An Introduction to Information Geometry

Daniel Badilla Jr, Ran Ji, James McNeice University of California - Santa Barbara

The Normal Distribution

The standard normal distribution, defined by parameters μ, the mean of a population for some statistic and σ, the standard deviation. Letting $\theta=(\mu, \sigma)$ where $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}^{+}$then the corresponding probability density function (PDF)

$$
p_{\theta}(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(x-\mu)^{2}}{\sigma^{2}}\right](1)
$$

and of course, the familiar graph,

From (1) we notice that there is a one to one correspondence between PDFs and ordered pairs, so if we take $p_{\theta}(x)$ as a particular PDF, we can identify $S:=\left\{p_{\theta}(x) \mid \theta \in \mathbb{H}^{2}\right\}$ which leaves the relation $\mathbb{H}^{2} \cong S$.

Information Geometry

Information Geometry looks to use differential geometry to garner a deeper understanding of statistics. In particular, we can apply various techniques to make optimal decisions given a set of parameters (Nielsen). Statistical Inference, or the problem of choosing a model given sample data is one common application

It turns out S naturally becomes a statistical manifold, a special case of Riemannian manifolds. Generally, Riemannian manifolds possess a Riemannian metric which we can think of as the collection of inner products on the tangent spaces of all points on the manifold. We would like to define a special Riemannian metric g which is called the Fisher Information Metric. We let $\ell_{\theta}(x)=\log \left(p_{\theta}(x)\right)$ (the so called log-likelihood), then

$$
\begin{equation*}
g_{i j}(\theta)=\mathrm{E}\left[\frac{\partial \ell_{\theta}}{\partial \theta_{i}} \frac{\partial \ell_{\theta}}{\partial \theta_{j}}\right] \tag{2}
\end{equation*}
$$

which results in

$$
g_{S}=\frac{1}{\sigma^{2}}\left[\begin{array}{ll}
1 & 0 \tag{3}\\
0 & 1
\end{array}\right]
$$

The pair (S, g) is then a statistical manifold, that is, a Riemannian manifold the set of which represents a statistical family. Furthermore, (S, g) is isometric to the Poincaré upper half plane \mathbb{H}^{2}.

The Upper Half Plane \mathbb{H}^{2} (Hyperbolic Space)

\mathbb{H}^{2} refers to the hyperbolic space, which is a two-dimensional manifold with constant negative curvature. Defined as

$$
\mathbb{H}^{2}=\{\langle x, y\rangle \mid y>0 ; x, y \in \mathbb{R}\}=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}
$$

- Since \mathbb{H}^{2} is a manifold (locally Euclidean), there exists a mapping, commonly known as a patch. A patch provides a way to locally parametrize a portion of the manifold using coordinates from Euclidean space
- Given a smooth surface $S, \forall p \in S$, there exists a regular patch
$\sigma: U\left(\subseteq \mathbb{R}^{2}\right) \rightarrow W\left(\subseteq \mathbb{R}^{3}\right)$ such that $\sigma(U)=S \cap W, \sigma: U \rightarrow S \cap W$ is a homeomorphism
- Poincaré Metric of $\mathbb{H}^{2}: g_{\mathbb{H}^{2}}=\frac{d x^{2}+d y^{2}}{y^{2}}=\frac{1}{y^{2}}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
- The Poincaré metric and the Fisher Information metric coincide, sharing the same mathematical form

\mathbb{H}^{2} Isometric to Poincaré Disk \mathbb{D}

- Poincaré Disc : $\mathbb{D}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}<1\right\}=\{z=x+i y \in \mathbb{C} \mid z \bar{z}<1\}$ whose Poincaré metric is $g_{\mathbb{D}}=d s^{2}=\frac{d x^{2}+d y^{2}}{\left(1-x^{2}-y^{2}\right)^{2}}$
- Given two smooth surfaces S_{1} and S_{2}, a smooth map $f: S_{1} \rightarrow S_{2}$ is called an isometry if it takes any curve in S_{1} to a curve of the same length in S_{2} In other words, isometry preserves geometric structures of surfaces

- The Cayley Transform

$$
c: \mathbb{H}^{2} \rightarrow \mathbb{D} \quad \text { defined as } \quad z \longmapsto \frac{z-i}{z+i}
$$

is an isometry from \mathbb{H}^{2} to \mathbb{D}.

Space of Normal Distributions Is Isometric to Hyperbolic Space

Gauss's Theorema Egregium states that the Gaussian curvautre of a surface depends only on its Riemannian metric (The first fundamental form).

- \mathbb{H}^{2} and \mathbb{D} are isometric and their Gaussian curvatures are negative constant.
- By Uniformization theorem, there is only one possible simply-connected smooth surface whose Gaussian curvature are negative constant up to isometries.
- Consequently, $\mathbb{H}^{2}, \mathbb{D}$ with the Poincaré metric, and the space of one dimensional normal distributions with the Fisher Information metric are all regarded as a same smooth surface.

Implication of Differential Geometry in

 Statistics
Cramér-Rao Inequality

- A fundamental result in mathematical statistics that provides a lower bound for the variance of any unbiased estimator of a parameter.
Let X be an observation taking values in measurable space (X, B) whose distribution P_{θ} depends on an s-variate parameter $\theta \in \Theta$ and is given by density $p(x ; \theta)=p\left(x ; \theta_{1}, \ldots, \theta_{s}\right)$ with respect to a measure μ on (X, B)

$$
P_{\theta}(B)=\int_{B} p(x ; \theta) d \mu(x), B \in B
$$

Suppose that $I_{X}(\theta)$ is positive definite so that $I_{X}^{-1}(\theta)$ exists. The Cramér-Rao inequality claims that the covariance matrix $V_{\tilde{\theta}}$ of any unbiased estimator $\theta(X)$ of θ is bound from below by $I_{X}^{-1}(\theta)$:

$V_{\tilde{\theta}}(\theta) \geq I_{X}^{-1}(\theta)$

Information Geometry Interpretation

- We can show that this inequality is a direct corollary of the following two facts:

