉−b+
U+

〈ω〉−b−
U−

, we obtain the

desired 3-manifold invariant I(D).
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Fusion Categories

Definition [2]. A fusion category is a category C that is

• monoidal: (⊗,1, α, λ, ρ)

• semisimple: X ∼=
⊕

Xi∈lrr(C)miXi

• C-linear: Hom(X, Y ) ∈ VectC

• rigid: X∗ ⊗X
evX−→ 1

coevX−→ X ⊗X∗

• finite rank: | Irr(C)| < ∞

• 1 is simple

Graphical Language for Fusion Categories

Let C be a strict monoidal category. We have graphical representations [1] for
morphisms in C and their relations, where ∼ denotes equivalence.

• f ◦ g, where f : V → W and g : U → V .

• f1 ⊗ f2

• idV

• evX and coevX :

• The rigidity axioms require the following maps to be the identity on X and
X∗

X
coevX ⊗ idX−→ X ⊗X∗ ⊗X

idX⊗evX−→ X

X∗ idX∗⊗coevX−→ X∗ ⊗X ⊗X∗ evX⊗idX∗−→ X∗

with graphical form:

Examples of Fusion Categories

Let G be a finite group.

1. Rep(G): Category of finite-dimensional representations of G

• Objects: finite-dimensional representations of G over C
• Morphisms: interwiners

• Tensor product: tensor product of representations

ρV⊗W (g) := ρV (g)⊗ ρW (g)

2. VecωG: Category of G-graded Vector Spaces

• Objects: G-graded finite dimensional vector spaces V =
⊕

g∈G Vg.

• Morphisms: linear maps which preserve the grading.

• Tensor product: (
⊕

g∈G Vg)⊗ (
⊕

h∈GWh) =
⊕

k∈G
gh=k

(Vg ⊗Wh)

• 1 = Ce, and for g, h, k ∈ G, vg ∈ Vg, wh ∈ Wh, zk ∈ Zk, associativity

αV,W,Z : (vg ⊗ wh

)
⊗ zk 7→ ω(g, h, k)vg ⊗ (wh ⊗ zk) ,

where ω is a 3-cocycle: ω : G×G×G → C× such that

ω(ab, c, d)ω(a, b, cd) = ω(a, b, c)ω(a, bc, d)ω(b, c, d)

3. Fusion categories of rank 2 with objects 1, X, and X ⊗X = 1⊕ nX.
The only possible values for n are 0 and 1. There are 4 fusion categories of rank 2 [5].

Invariants of Fusion Categories

Let C be a fusion category.

1. Fusion ring and fusion coefficients

• The fusion ring K(C) is a unital Z+-ring whose elements are isomorphism classes
of objects in C. The addition is defined by [X ]+[Y ] = [X⊕Y ], and the multiplication
is defined by [X ] · [Y ] = [X ⊗ Y ].

• Fusion rule : X ⊗ Y = ⊕NZ
XY Z

• Fusion coefficients : NZ
X,Y = dimHom(X ⊗ Y, Z)

2. Frobenius-Perron Dimension

• Fusion matrix: Let NX be the matrix with (Y, Z)-entry NZ
XY for simple objects,

which is called the fusion matrix. NX is a square matrix of nonnegative integers.

• Frobenius-Perron dimension: Let FPdim(X) be the maximal eigenvalue of the
fusion matrix NX , X ∈ Irr(C).

• Frobenius-Perron dimensions give a character of the fusion ring since

FPdim(V ⊗W ) = FPdim(V ) · FPdim(W ),

FPdim(V ⊕W ) = FPdim(V ) + FPdim(W ), FPdim(1) = 1

3. Quantum Dimension: Let C be a spherical category and f : V → V be a morphism.

• The quantum trace of f is defined as:

• The quantum dimension of V is dimV := tr(idV ).

• Quantum dimensions also give a character of the fusion ring.

Near-group Categories

An object X in C is invertible if evX and coevX are isomorphisms. The invertible
objects in a fusion category C form a subcategory and their fusion rule can be
described by a finite group G.

Definition. A near-group category is a fusion category C in which all but one
simple object is invertible.

• Simple objects: G ∪ {ρ}

• Fusion rules: gρ = ρg = ρ, ∀g ∈ G, and

ρ⊗ ρ = n′ρ +
∑
g∈G

g.

• dim(ρ) = n′+
√
n′2+4n
2 , where n = |G|.

Denote such a near-group category by G + n′.

• Given a near-group category of type G + n′, the only possible values for n′

are 0, n − 1, or n′ ∈ nZ [3], with n′ = 0 completely classified by Tambara
and Yamagami [6].