1. Monotonicity of $I(\theta$. If $\mathrm{S}=\mathrm{S}(\mathrm{X})$ is a statistic, then

$$
I_{S}(\theta) \leq I_{X}(\theta),(1)
$$

2. In a linear model, if Y is an n -dimensional random vector with

$$
E_{\theta}(Y)=A \theta, V_{Y}(\theta)=E_{\theta}(Y-A \theta)(Y-A \theta)^{\prime},(2)
$$

Then we have

$$
I_{Y}(\theta) \geq A^{\prime} V_{Y}^{-1} A,(3)
$$

From (1) and (3), we can derive the Cramér-Rao Inequality.
The above theorem indicates that the Cramér-Rao Inequality can be interpreted from a differential geometry perspective as the comparison between two Fisher Information Metric

Acknowledgements

Reference Material

-"Another Look at the Cramér-Rao Inequality by Abram Kagan

- "An Elementary Introduction to Information Geometry" by Frank Nielsen
- "The Geometry of Asymptotic Inference" by Robert E.Kass - "Riemannian Geometry" by Manfredo Perdigão do Carmo Thank you to the UCSB Directed Reading Program and to our mentor Gunhee Cho for making this project possible

Alexander's Lemma

Let us begin by computing one particularly easy, yet useful, example of a mapping class group. Consider the surface $D^{2} \simeq S_{0}^{1}$, which is just the closed disk, and let $\phi: D^{2} \rightarrow D^{2}$ be a homeomorphism such that the restriction $\left.\phi\right|_{\partial D^{2}}$ is the identity.
Let us identify D^{2} with the closed unit disk centered at the origin in \mathbb{R}^{2}. Now define the following function $F: D^{2} \times[0,1] \rightarrow D^{2}$ for $x \in D^{2}$ and $0 \leq t \leq 1$:

$$
F(x, t)= \begin{cases}(1-t) \phi\left(\frac{x}{1-t}\right) & 0 \leq|x|<1-t \\ x & 1-t \leq|x| \leq 1\end{cases}
$$

We can verify that $F(x, 0)=\phi(x)$, and that $F(x, 1)=x$ is the identity. Finally, we show that $F(x, t)$ is an isotopy between the two given homeomorphisms To see why, we can consider F to itself be a map of the cylinder $D^{2} \times[0,1]$ to itself, as seen below:

Every lateral slice represents a different value of t, going downwards from 0 to 1 , and the section of the cone in each slice represents the $(1-t) \phi\left(\frac{x}{1-t}\right)$ term, which we can think of as "shrinking" the homomorphism ϕ down to the origin. Since ϕ is fixed on the boundary ∂D^{2}, we can see that every point on the boundary of the cone agrees with both the identity map and the scaled copy of ϕ, and so every lateral slice, corresponding to some value of t, is itself a homeomorphism. Since the slices continuously vary from $t=0$ to $t=1$, we have that F must therefore be a homotopy from ϕ to the identity on D^{2}.
In particular, we have shown that every member of $\operatorname{Homeo}^{+}\left(D^{2}, \partial D^{2}\right)$ is isotopic to the identity map, and therefore the group $\operatorname{Mod}\left(D^{2}\right)$ is trivial. In fact, we can do a similar calculation with a once punctured-disk; by identifying the punctured disk with the closed unit disk in $\mathbb{R}^{\not \models}$ punctured at the origin, we are able to use the same function $F(x, t)$, and a similar argument to show that the mapping class group of the punctured disk is also trivial.

This proof is known as Alexander's lemma, and it ends up being an invaluable tool in the computation of many mapping class groups, as we shall soon see.

Mapping Class Group of $S_{0,3}$

We can use Alexander's Lemma to compute the mapping class group of the thrice-punctured sphere, $S_{0,3}$

Theorem: The natural map $\operatorname{Mod}\left(S_{0,3}\right) \rightarrow \Sigma_{3}$ given by the ac tion of elements of the mapping class group on the surface is an isomorphism, where Σ_{3} is the symmetric group on 3 elements.

Proof: We can clearly see that this map is well-defined and surjective, and that the kernel of this map is the elements of the mapping class group which fix all 3 punctures individually
Now, take any homeomorphism $\phi \in \mathrm{Homeo}^{+}\left(S_{0,3}, \partial S_{0,3}\right)$, such that ϕ fixes all 3 punctures. Treating the punctures, which we label p, q, r, as marked points, we let α be a simple arc connecting p and q. We can see that $\phi(\alpha)$ is another simple arc, and since the punctures remain fixed pointwise, we are able to say that $\phi(\alpha)$ is another simple arc connecting p, q. We then introduce a the following proposition

Proposition: Given ϕ and α defined above, if $\phi(\alpha)$ and α connect the same pair of punctures, then there exists a homeomorphism of $S_{0,3}$ isotopic to ϕ, which we label ϕ^{\prime}, which fixes α pointwise

Assuming this proposition, we need only show that ϕ^{\prime} is isotopic to the identity. To complete the proof, we need only "cut open" the surface $S_{0,3}$ along α. This action produces a oncepunctured disk, with a lone puncture r and a boundary consisting of two copies of α, and the punctures $p, q . \phi^{\prime}$ then induces a homeomorphism on the disk, which we denote $\overline{\phi^{\prime}}$, that fixes the boundary and r. Therefore, we can see that $\bar{\phi}^{\prime}$ is isotopic to the identity using Alexander's lemma. This induces an isotopy from ϕ^{\prime} to the identity on $S_{0,3}$, and so we can see that ϕ must therefore be isotopic to the identity.
Therefore, we have that any homeomorphism from $S_{0,3}$ to itself that fixes the punctures is isotopic to the identity. We can thus determine that this constitutes all the elements that have mapping class in the kernel of our map $\operatorname{Mod}\left(S_{0,3}\right) \rightarrow \Sigma_{3}$, and so we determine that $\operatorname{Mod}\left(S_{0,3}\right) \simeq \Sigma_{3}$.

Acknowledgements

Reference Material: "A Primer on Mapping Class Groups" by Benson Farb and Dan Margalit
Thank you to the UCSB Directed Reading Program, and to my DRP mentor Michael Zshornack, for making this study possible.

Categorical Thinking: Category Theory and the Yoneda Lemma

by Alexander Urena and Jacob Hembree

University of California, Santa Barbara

Philosophy Of Categories

Mathematician Michael Atiyah once described mathematics as the "science of analogy." In the same vein, the objective of category theory then is mathematical analogy.

Thus, rather than characterize mathematical objects directly, the cate gorical approach emphasizes the transformations between objects of the same general type. A fundamental lemma in category theory im plies that any mathematical object can be characterized by its repre sentations of morphisms to or from other objects of a similar form.

The Recipe For a Category
The contents of a Category are as follows:

- A collection of Objects X, Y, Z,
- A collection of Morphisms f, g, h
so that
- Each morphism has specified domain and codomain objects; e.g $f: X \rightarrow Y$ is a morphism with domain X and codomain Y.
- Each object has an identity morphism $1_{X}: X \rightarrow X$
- Any pair of morphisms f, g with the codomain of f equal to the domain of g, there exists a specified composite morphism $g f$ whose domain is equal to the domain f and whose codomain is equal to the codomain of g i.e.:

$$
f: X \rightarrow Y, \quad g: Y \rightarrow Z \quad \rightsquigarrow \quad g f: X \rightarrow Z .
$$

Where two axioms must hold:

- For any $f: X \rightarrow Y$, the composites $1_{Y} f$ and $f 1_{X}$ are both equal to f. - For any composable triple of morphisms f, g, h, the composites $h(g f)$ and $(h g) f$ are equal (thus denoted $h g f$).

$$
f: X \rightarrow Y, \quad g: Y \rightarrow Z, \quad h: Z \rightarrow W \quad \rightsquigarrow \quad h g f: X \rightarrow W .
$$

Types of Categories

Categories assemble various mathematical objects which can be either concrete or abstract. Concrete categories have underlying sets as objects and their morphisms as functions between those underlying sets Examples include

- Set has sets as its objects and functions, with specified domain and codomain, as its morphisms
- Top has topological spaces as its objects and continuous functions as its morphisms
- Graph has graphs as objects and graph morphisms as morphisms.

Other Types of Categories

By contrast, abstract categories do not restrict their morphisms to simply being functions e.g.

- Mat ${ }_{R}$, for a unital ring R, is the category whose objects are positive integers and in the set of morphisms from n to m is the set of $m \times n$ matrices with values in R
- A poset (P, \leq) can be treated as a category. The elements of P are the objects and there exists a unique morphism $x \rightarrow y$ if and only if $x \leq y$

Duality

For any category \mathcal{C}, there is the opposite category $\mathcal{C}^{o p}$ which has

- the same objects as in \mathcal{C}, and
- a morphism $f^{o p}$ in $\mathcal{C}^{o p}$ for each morphism f in \mathcal{C} where the domain of $f^{o p}$ is defined to be the codomain of f and the codomain of $f^{o p}$ is defined to be the domain of f i.e.

$$
f^{o p}: X \rightarrow Y \quad \in \mathcal{C}^{o p} \quad \text { <n } \quad f: Y \rightarrow X \quad \in \mathcal{C}
$$

Any theorem quantifying over "all categories \mathcal{C} " then necessarily applies to the opposite category. So any proof in category theory simultaneously proves two theorems, the original statement and its dual.

Example: Below is the category \mathcal{C} with elements A, B, C and morphisms $f: A \rightarrow B$ and $g: B \rightarrow C$ and its dual \mathcal{C}°.
\square
$\mathcal{C}^{o p}$
$A \stackrel{f^{\text {op }}}{\longleftarrow} B$ \qquad -

Functors and Natural Transformations

A functor $F: \mathcal{C} \rightarrow \mathcal{D}$, between categories \mathcal{C} and \mathcal{D}, consists of:

- An object $F c \in \mathcal{D}$, for each object $c \in \mathcal{C}$.
- A morphism $F f: F c \rightarrow F c^{\prime} \in D$, for each morphism $f: c \rightarrow c^{\prime} \in \mathcal{C}$, so that the domain and codomain of $F f$ are equal to F applied to the domain or codomain of f.

A natural transformation $\alpha: F \Rightarrow G$ between two functors $F, G: \mathcal{C} \rightarrow \mathcal{D}$ is a family of morphisms $\alpha_{A}: F(A) \rightarrow G(A)$, where A is an object in \mathcal{C}, such that for every morphism $f: A \rightarrow B$ in \mathcal{C}, the following diagram commutes:

The Yoneda Lemma

Lemma: Let \mathcal{C} be a locally small category, and let A be an object in \mathcal{C}. For any functor $F: \mathcal{C} \rightarrow$ Set, there is a natural bijection between the set of all natural transformations $\operatorname{Nat}(\operatorname{Hom}(A,-), F)$ and the set $F(A$ In other words, we have:

$$
\operatorname{Nat}(\operatorname{Hom}(A,-), F) \cong F(A)
$$

where $\operatorname{Nat}(\operatorname{Hom}(A,-), F)$ represents the collection of all natural trans formations from the covariant hom functor $\operatorname{Hom}(A,-)$ to the functor F.

Applications of Yoneda Lemma

The Yoneda Lemma is a fundamental result in category theory that establishes a powerful connection between representable functors and natural transformations. Here are some significant applications

- Use in Category Theory: Provides a way to characterize the structure of categories and to establish isomorphisms between different categories
- Functorial Semantics: Allows us to represent types and operations in a programming language as functors and natural transformations, allowing us to study their behavior and interactions
- Universal Algebra: Helps in characterizing and understanding the universal properties of algebraic objects, such as groups, rings, and modules
- Data Analysis and Machine Learning: Provides a theoretical foundation for understanding the relationship between data points, features, and transformations
- Type Theory and Programming Languages: Helps in understanding the relationship between types and programs, and in the design of expressive and powerful type systems
- Quantum Information Theory: Establishes connections between quantum channels and their representations as exclusively positive trace-preserving maps

Acknowledgements

We would like to thank our graduate mentor, Andres Barei, and the DRP community for the great opportunity to learn and delve deeper into some new math! Andres was very helpful through this process and made the experience super enjoyable.