The Case n′= |G|

Near-group categories of type G + n are determined by (G, a, b, c, ⟨ , ⟩), where
c ∈ T, a : G → T, b : G → C and ⟨ , ⟩ is a non-degenerate symmetric bicharcter
satisfying

a(0) = 1, a(x) = a(−x), a(x + y)⟨x, y⟩ = a(x)a(y),
∑
x∈G

a(x) =
√
nc−3,

b(0) = −1

d
,

∑
y

⟨x, y⟩b(y) =
√
ncb(x), a(x)b(−x) = b(x),

∑
x

b(x + y)b(x) = δy,0 −
1

d
,

∑
x

b(x + y)b(x + z)b(x) = ⟨y, z⟩b(y)b(z)− c

d
√
n
,

where d = n+
√
n2+4n
2 [3, 4].
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Introduction

Euler and Navier-Stokes equations govern the motion of fluid with or without
viscosity. They give rise to complex phenomena and intricate structures. The
Navier-Stokes equations consists of a time-dependent continuity equation for
conservation of mass, three time-dependent conservation of momentum equa-
tions and a time-dependent conservation of energy equation.

Navier-Stokes Equation

∂u

∂t
+ (u · ∇u) = −∇p + υ∆u + f (x, t)

div(u) = 0

In the study of fluid dynamics, there is an important dimensionless quantity named
Reynold’s number that helps predict the flow pattern by measuring the ratio be-
tween inertial and viscous forces. A high Re of a fluid system indicates a persis-
tent presence of turbulence. Turbulent flows are much more difficult to describe
than the laminar ones. They are, nevertheless, important to gain insights from to
develop a deep understanding of physical systems like jet engine and tornado. In
this poster, we discuss the rigorous construction of solution to Euler equation in
2D when subject to these non-smooth conditions.

Preliminaries

Sobolev Spaces
Sobolev spaces consist of functions whose weak derivatives belong to Lp. These
spaces provide one of the most useful settings for the analysis of PDEs.
Suppose that Ω is an open set in Rn, k ∈ N, and 1 ≤ p ≤ ∞. The Sobolev space
W k,p(Ω) consists of all locally integrable functions f : Ω → R such that

∂αf ∈ Lp(Ω) for0 ≤ |α| ≤ k

We write W k,2(Ω) = Hk(Ω). The Sobolev space is a Banach space when
equipped with the norm:

||f ||W k,p(Ω) =

 ∑
α≤|k|

∫
Ω
|∂αf |pdx

1/p

for 1 ≤ p < ∞ and p = ∞,

||f ||W k,p(Ω) = max|α|≤ksupΩ|∂
αf |.

Weak Derivatives

Let u ∈ L
p
loc(Ω) with open Ω ⊂ Rn. We will call du

dxj
the weak derivative of u if

every smooth compactly supported function ϕ ∈ C∞
c (Ω) gives the equality∫

Ω

du

dxj
ϕdx = −

∫
Ω
u
dϕ

dxj
dx

Weak derivatives are unique up to almost everywhere equivalence. In our con-
struction, we will encounter functions that seem differentiable except on sets of
zero measure. Weak derivative enables us to construct derivatives for functions
as such.
Weak* Convergence
Let (un) be a bounded sequence of L∞(Ω); then, from the sequence (un), we
can extract a subsequence which is weakly-convergent; that is

∃(unk)k,∃u ∈ L∞(Ω), lim
k→∞

∫
Ω
unkϕ dx =

∫
Ω
uϕ dx, ∀ϕ ∈ L1(Ω).

Reformulation of Euler Equations for v ∈ L1 and ω ∈ Lp

Reality is not so ideal, and in many scenarios we have to work with highly unstable fluid
structure where instantaneous local dynamics occurs in all time.

Weak Solution in Primitive-Variable Form
(i) A velocity field u(x, t) with initial data v0 such that v ∈ L1([0, T ]) × BR for any
R > 0, BR = x ∈ R2, x ≤ R
(ii) v ⊗ v = (vivj) ∈ L1([0, T ]×BR
(iii) div v = 0
(iv) for any Φ = (Φ1, ϕ2) ∈ C1[0, T ], C1(R2) with div Φ = 0,∫

Φ(x, T ) · v(x, T )dx−
∫

Φ(x, 0) · v0(x)dx =

∫ T

0

∫
(Φt · v +∇Φ : v ⊗ v)dxdt,

∇Φ =

(
∂

∂xi
Φj

)
, A : B =

2∑
i,j=1

AijBij

Now, following this weak formulation, we are able to construct and approximate solution
sequence for the Euler equation with respect to conditions of interests.

Lions-Aubin Lemma

Let B0 ⊂ B1 ⊂ B2 be three Banach spaces. We assume that the embedding of B1 in B2 is
continuous and that the embedding of B0 in B1 is compact. Let p, r such that 1 ≤ p, r ≤ +∞.
For T > 0, we define

Ep,r =

{
v ∈ Lp(]0, T [, B0)

∣∣∣∣ dvdt ∈ Lr(]0, T [, B2)

}
.

1. If p < +∞, the embedding of Ep,r in Lp(]0, T [, B1) is compact.

2. If p = +∞ and if r > 1, the embedding of Ep,r in C0([0, T ], B1) is compact.
A more useful version of the lemma would be its reformulation as follows: let {f ϵ(t)} be a
sequence in C{[0, T ], Hs(RN )} such that:

1. max0≤t≤T ||f ϵ(t)||s ≤ C.