References

[^0]
Category Theory and the Snake Lemma

Theodore Bafrali, Jackson Weidmann, Adrian Weitzer.
Mentor: Jeremy Brightbill
2023 Mathematics Directed Reading Program.

Categories

A category \mathscr{C} is the following data

(i) A collection $\mathrm{Ob}(\mathscr{C})$, called objects of \mathscr{C}.
(ii) For any two objects A, B of \mathscr{C}, a collection $\operatorname{Hom}_{\mathscr{C}}(A, B)$ of morphisms/arrows f from A to B, denoted $A \rightarrow B, f: A \rightarrow B$, or $A \xrightarrow{f} B$.
(iii) A composition law \circ : $\operatorname{Hom}_{\mathscr{C}}(A, B) \times \operatorname{Hom}_{\mathscr{C}}(B, C) \rightarrow$ $\operatorname{Hom}_{\mathscr{C}}(A, C)$, written as $\circ(f, g)=g \circ f$ or $g f$. Additionally \circ must satisfy

$$
h \circ(g \circ f)=(h \circ g) \circ f
$$

whenever all the compositions are defined
(iv) For every object A of \mathscr{C} there exists a morphism $1_{A} \in \operatorname{Hom}_{\mathscr{C}}(A, A)$ called the identity (on \mathbf{A}) satisfying:

$$
1_{A} \circ f=f, \quad g \circ 1_{A}=g
$$

for all morphisms $f \in \operatorname{Hom}_{\mathscr{C}}(B, A)$ and $g \in \operatorname{Hom}_{\mathscr{C}}(A, C)$.
A collection of morphisms, e.g., $f: A \rightarrow B, g: A \rightarrow C, h: C \rightarrow D$, and $k: B \rightarrow D$, may be arranged in a diagram

We say this diagram commutes if $k \circ f=h \circ g$
Some example of categories:
(i) Top The category of topological spaces and continuous maps. (ii) R -Mod The category of left R modules and R-homomorphisms. (ii) Define a category \mathscr{C} with objects the positive integers and

$$
\operatorname{Hom}_{\mathscr{C}}(n, m)= \begin{cases}\{*\} & \text { if } n \mid m \\ \varnothing & \text { otherwise }\end{cases}
$$

(Co)Limits

(i) Given an indexing set I and a family of objects $\left(A_{i}\right)_{i \in I}$ in \mathscr{C}, A product of $\left(A_{i}\right)_{i \in I}$ is a pair $\left(\prod A_{i},\left(\pi_{i}\right)_{i \in I}\right)$, where $\prod A_{i} \in \operatorname{Ob}(\mathscr{C})$ and $\pi_{i} \in \operatorname{Hom}_{\mathscr{C}}\left(\prod A_{i}, A_{i}\right)$ for every $i \in I$, and such that if $\left(T,\left(t_{i}\right)_{i \in I}\right)$ is another pair also satisfying these conditions, there exists a unique morphism $r: T \rightarrow \prod A_{i}$ making Figure 2 commute for every $i \in I$.
(ii) Given the diagram

$$
Y \xrightarrow{g} Z \stackrel{J}{\longleftarrow} X
$$

A pullback is an object P and morphisms $\tilde{f}: P \rightarrow Z, \tilde{g}: P \rightarrow Y$ such that $f \circ \tilde{f}=g \circ \tilde{g}$, and for any T and f_{t}, g_{t} with the same properties there is a unique $\varphi \in \operatorname{Hom}_{\mathscr{C}}(T, P)$ such that Figure 4 commutes.
These are special cases of "categorical limits" and they recover important constructions in many disciplines. In Top the product is the product space. In the category \mathscr{C}, the product of the integers $\left\{n_{i}\right\}$ is

$$
\prod_{i \in I} n_{i}=\operatorname{GCD}\left(n_{i}\right)
$$

Fig. 2: Product

We can dualize(reverse all the arrows) in the above definitions and get examples of "categorical colimits": (i) A coproduct of $\left(A_{i}\right)_{i \in I}$ is a pair $\left(\amalg A_{i},\left(\iota_{i}\right)_{i \in I}\right)$ with $\amalg A_{i}$ an object and $\iota_{i}: A_{i} \rightarrow \amalg A_{i}$ morphisms such that for any other pair $\left(T,\left(t_{i}\right)_{i \in I}\right)$ of an object T and morphisms $t_{i}: A_{i} \rightarrow T$, there exists a unique morphism $u: C \rightarrow T$ making Figure 3 commute for every $i \in I$
(ii) Given the diagram

$$
Y \stackrel{g}{\leftrightarrows} Z \xrightarrow{f} X
$$

A pushout is an object P and morphisms $f: P \rightarrow$ $Z, \tilde{g}: P \rightarrow Y$ such that $f \circ f=\tilde{g} \circ g$, and for any T and f_{t}, g_{t} with the same properties there is a unique $\varphi \in \operatorname{Hom}_{\mathscr{C}}(P, T)$ such that Figure 5 commutes.
Going back to our examples in Top, the coproduct is the disjoint union with the disjoint union topology, and in the category \mathscr{C}

$$
\coprod_{i \in I} n_{i}=\operatorname{LCM}\left(n_{i}\right)
$$

When a (co)limit exists, it is unique up to unique isomorphism

Abelian Categories

We can also consider categories that have more structure, with an addition defined on the morphism sets and (co)kernels with nice properties. First defin
(i) A zero object for \mathscr{C}, denoted by 0 , is an object such that for every object X of \mathscr{C} there are unique morphisms $X \rightarrow 0$ and $0 \rightarrow X$. Similarly, the zero morphism $0_{X Y}: X \rightarrow Y$ is the unique morphism $X \rightarrow 0 \rightarrow Y$.
(ii) A kernel of a morphism $f: X \rightarrow Y$ is a pullback of $X \xrightarrow{f} Y \stackrel{0}{\longleftrightarrow} 0$
(iii) A cokernel of a morphism $f: X \rightarrow Y$ is a pushout of $Y \longleftarrow X \longrightarrow 0$
(iv) An image of a morphism $f: A \rightarrow B$ is a kernel of the cokernel of f.
(v) A coimage of a morphism $f: A \rightarrow B$ is a cokernel of the kernel of f.
An Abelian category is defined by requiring a category satisfy a sequence of conditions
(i) A preadditive category is a category \mathscr{C} such that the mo phism sets are abelian groups under an operation + and for all morphisms $f, f_{1} \in \operatorname{Hom}_{\mathscr{C}}(A, B), h, h_{1} \in \operatorname{Hom}_{\mathscr{C}}(C, A)$
(a) $\left(f+f_{1}\right) \circ h=(f \circ h)+\left(f_{1} \circ h\right)$
(b) $f \circ\left(h+h_{1}\right)=(f \circ h)+\left(f \circ h_{1}\right)$
(ii) An additive category is a preadditive category with a zero object in which every nonempty, finite collection of objects admits a product.
(iii) An abelian category is an additive category where every morphism f has a kernel and cokernel and there is a unique isomorphism θ such that $\operatorname{im}(f) \circ \theta \circ \operatorname{coim}(f)=f$
In an abelian category, a morphism f is called an epimor phism/epi(resp. monomorphism/mono) if coker $f=0$ (resp. $\operatorname{ker}(f)=0$. Epis/Monos are denoted by $\rightarrow / \hookrightarrow$

Within an abelian category \mathscr{A} consider the sequence of objects

$$
0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0
$$

Fig. 6: Exact Sequence

This sequence is called exact at \mathbf{B} if $\operatorname{ker}(g)=\operatorname{im}(f)$. It is alled a short exact sequence if additionally f is a monomor phism and g is an epimorphism
A longer diagram is called exact if it is exact at every position.

The Snake Lemma

Theorem.(The Snake Lemma) In an abelian category \mathscr{A} if the diagram

commutes and has exact rows, there is a connecting morphism $\delta: \operatorname{ker}(\gamma) \rightarrow \operatorname{coker}(\beta)$ giving the following exact sequence

$$
\begin{gathered}
0 \longrightarrow \operatorname{ker}(\alpha) \longrightarrow \operatorname{ker}(\beta) \longrightarrow \operatorname{ker}(\gamma)] \\
\rightarrow \operatorname{coker}(\alpha) \longrightarrow \operatorname{coker}(\beta) \longrightarrow \operatorname{coker}(\gamma) \longrightarrow 0
\end{gathered}
$$

Schanuel's Lemma. The snake lemma provides a quick proof of many different diagram lemmas
First we introduce the concept of a projective object in an belian category \mathscr{A}. There are two equivalent definitions for projective P. Let N, X be any objects in \mathscr{A}.
If we have an epi, h, there exists f^{\prime} such that Figure 9 commutes

- If we have an exact sequence as in Figure 10, then $N \simeq$ $X \oplus P(\oplus$ denotes product/coproduct, which coincide in abelian categories)

Schanue's lemma states that if we have two exact sequences like below, then $K \oplus P^{\prime} \simeq K^{\prime} \oplus P$

$$
K^{\prime} \xrightarrow{f^{\prime}} P^{\prime} \xrightarrow{g^{\prime}} M, \quad K \xrightarrow{f} P \xrightarrow{g} M
$$

We can construct the second row of this diagram to be exact using the properties of the product. We can then find the map $K \oplus P^{\prime} \rightarrow P$ using the properties of the product and projectiv moduls. The sak to form an exact sequence which gives that $\operatorname{ker}(h)=K$ and coker $h=0$.

Third Isomorphism Theorem This result is often see in group theory, but it also applies more generally to any abelian category. The theorem states that given groups $T \subset$ $S \subset M$ with T, S normal in M, we get an isomorphism $(M / T) /(S / T) \simeq(M / S)$.
In an abelian category \mathscr{A}, suppose we have M, S, T and $\sigma \circ \eta=$ τ (note $\tau=\tau \circ 1$), from the diagram below. As mentioned earlier we can create the quotients M / T and S / T which makes the middle two rows of the diagram exact. The properties of cokernels give us a map $S / T \rightarrow M / T$, and we have the setup for the snake lemma. The exact sequence given by the snake lemma shows that $K=0$ and $M / S \simeq(M / T) /(S / T)$.

References
(1) Francis Borceaux. The Handbook of Categorical Algebra : Basic Category Theory. Cambridge University Press, 1994
(2) Samuel Petterson. Additive, abelian, and exact categories. 2016.

CONGRUENCE RELATIONS AND FERMAT'S LITTLE THEOREM

Tingyu Fu, Chang Long

University of California Santa Barbara

Linear Equations

Given two whole numbers a and b, we are going to look at all the possible numbers we can get by adding a multiple of a to a multiple of b. In other words, we will consider all numbers obtained from the formula:

$$
a x+b y
$$

Every number of the form $a x+b y$ is divisible by $g c d(a, b)$, since both a and b are divisible by $g c d(a, b)$. In Conclusion, the smallest positive value of $a x+b y$ is equal to gcd (a, b)
We will use the Euclidean algorithm to find integers x and y that are solutions to the equation

$$
a x+b y=g c d(a, b)
$$

We are going to start by illustrating the Euclidean algorithm method for solving $a x+b y=g c d(a, b)$ with a particular example:

$$
\begin{aligned}
& 22 x+60 y=\operatorname{gcd}(22,60) \\
& 60=2 \times 22+16 \\
& 22=1 \times 16+6 \\
& 16=2 \times 6+4 \\
& 6=1 \times 4+2 \\
& 4=2 \times 2+0
\end{aligned}
$$

We can summarize the above computation in the following efficient tabular form. Note that the left-hand equations are the Euclidean algorithm, and the righthand equations compute the solution to $a x+b y=\operatorname{gcd}(a, b)$.