2. for any ρ ∈ C∞
0 (RN ), {ρf ϵ} is uniformly in Lip{[0, T ], HM (RN )}, i.e.,

||ρf ϵ(t1)− ρf ϵ(t2)||M ≤ CM |t1 − t2|, 0 ≤ t1, t2 ≤ T

for some constant CM ; then there exists a subsequence {f ϵj} and f ∈
C{[0, T ]Hs(RN )} such that for all R ∈ (M, s) and ρ ∈ C∞

0 (RN ):

max0≤t≤T ||ρf ϵj(t)− ρf (t)||R → 0 as j → ∞

This version of lemma completes the picture of formalism of approximate-solution sequence
by allowing us to construct the last necessary condition.

Figure 1: An Evolving Vortex Sheet

Convergence Results in 2D

Reformulated, we can make sense of solutions where the vorticity is unbounded:

ω0 ∈ Lp(R2) ∩ L1(R2)

Non-smooth initial conditions like this would create large-scale coherent struc-
tures with incredible small-scale complexity, and we refer to them as vortex
sheets. Vortex sheets suggest a natural framework within which to build a math-
ematical theory, since, despite the singularity in vorticity, they still retain the phys-
ically significant feature of finite kinetic energy:∫

Ω
|vϵ|2dx ≤ C(Ω) ∀ ∈ Ω, vϵ ⇒ v ∈ L2(Ω)

The uniform bound suggests there’s a function v and a subsequence, {vϵ}, that
weakly converges to it in L2

loc; hence, it is natural to ask: is v still a solution to
the Euler’s equation, and what kind of defect develop in this limit? A sounding
plan of attack would be developing a rigorous framework of approximate-solution
sequences of 2D Euler equation.

Theorem 1. A sequence of function vϵ ∈ C{[0, T ], L2
loc(R)2} is an approximate

solution sequence for the 2D Euler equation if

• for all R, T > 0, max0≤t≤T
∫
|x|≤R |vϵ(x, t)|2dx ≤ C(R)

div(v) = 0 in the sense of distributions

•• (weak consistency with the Euler equation),

limϵ→0

∫ T

0

∫
(R)2

(vϵ · Φt +∇Φ : vϵ ⊗ vϵ)dxdt = 0

In addition to the conditions above, we also require the following control for p = 1
and p > 1 by assumption.
Seeking to use the Lions-Aubin lemma, we show that, for an proper approximate-
solution sequence, it should also satisfy, for some constant C > 0:

||ρvϵ(t1)− ρvϵ(t2)|| − L ≤ C|t1 − t2| t1, t2 ∈ [0, T ] ∀L > 0 ∀ρ ∈ C∞
0 (RN )

i.e., {vϵ} is uniformly bounded in Lip{[0, T ], H−L
loc (R

N )}.

With these tools at hand, it is possible to prove the following theorem:

Theorem 2. Given vorticity in L1∩Lp, for an approximate-solution sequence that
satisfies conditions (i)-(vi), there exists v ∈ L2(Ω)T ), ΩT = [0, T ]×BR, such that

||vϵ − v||L2(ΩT )
→ 0 as ϵ → 0

and v is a weak solution for the 2D Euler equation. Additionally, we are also
able to make the substantial claim that, out of the two limiting behaviors, only
concentration is possible in 2D.
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Introduction

A partition of n is any λ = (λ1, λ2, ..., λ`) such that
∑̀
i=1

λi = n and

λi ≥ λi+1.

Example. Let λ = (5, 3, 3, 2, 1), then the Ferrers diagram of λ is

The symmetric group on a set of n elements, denoted Sn, consists of

the bijections between that set and with the group operation of

composition.

Let λ = (λ1, λ2, ..., λ`) be a partition of n. The Young subgroup of Sn

corresponding to λ is

Sλ = S{1,2,...λ1} × S{λ1+1,λ1+2,...,λ1+λ2} × · · · × S{n−λ`+1,n−λ`+2,...,n}
∼= Sλ1 × Sλ2 × · · · × Sλ`

.

Example. Let λ = (5, 3, 3, 2, 1), then
S(5,3,3,2,1) = S{1,2,3,4,5} × S{6,7,8} × S{9,10,11} × S{12,13} × S{14}

∼= S5 × S3 × S3 × S2 × S1

A Young tableau of shape λ, where λ is a partition of n, is any array
obtained by bijectively replacing the dots in the Ferrers diagram of λ
with 1, 2, ..., n.

Example. Let λ = (2, 1), then the Ferrers diagram of λ is

And so, all the Young tableaux of shape λ are

1 2
3 ,

2 1
3 ,

3 2
1 ,

2 3
1 ,

1 3
2 ,

3 1
2 .

Remark. There are exactly n! Young tableaux of shape λ, where λ is

any partition of n, because the number of distinct Young tableaux is in

bijection with the number of ways to arrange 1, ..., n in n spaces.

Representations

A matrix representation of a group is a way of viewing its elements

as matrices.

Example. The homomorphism ρ defined to take all elements of Sn

to 1 is called the trivial representation.

Let GL(V ) denote the group of invertible m × m matrices. A

representation of Sn is (V, ϕ), where V is a vector space and

ϕ : Sn → GL(V ) is a homomorphism.

Example. An element of Sn is either odd or even. In particular we

can write every element in Sn as the composition of 2-cycles, which
are odd. So, we can determine whether any element in Sn is even or

odd.

Consider the representation (ϕ, V ) where ϕ : Sn → GL(V ) is defined
by ϕ(x) 7→ sgn(x).

An Algorithm

Theorem. There is a one-to-one correspondence between elements in

Sn and pairs of Young tableuax of the same shape with increasing rows

and columns.

A partial tableau is an array with distinct entries whose rows and

columns are increasing.

Let P be a partial tableau. Take x /∈ P , to insert x in P we use the
following algorithm:
1. Let R := the first row of P .
2. While x is less than some element of row R, do

a. Let y be the smallest element in row R that is strictly greater than x. Replace y by x in row R.

b. Set x := y and R = R + 1.
3. When x is greater than every element in row R, put x at the rightmost end of row

R.

Example. Let x = 3,

P =

1 2 5 8
4 7
6
9

We first insert 3 into the first row, then insert 5 in the second row, and

finally we insert 7 in the third row. The partial tableaux resulting from

each step are, respectively

1 2 3 8
4 7
6
9

,

1 2 3 8
4 5
6
9

,

1 2 3 8
4 5
6 7
9

.

Using the algorithm above, we can construct a Young tableau from any
permutation in Sn. To construct the pair of Young tableaux as in the
theorem statement, we must take the permutation
σ = (σ1σ2...σk) ∈ Sn, then
1. Let P, Q be the empty tableaux.

2. For i increasing from 1 to n, insert σi in P , and set the position where σi was

inserted to i in Q.

We end with a pair of Young tableaux with increasing rows and

columns.

Example. Let π = (4236517) ∈ Sn. Then, the tableaux constructed

using the algorithm above are

∅, 4,
2
4,

2 3
4 ,

2 3 6
4 ,

2 3 5
4 6 ,

1 3 5
2 6
4

,
1 3 5 7
2 6
4

= P

∅, 1,
1
2,

1 3
2 ,

1 3 4
2 ,

1 3 4
2 5 ,

1 3 4
2 5
6

,
1 3 4 7
2 5
6

= Q

To prove the other direction of the theorem, we basically follow the

algorithm in reverse. We take the last element we inserted to

construct Q, then we know that the position of that element

corresponds to the position of the last element inserted to construct

P . Now we can delete that element from P by retracing the steps in

the algorithm above.

Specht Modules

Two λ-tableaux are row equivalent, t1 ∼ t2, if for all i, the ith row of

t1 contains the same elements as the ith row of t2.

Example. For λ = (2, 1), the following Young tableaux are row
equivalent,

1 2
3 ∼ 2 1

3
A λ-tabloid is {t} = {t1 : t1 ∼ t}, where t is a Young tableau of shape

λ.

Example. Let t = 1 2
3 , then {t} =

{
1 2
3 ,

2 1
3

}
.

Let λ partition n, and let {t1}, ..., {tk} be a complete list of distinct

λ-tabloids. Then, the permutation module corresponding to λ, Mλ,

is the vector space over C with basis {{t1}, ..., {tk}}.
Example. M (n) is a vector space over C with basis {{1 2 3...n}} as all

tableaux of shape (n) are row equivalent.

Let t be a Young tableau with rows R1, .., R` and columns C1, .., Ck.

Then,

Rt = SR1 × SR2 × · · · × SR`

and

Ct = SC1 × SC2 × · · · × SCk

are the row-stabilizer and column-stabilizer, respectively.

Remark. The row-stabilizer permutes elements within each row of

the Young tableau, and the column-stabilizer permutes elements

within each of its columns.

Example. Consider the Young tableau t = 4 1 2
3 5 . The row-stabilizer is

S{1,2,4} × S{3,5}, and the column-stabilizer is S{3,4} × S{1,5} × S{2}.

The polytabloid associated with a tabloid {t} is

et =
∑
π∈Ct

sgn(π)π{t}.

In particular, we can obtain et by adding together all tabloids

obtained by column permutations of t.

Example. Let t = 1 3 5
4 2 , then

et =
{

1 3 5
4 2

}
−

{
4 3 5
1 2

}
−

{
1 2 5
4 3

}
+
{

4 2 5
1 3

}
.