$$
\begin{array}{rlrl}
a=2 \times b+16 & 16 & =a-2 b \\
b & =1 \times 16+6 & 6 & =b-1 \times 16 \\
& =b-1 \times(a-2 b) \\
& =-a+3 b \\
16=2 \times 6+4 & 4 & =16-2 \times 6 \\
& =(a-2 b)-2 \times(-a+3 b) \\
& & =3 a-8 b \\
6=1 \times 4+2 & 2 & =6-1 \times 4 \\
& & =(-a+3 b)-1 \times(3 a-8 b) \\
& & =-4 a+11 b
\end{array}
$$

$4=2 \times 2+0$

Eventually, we get down to the last nonzero remainder, which we know is equal to $\operatorname{gcd}(a, b)$, and this gives the desired solution to $\operatorname{gcd}(a, b)=a x+b y$. This process is summarized in the Linear Equation Theorem. For nonzero integers a and b, and let $g=\operatorname{gcd}(a, m)$. The equation

$a x+b y=g$

always has a solution $\left(x_{0}, y_{0}\right)$ in integers that can be found by using the Euclidean Algorithm

Extension to Linear Equation Theorem

Given the Linear Equation Theorem, we may want to figure out that, under what conditions on a, b, c, the equation

$$
a x+b y+c z=1
$$

has a solution. Suppose that $\left(x_{0}, y_{0}\right)$ is a solution to

$$
a x+b y=g c d(a, b)
$$

Then by the Linear Equation Theorem, there exist a solution $\left(w_{0}, z_{0}\right)$ to

$$
\operatorname{gcd}(a, b) w+c z=\operatorname{gcd}(\operatorname{gcd}(a, b), c)=\operatorname{gcd}(a, b, c)
$$

Hence, there exist a solution $\left(x_{0}, y_{0}, z_{0}\right)$ to

$$
\begin{gathered}
a x w+b y w+c z=\operatorname{gcd}(a, b, c) \\
a x+b y+c z=1
\end{gathered}
$$

So the equation
always has a solution if $\operatorname{gcd}(a, b, c)=1$.

Fermat's Little Theorem

Fermat's Little Theorem

Let p be a prime number, and let a be any number with $a \not \equiv 0(\bmod p)$. Then

$$
a^{p-1} \equiv 1(\bmod p) .
$$

Before giving the proof of Fermat's Little Theorem, we want to indicate its power and show how it can be used to simplify computations. As a particular example, consider the congruence

$$
6^{22} \equiv 1(\bmod 23) .
$$

This says that the number 6^{22-1} is a multiple of 23 . If we wanted to check this fact without using Fermat's Little Theorem, we would have to multiply out 6^{22}, subtract 1 , and divide by 23. Here's what we get:

$$
6^{22-1} \equiv 23 \times 5722682775750745
$$

Now we are ready to prove the theorem. First, we may want to introduce a lemma that helps us with the proof. However, we will skip the verification of the lemma due to space constraint.
Lemma Let p be a prime number and let a be a number with $a \not \equiv 0(\bmod p)$. Then the numbers

$$
a, 2 a, 3 a, \ldots,(p-1) a(\bmod p)
$$

are same as the numbers

$$
1,2,3, \ldots,(p-1)(\bmod p),
$$

although they may be in a different order
Using the lemma, it is easy to finish the proof of Fermat's Little Theorem. By the lemma, we know that $a, 2 a, 3 a, \ldots,(p-1) a(\bmod p)$ and $1,2,3, \ldots,(p-1)(\bmod p)$, are the same. Thus,

$$
a \cdot(2 a) \cdot(3 a) \cdots((p-1) a) \equiv 1 \cdot 2 \cdot 3 \cdots(p-1)(\bmod p) .
$$

Now if we factor our $p-1$ copies of a from the left-hand side of the equation, we will get

$$
a^{p-1} \cdot(p-1)!\equiv(p-1)!(\bmod p) .
$$

Since ($p-1$)! is relatively prime to p, we are able to cancel it from both sides of the equation to obtain Fermat's Little Theorem,

$$
a^{p-1} \equiv 1(\bmod p) .
$$

Congruences

We say that a is congruent to b modulo m , and we write $a \equiv b(\bmod m)$. Before giving the general theory, let's try an example. We will solve the congruence

$$
18 x \equiv 8(\bmod 22)
$$

This means we need to find a value of x with 22 dividing $18 x-8$, so we have to find a value of x with $18 x-8=22 y$ for some y . In other words, we need to solve the linear equation

$$
18 x-22 y=8
$$

Using the Linear Equation Theorem we can solve the equation

$$
18 u-22 v=\operatorname{gcd}(18,22)=2,
$$

and indeed we easily find the solution $u=5$ and $v=4$. But we really want the right-hand side to equal 8 , so we multiply by 4 to get

$$
18 \times(5 \times 4)-22 \times(4 \times 4)=8
$$

Thus, $18 \times 20 \equiv 8(\bmod 22)$, so $x \equiv 20(\bmod 22)$ is a solution to the original congruence. We will soon see that this congruence has two different solutions modulo 22; the other one turns out to be $x \equiv 9(\bmod 22)$. Suppose now that we are asked to solve an arbitrary congruence of the form

$$
a x \equiv c(\bmod m)
$$

Linear Congruence Theorem
Now we generalize the solution from the example above to solve an arbitrary congruence of the form

$$
a x \equiv c(\bmod m)
$$

where a,c m are integers with $m \geqslant 1$, and let $g=\operatorname{gcd}(a, m)$. Rearranging this equation, we find that $a x \equiv c(\bmod m)$ if and only if the linear equation $a x-m y=c$ has a solution. By the Linear Equation Theorem, we know that there is always a solution to the equation

$$
a u+m v=g
$$

Suppose g divides c , if we multiply this equation by the integer $\frac{c}{q}$ to obtain

$$
a\left(\frac{c u}{g}\right)+m\left(\frac{c v}{g}\right)=c
$$

Thus, $x_{0} \equiv \frac{c u}{g}(\bmod m)$ is a solution to the congruence $a x \equiv c(\bmod m)$ and

$$
x \equiv x_{0}+k \cdot \frac{m}{g}
$$

where $k=0,1, \ldots \ldots ., g-1$.
If g does not divide c, however, then the congruence $a x \equiv c(\bmod m)$ has no solutions.

Acknowledgements

We would like to thank Mychelle Parker for her guidance as well as the UCSB Directed Reading Program for the opportunity to work on this project.[1]

References

Joseph H. Silverman. A Friendly Introduction to Number Theory. Providence, Rl: Pearson Education, Inc., 2012.

Introduction

A (rational) elliptic curve is a curve given by points (x, y) in the plane satisfying an equation

$$
y^{2}=x^{3}+a x+b \quad(a, b \in \mathbb{Q})
$$

that is typically in one of the two shapes. The study of elliptic curves has garnered significant attention fo its involvement in crucial theorems, notably including lem unsolved within 350 years since proposed. Additionally, the inherent fascinating properties of elliptic ditionally, the inherent fascinating properties of eliptic tion in their own right.
In this expository writing, we focus on the unique fea tures that make elliptic curves stand out-the group structure on elliptic curves. Simply put, we would like to find a reasonable way to 'add' two points on an elliptic curve to get another, in such a way that this addition satisfies al desired properties such as associativity. Let C denote an elliptic curve.

A geometric approach

Fix a point O on C. Starting with two points P and Q, let P be intersection o line $\overline{P Q}$ and C. Define $P+Q=O *(P * Q)$. If $P=Q$, we can take the tangent line of C at P in place of $\overline{P Q}$.

Now, we show the above addition satisfies the following propertie Identity element: Identity element is O, with $P+O=P$ for all P. Inverse element: For any Q on C, let $-Q=Q *(O * O)$. Then, $Q+(-Q)=O$ Commutativity: $P+Q=Q+P$ since $P=Q *(O * Q)$. Associaility. L el Q, and R be warve. We want to prove that $(P+Q)+R=P+(Q+R)$. By definition, we only need to prove $P * Q, P+Q, Q * R, Q+R, P *(Q+R)$ and $(P+Q) * R$, each of the first 8 lying on one of the dashed lines and one of the solid lines by construction, and our goal is to show the 9 -th point agrees with the 10 -th. We can regard C_{1}, the union of the three dashed lines, and C_{2}, the union of the three solid lines, both as cubic curves since their equations are given by products of 3 linear equations. Now, the cubic curve C intersects both C_{1} and C_{2} at the 8 points $O, P, Q, R, P * Q, P+Q, Q * R, Q+R$. A theorem of Bèzout then says that the 9 -th intersection of C and C_{1} must agree with the 9 -th intersection of C and C_{2}, that is, $(P+Q) * R=P *(Q+R)$.

An analytic approach

The goal is to define the addition on the ellipse curve. Instead of looking at the curve directly, we first look at the addition on a parallelogram at the origin. Addition on a parallelogram
For points u and v inside a parallelogram, we have the usual vectors addition. But if $u+v$ is out of this parallelogram, we need to find a new $u+v$ inside this parallelogram. We consider all par In this way wis pland as equ in the arion which is a shift of the " $u+v$ " outside the parallegran. Mapping parallelogram to elliptic curve
Consider the function: $\wp: \mathbb{C} \longrightarrow \mathbb{C}$ by $\wp(u)=\frac{1}{u^{2}}+$
 $\sum_{\omega \in L}\left(\frac{1}{(u-\omega)^{2}}-\frac{1}{\omega^{2}}\right)$, where L is the set of endpoints of all parallelograms except the origin. Note that if we replace u by a correpsonding point in a different parallelogram, we will get the same summation(just shifting the summands)! Thus the values of \wp on \mathbb{C} Computation yields an differential equation: $\wp^{\prime}(u)^{2}=4 \wp(u)^{3}-g_{2}(u)-g_{3}$ for any $u \in \mathbb{C}$. Thus every complex number u in the parallelograms has a corrosponding point $u \in \mathbb{C}$. Thus every Defining the addition on elliptic curve
It turns out that the map Q is onto and one to one. There is then a natural addition on ellipse curve P coming from the one on a parallelogram: For points $A=Q(u), B=Q(v)$ correpsonding to u, v, simply define $A+B$ to be $Q(u+v)$!

An algebraic approach

As before, we will first consider a seemingly irrelevant group that will lead to a solution eventually. Note that all we need is to find a bijection from the points on C to something that is already a group
The divisor group D
We define a divisor group DivC consisting of elements of the form

$$
D=a_{1} P_{1}+\ldots+a_{m} P_{m}
$$

where $P_{i} \in C$ with integer coefficients a_{i}. Obviously, divisors can be added and subtracted. Let $D, D^{\prime} \in \operatorname{Div} C, D^{\prime}=a_{1}^{\prime} P_{1}+\ldots+a_{m}^{\prime} P_{m}$. We can easily conclude that

$$
D+D^{\prime}=\left(a_{1}+a_{1}^{\prime}\right) P_{1}+\ldots+\left(a_{m}+a_{m}^{\prime}\right) P_{m}=D^{\prime}+D
$$

The group Pic ${ }^{0}$
However, DivC is too big for our problem-solving; we need a smaller group. We identify D and D^{\prime} if they differ by "plus or minus zeros counted with multiplicities" of a polynomial. For example, consider the polynomial $f=(x-y)^{2}(x-2 y)$. Let P_{1}, P_{2}, P_{3} be points on C satisfies $x-y=0, Q_{1}, Q_{2}, Q_{3}$ be points on C satisfies $x-2 y=0$. If D and D^{\prime} differ with $2\left(P_{1}+P_{2}+P_{3}\right)+Q_{1}+Q_{2}+Q_{3}$, then they are equivalent. It turns out that the equivalent classes of $D=a_{1} P_{1}+\ldots+a_{m} P_{m}$ satisfying $a_{1}+\ldots+a_{n}=0$ is the correct thing. We call it $P i c^{0} C$. Let $P_{0} \in C$ be a point. Then the map

$$
C \rightarrow P i c^{0} C, \quad P \mapsto P-P_{0}
$$

can be shown to be a bijection.