For any partition of n, λ, the corresponding Specht module, Sλ, is

the submodule of Mλ spanned by the polytabloids et, where t is of
shape λ.
Theorem. Let λ partition n. The Specht modules Sλ are all of the

irreducible representations of Sn over C.
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Introduction

Throughout history, the need for secure communication has always been an im-

portant issue in various areas, such as private communication during war or credit

card encryption. Prior to 1970s, symmetric-key cryptosystems were mainly imple-

mented. Such cryptosystems required the sender and the receiver to agree on a

private key, which led to the difficulty of finding a secure line and exchanging keys

without being intercepted. Later, public-key cryptosystems (asymmetric cryptosys-

tems) were invented, where the sender and receiver could publicly agree on the

public key and set their own private keys. Without the need to send private keys,

public-key cryptosystems are much less vulnerable. The RSA cryptosystem is one

of the most famous public-key cryptosystems.

RSAAlgorithm

1. Receiver: Choose two distinct large prime numbers p and q.

2. Receiver: Compute n = pq and φ(n) = (p − 1)(q − 1).
3. Receiver: Choose an integer e such that gcd(e, φ(n)) = 1.
4. Receiver: Compute d such that de ≡ 1 (mod φ(n)).
5. Receiver: Send n, e publicly.

6. Sender: Send c ≡ me (mod n).
7. Receiver: Decrypt m ≡ cd (mod n).

In general, d is the private key, (n, e) are the public keys.

Significance of Prime Numbers

To attack RSA, the most straightforward way is to factor n. With n = pq, the
observer can compute φ(n) = (p − 1)(q − 1), and thus get the private key d. In
modern implementations of the RSA cipher, the prime numbers p and q chosen
to compute the encryption key n should be at least hundreds of digits long to
ensure security. However, up until now, there was no known factoring method for

the product of two hundreds-digit-length primes that could be done in a feasible

time frame. Therefore, the high security level of RSA cryptosystems relies on the

difficulty of factoring n to get p and q. In the following sections, we will introduce
methods to find large primes needed for decryption and also possible attacks on

factoring the product of two large primes.
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Primality Testing

To choose our p and q, we need to find large, unique numbers and ensure their
primality. Instead of trying to factorize an integer x, we can use primality testing
to be more efficient.

In the following, wewill introduce two probabilistic primality tests, which determine

how likely it is that a given integer is prime.

Fermat Primality Test

Recall Fermat’s Little Theorem:

If p is a prime number and a is not divisible by p, then ap−1 ≡ 1 (mod p).
Implementing the contrapositive of Fermat’s Little Theorem, Fermat ”PrimalityTest”

is actually a ”Composite Test”. It concludes x is composite if there exists an integer
a such that gcd(x, a) = 1 and ax−1 6≡ 1 (mod x). While if ax−1 ≡ 1 (mod x), x is
probably prime.

Given that this is a probabilistic primality test, there are infinitely many cases where

this test fails. They are called Carmichael numbers or absolute pseudoprimes. For

example, the smallest Carmichael number is 561.

Miller-Rabin Primality Test

Compared to Fermat Primality Test, Miller-Rabin Primality Test is stronger and has

a lower probability in concluding a composite number as prime. It is currently used

in many RSA implementations.

The main idea:

1. Given n, an odd integer.

2. Write n − 1 = 2km, where m is odd now.

3. Choose a random positive integer a such that 1 < a < n − 1.
4. Compute b0 ≡ am (mod n).
5. If b0 ≡ ±1 (mod n), then stop the test and n is probably prime.
If not, continue the test and compute bi ≡ b2

i−1 (mod n).
6. If bi ≡ 1 (mod n), then n is composite.
If bi ≡ −1 (mod n), then n is probably prime.

7. Iterate until stopping or reaching bk−1.

If bk−1 6≡ −1 (mod n), then n is composite.
If not, then n is probably prime.

Scan this QR code for the Python implementation of

Miller-Rabin Primality Test.

For a given integer n and a choice of a, the probability
of Miller-Rabin Test failing and wrongly declaring that a

composite n is prime is at most 1
4. Thus, if this test is re-

peated for k times, the probability of failing is at most (1
4)

k.

Repeating 5 times with 5 different a, we can reduce the
probability of error to below 0.1%, which is usually accu-
rate enough.

Reconsider the Carmichael number n = 561. Then n − 1 = 560 = 24 × 35. Let a = 2.
Then:

b0 ≡ 235 ≡ 263 (mod 561)

b1 ≡ b0
2 ≡ 166 (mod 561)

b2 ≡ b1
2 ≡ 67 (mod 561)

b3 ≡ b2
2 ≡ 1 (mod 561)

Since b3 ≡ 1 (mod 561), 561 is correctly declared to be composite.

Factoring Attacks

The Birthday Attack

The motivation behind the birthday attack is the idea that, for example, if there are

23 people in a room, then there is about a 50% chance of two people sharing a

birthday and additionally that probability increases to about 70% with 30 people

in the room. In general, if there were n unique birthdays, it would take about√
2n log(2) people before we would expect a match.

The birthday attack uses this idea to find factors of n. It will take us about√
2n log(2) random numbers before we find a factor of n. The following algorithm

allows us to do this efficiently:

1. Choose a random polynomial f(x) that maps values Z/nZ ⇒ Z/nZ.
2. Let x = 2 and y = 2 (standard convention).
3. Replace x with f(x) and y with f(f(y)).

4. Compute d = gcd(|x − y|, n).
5. If d = 1, return to step 3. If d = n, then the algorithm fails, so we must restart
at step 1 and pick a new function f(x). Otherwise, if d 6= 1 and d 6= n, then d is
our factor of n.

Quadratic Sieve

In this factoring method, ifwewant to factor some number n, wemust find integers

x and y such that x2 ≡ y2(mod n), but x 6≡ y(mod n). In this case, n is composite
and gcd(x-y,n) gives us our nontrivial factor of n.

In order to find our integers x and y, we must produce squares that are slightly

larger than a multiple of n using bin + jc for various values of i and small j.
Once we find our x integers, we must write them as products of primes less than

20, which will comprise our factor base. Each of our squares will represent a row

of a matrix with the entries being the exponents of the primes. For example:

9398 0 0 5 0 0 0 0 1

19095 2 0 1 0 1 1 0 1

1964 0 2 0 0 0 3 0 0

17078 6 2 0 0 1 0 0 0

8077 1 0 0 0 0 0 0 1

3397 5 0 1 0 0 2 0 0

14262 0 0 2 2 0 1 0 0

Now, if we have a linear dependency mod 2 among the rows, the product of the

numbers yields another square, our y2. If x 6≡ ±y(mod n), then gcd(x-y,n) gives us
our factor of n.

The p − 1 Factoring Algorithm

1. Choose an integer a > 1 (a = 2 is common).
2. Choose a bound B. The size of B will depend on the situation, but if B is too

small, the chance of success is small and if B is too big, then the algorithm is

very slow.

3. Compute b ≡ aB!(mod n) where
a. b1 ≡ gcd(b − 1, n).

b. bj ≡ bj
j−1(mod n).

c. Then bB ≡ (mod n).

4. Let d = gcd(b − 1, n). If 1 < d < n, we have our nontrivial factor of n.
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Abstract

Shor’s Algorithm is a quantum algorithm used to efficiently factor large numbers.
We investigate quantum computing and examine the idea of leveraging this algo-
rithm as a quantum attack against the classical RSA cryptosystem.

Cryptography and RSA

Fig. 1: Our main characters

Fig. 2: Eve with her quantum computers

Euler’s φ Function

Let m ∈ N. The value φ(m) is

#{k ∈ N | gcd(k,m) = 1, k ≤ m}

If m = pq for p, q prime, then

φ(m) = (p− 1)(q − 1).

Euler’s Theorem

For x ∈ Z with gcd(x, n) = 1, we have

xφ(n) ≡ 1 (mod n).

The RSA Algorithm

Bob’s Private Knowledge

p = 17 q = 5
n = pq = 85 φ(n) = (p− 1)(q − 1) = 64

e = 7 d ≡ e−1 (mod φ(n)) = 55

Bob’s Public Key

n = 85 e = 7

Bob Checks

p and q are prime
gcd(e, φ(n)) = 1

Alice Computes

She encodes her message m as the
number m = 11.

Computes c ≡ me (mod n) or
71 ≡ 117 (mod 85)
and sends c to Bob

Bob Decrypts

He computes cd (mod n) and gets

7155 ≡ 11 (mod 85)

because, by Fermat’s Little Theorem,

cd ≡ med ≡ m1+βφ(n) ≡ m (mod n).

Eve Wants to Know

She knows 85 = pq for some
primes p and q.

If she knew p and q, then
she could compute

φ(n) = (p− 1)(q − 1).
Then she could compute
d ≡ e−1 (mod φ(n)), and

decrypt any messages sent
to Bob with this public key.
If only she could factor n...

Eve Interferes and
accesses c, but...

She only knows c, n, and e.
She knows that

c ≡ me (mod n),

but can’t figure out what m is
without factoring n.

Shor’s Algorithm

Herein lies our ultimate tool for decrypting the once-impenetrable fortress
of RSA encryption: Shor’s algorithm, a quantum breakthrough poised to
shatter the very foundation of digital security. We have a simple goal: find
the factors of some integer N . Let’s go through the process to do so:

Begin: hacker makes a guess–call it a–
which will be an integer between 1 and N

Calculate gcd(a,N)

Is the gcd
equal to 1?

Then K =
gcd(a,N) is a

non-trivial factor–
and so is N

K .
The algorithm

concludes.
QUANTUM STEP: Find
the smallest integer r

such that ar ≡ 1 (mod N)

What is the
parity of r? In

particular, will ar/2

be an integer?

Algorithm can-
not go further

Compute g =
gcd(ar/2 + 1, N)

Is g equal
to N or 1?

We have found
non-trivial divisors

g and N
g and

the algorithm
concludes.

no

yes

odd

Try again!

even

yes
no

Shor’s Algorithm used to find
the period of

f (q) = Aq (mod M)

where M = 15, and A = 7. In
this case, it is easy to see that
p = 4. Images adapted from [5].

The Quantum Step

Without regard for the quantum step, Shor’s algorithm is a rather straightforward way to find
the factors of large integers and destroy cybersecurity. But the quantum step is crucial–how
does it go? Let’s discuss:

In quantum mechanics, information is encoded by qubits which can exist simultaneously
(until measured). These qubits can be superpositioned or entangled using quantum gates
in ways that determine their outcome when measuring them–how likely certain qubits are
measured are determined by their probability amplitude. Here is the process:

|x⟩ H
1√
Q

∑Q−1
x=0 |x⟩|ax (mod N)⟩ (∗)

|ax (mod N)⟩

where Q > N2. We measure (∗), and we obtain a quantum interference that collapses
the first register containing |x⟩ into a singular y = ax0 (mod N). But properties of modular
arithmetic tell us that x0 + kr satisfy the equation for all k and a singular r, so we take a
superposition of x0 like so:

|x0⟩ H
1√
r

∑r−1
k=0 |x0 + kr⟩ (∗∗)

The output reveals the periodicity of the function, precisely captured by r. And in order to
extract this value from our periodic function, we will apply a quantum Fourier transform,
which, when applied to (∗∗), gives us

1√
Q

Q−1∑
c=0

e
2πix0c

Q

r−1∑
k=0

e
2πikrc

Q

 |c⟩

This looks quite messy, but what’s important to us is that this QFT will constructively in-
terfere at multiples of r–take a look at the series in the parenthesis. It is a geometric series
whose value will be large when r c

Q is close to an integer. We can measure the c that gives
us an integer multiple of r by using a classical post-processing algorithm such as continued
fractions to obtain r–and once we do, the process concludes, and the algorithm continues.

Fig. 5: Quantum Fourier Transform

Image from [4]

Fig. 6: Fourier Transform
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Introduction to Polymer Physics

Suppose there are many linear homopolymer chains dancing in a spatial domain Ω with volume
V . The chemical potential of such system can be represented as a smooth function µ : Ω →
R.

Objective

Give a numerical algorithm which takes a function ρ as input and returns an optimal µ∗ :
Ω → R to minimize the functional,

G[µ] :=

∫
Ω
drµ(r)ρ(r) + n lnQ[µ] (1)

where n is the number of identical homopolymer chains in the melt, ρ : Ω → [0,+∞) pre-
scribed monomer density profile, a smooth function satisfying periodic boundary condi-
tions, and Q is another functional which can be computed by:

Q[µ] =
1

V

∫
Ω
drq(r, 1; [µ]) (2)

where q(·, ·, [µ]) : Ω × [0, 1] → R the chain propagator corresponds to µ, satisfying Fokker-
Planck Equations,

∂

∂s
q(r, s, [µ]) = ∇2q(r, s, [µ])− µ(r)q(r, s, [µ]), q(r, 0, [µ]) = 1 (3)

In this problem, the G is convex and thus any local minimum is also global minimum. Moreover,
its gradient is given by,

δG[µ]

δµ(r)
= ρ(r)− ρ̃(r, [µ]) (4)

where ρ̃(·, [µ]) : Ω → R is the monomer density generated by µ,

ρ̃(r, [µ]) =
ρ0
Q[µ]

∫ 1

0
ds q(r, s, [µ])q(r, 1− s, [µ]) (5)

where ρ0 :=
1
V

∫
drρ(r) is called the volume-averaged monomer density of the system.

Fig 1 (Gaussian chain model [2] pg. 42) Fig 2 (Gradient descent on µ)

Self Consistent Field Theory
The system above can be solved using Self Consistent Field Theory (SCFT). Since G[µ] is
convex, a natural way to find µ∗(r) would be an iterative process where we traverse down the
gradient of G — a gradient descent (See Fig 2). Here, we introduce a fictitious time variable
to denote our iteration step. Upon each iteration, the µj → µj+1 update is given by,

µj+1/2(r) = µj(r)−∆t

(
δG[µ]

δµ(r)

∣∣∣∣
µ=µj

)
(6)

µj+1(r) = µj+1/2(r)− 1

V

∫
drµj+1/2(r) (7)

Equation (6) is the forward Euler formula applied at the half-step, but equation (7) is a cor-
rection to keep the mean 0 and lift the degeneracy of the solution. Additionally, the integral in
equation (7) can be evaluated by composite trapezoidal rule, which is highly efficient over
periodic boundary conditions. Note that this scheme is conditionally stable, so ∆t must be
chosen appropriately.

Solving 1-D Fokker-Planck Equations
Discretizing the space: Let Ω = [0, L] 1-D spatial domain, 0 = x0 < x1 < · · · < xNx−1 = L
equispaced partition of Ω where Nx spatial resolution, ∆x := L/(Nx − 1).
Discretizing the chains: Let 0 = s0 < s1 < · · · < sNs−1 = 1 equispaced partition of [0, 1]
where Ns chain resolution, ∆s := 1/(Ns − 1).

To solve eqn. (3) efficiently, we use the so-called pseudo-spectral method. Fix a µj and
rewrite eqn. (3) as,

∂

∂s
qj(x, s) = Lqj(x, s)

where differential operators L := LD + LW , LD := d2/dx2, and LW (q) := −µjq. The exact
solution of this differential equation is qj(x, s) = exp(sL)qj(x, 0) with initial condition qj(x, 0) =
1 for all x.

Proposition 1: Strang Splitting

Suppose L, LA, and LB are differential operators with L = LA + LB. Then:

exp(∆sL) = exp(∆sLA/2) exp(∆sLB) exp(∆sLA/2) +O(∆s3) as ∆s → 0.

From this proposition, the qj(x, s) → qj(x, s +∆s) update is given by:

qj(x, s +∆s) ≈ exp[−∆sµj(x)/2] exp [∆sLD] exp[−∆sµj(x)/2]q(x, s) (8)

While the first and third terms exp[−∆sµj(x)/2] are diagonalizable, the middle term
exp[∆sLD] is not. However, the middle term is diagonalizable in Fourier space, that is:

Proposition 2: In Fourier space, exp(∆sLD) behaves like function multiplication

Let f (x) be a smooth L-periodic function with domain [0, L]. Discretize f as {f (xl) :
l = 0, . . . , Nx − 1}, and let f̂k denote the k-th entry of the FFT of f ; then, for each
k = 0, 1, . . . , Nx − 1:

̂exp(∆sLD)fk =

{
exp
[
−4π2k2∆s/L2

]
· f̂k if k ≤ Nx/2

exp
[
−4π2(Nx − k)2∆s/L2

]
· f̂k if k > Nx/2

(9)

The central result of this section is an algorithm which takes a chemical potential µj : Ω → R
as input, and produce a corresponding chain propagator qj(x, s) : Ω× [0, 1] → R:

Discretized Pseudo-Spectral Algorithm, with time complexity O(NsNx logNx)

Input: {µj(xl) : l = 0, . . . , Nx − 1} - The chemical potential at j-th iteration step.
Steps:

• 1: Set qj(xl, s0) = 1 for each l

• 2: For each n = 1, . . . , Ns − 1 do:

– 2a: Let q′l = exp[−∆sµ(xl)/2] · qj(xl, sn−1) for each l

– 2b: Let q′′ = the FFT of q′

– 2c: Let q′′′k = exp(−4π2k2∆s/L2) · q′′k for each k ≤ Nx/2

– 2d: Let q′′′k = exp[−4π2(Nx − k)2∆s/L2] · q′′k for each k > Nx/2

– 2e: Let q′′′′ = the inverse FFT of q′′′

– 2f: Set qj(xl, sn) = exp[−∆sµ(xl)/2] · q′′′′l for each l

Output:{qj(xl, sn) : l = 0, . . . , Nx − 1, n = 0, . . . , Ns − 1} - The chain propagator corre-
sponds to µj.

Once we have qj, we can put it into eqn. (2) first to compute Q[µj] and put qj and Q[µj]
together into eqn. (5) to get ρ̃j. Then, from eqn. (4), the new gradient of G is given by ρ− ρ̃j.
Therefore, SCFT is a complete algorithm for solving this minimization problem.

Concrete Example: 1-D Case
Consider the target density profile,

ρ(x) = ρ0[1 + tanh(η cos(2πL−1x))], 0 ≤ x ≤ L (10)

Set L = 10, ρ0 = 0.5, Nx = Ns = 128, ∆t = 2.5, and run the algorithm for both η = 2 and
η = 5. The result is shown in Fig 3.

Fig 3 (Sample inputs and outputs of the algorithm) (a) Input ρ specified by eqn.
(10) with η = 2. (b) Output µ∗. (c) ρ̃ generated by µ∗, where this ρ̃ should be

identical to (a). (d), (e), (f) are given by the same routine with η = 5.

Using Neural Network to Optimize
With that being said, the Big-O for the Discretized Pseudo-Spectral Algorithm
is O(NsNx logNx); for large systems, this is still expensive. Therefore, we
propose a machine learning approach where we train a Feed-Forward Neural
Network (FNN) to learn µ∗ from a given target density ρ.

Fig 4 (FNN Architecture) Not representative of actual layer widths
(128-256-512-256-128); compile with optimizer ADAM and loss function MSE.

Taking Nx = 128, η = 5, and using a periodic Gaussian Process to generate
1000 training data, we attempt to learn the optimal µ∗ (d) of Fig 3.

Fig 5 (Learned µ∗ with FNN) Model output along with post-processing that
removes output periodicity.

The model successfully learned the global behavior; however, we suspect that
the model picked up on the periodic trends within the training data. To confirm
this suspicion, we removed high-frequency Fourier components from the FNN
predictions and observed an improved fit.
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