Rational points on elliptic curves

If a point has rational x-coordinate and y-coordinate, we call it a rational point. We mention here that all three approaches before essentially define the same ad dition on elliptic curves. In what follows we take the geometric approach. If we start from P and Q that are both rational, to find the x-coordinate of $P * Q$, we need to solve a cubic equation with rational coefficients, obtained by solving the system of equations for line $P Q$ and C (both with rational coefficients). Since P and Q has ra
 $P * Q$ is on a rational line, it must have a rational y-coordinate, too. Thus $P * Q$ is Upshot: if P, Q are rational, so is $P+Q$

An arithmetic application

Can you find positive integers a, b, c such that

$$
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=4 ?
$$

It is not complex to find a solution which are integers, such as $a=4, b=-1, c=11$. However, it is hard to find a positive integer solution by simple calculation or even using computers. In this case, we need to use some other methods. Let $x=\frac{-28(a+b+2 c)}{6 a+6 b-c}$ and
 $y=\frac{364(a-b)}{6 a+6 b-c}$.
We can show that x and y satisfy an equation $y^{2}=x^{3}+109 x^{2}+224 x$, which is an elliptic curve. In fact, we can also recover (a, b, c) from (x, y) :

$$
a=\frac{56-x+y}{56-14 x}, b=\frac{56-x-y}{56-14 x}, c=\frac{-28-6 x}{28-7 x}
$$

Through the equation above, we can see that there exists a bijection between the set of rational points on the curve and the (rational) solution set $\{a, b, c\}$. By observation we can find a solution $a=4, b=-1, c=11$ which are integers, but they are not all positive. From this solution, we can find a rational point P on the elliptic curve. Now yaddition defined in the previous sections, we can find other rational points $2 P, 3 P$ and so on with their corresponding a, b, c. In some cases, the a, b, c might be rationa but not integers. In these cases, we can multiply a, b, c with $(56-14 x)$. Then, they will be integers. Now for $2 P, 3 P, \ldots$, we compute their corresponding a, b, c and ask if they are all positive with the help of computer programs, until we eventually find the a, b, c corresponding to $9 P$ that are all positive: $(a, b, c)=$
(154476802108746166441951315019919837485664325669565431700026634898253202035277999, 36875131794129999827197811565225474825492979968971970996283137471637224634055579 , 4373612677928697257861252602371390152816537558161613618621437993378423467772036)

Acknowledgements

We extend our heartfelt gratitude to our mentor, Mulun Yin, for his invaluable guidance and steadfast support throughout our project. Additionally, we want to thanks to the UCSB DRP program for giving us this opportunity to learn and showcase our work.

References

Joseph H. Silverman, John T Tate(2005), Rational Points on Elliptic Curves-Springe Andreas Gathmann(2002/2003), Algebraic Geometry -University of Kaiserslautern https://www.quora.com/How-do-you-find-the-positive-integer-solutions-to-frac-x-y+z-+-frac-y-z+x-+-frac-z-x+y-4/answer/Alon-Amit

Geometry and Lie Theory of PSL(2, $\mathbb{R})$

Ethan Mader, Clayton Ellis
University of California Santa Barbara

What is PSL $(2, \mathbb{R})$?

Let us start by defining $S L(2, \mathbb{R})$, the matrix group representing all real 2×2 matrices with determinant 1 . Note that the determinant of a matrix product is the product of the determinants, satisfying closure.

$$
S L(2, \mathbb{R}):=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \right\rvert\, a, b, c, d \in \mathbb{R}, a d-b c=1\right\} .
$$

$\operatorname{PSL}(2, \mathbb{R})$ is simply $S L(2, \mathbb{R}) /\{ \pm I\}$. In this way, $S L(2, \mathbb{R})$ can be thought of as two copies of $P S L(2, \mathbb{R})$, so we can learn about $P S L(2, \mathbb{R})$ by studying $S L(2, \mathbb{R})$. Consider the characteristic polynomial of $A \in S L(2, \mathbb{R})$:
$\operatorname{det}(A-\lambda I)=(a-\lambda)(d-\lambda)-b c=\lambda^{2}-(a+d) \lambda+a d-b c=\lambda^{2}-\operatorname{tr}(A) \lambda+1$, which has roots

$$
\lambda=\frac{\operatorname{tr}(A) \pm \sqrt{\operatorname{tr}(A)^{2}-4}}{0} .
$$

Note that the discriminant is imaginary when $|\operatorname{tr}(A)|<2,0$ when $|\operatorname{tr}(A)|=2$, and positive real when $|\operatorname{tr}(A)|>2$. These cases describe a classification of $S L(2, \mathbb{R})$ as transformations on \mathbb{R}^{2}. Quotienting $S L(2, \mathbb{R})$ by $\{ \pm I\}$ will give us a convv.
relationship between $P S L(2, \mathbb{R})$ and isometries of the hyperbolic plane \mathbb{H}^{2}.

Relation to Hyperbolic Geometry

Let us use Poincaré's upper half-plane model to represent \mathbb{H}^{2}, which has space \mathbb{U} and transformation group $\mathcal{U} . \mathbb{U}=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$, and this has metric $d s^{2}=$ $\left(d x^{2}+d y^{2}\right) / y^{2}$ with ideal points on the x-axis and at ∞. The group \mathcal{U} is all Möbius transformations T such that $T(\mathbb{U})=\mathbb{U}$, called an isometry. We can associate every $A \in \operatorname{PSL}(2, \mathbb{R})$ with an orientation-preserving Möbius transformation:

$$
T_{A}(z) \mapsto \frac{a z+b}{c z+d} \in \mathcal{U} .
$$

To classify these, let us consider the following subsets of $S L(2, \mathbb{R})$:

$$
\left\{\left.\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right] \right\rvert\, \theta \in \mathbb{R}\right\},\left\{\left.\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\},\left\{\left.\left[\begin{array}{ll}
r & 1 \\
0 & \frac{1}{r}
\end{array}\right] \right\rvert\, r \in \mathbb{R}, r>0\right\} .
$$

$S L(2, \mathbb{R})$ can actually be expressed as a prod uct of these three sets. Disregarding the identity these subsets are distinct and correspond to the three types of isometries of \mathbb{U}, which are elliptic, parabolic, and hyperbolic, respectively.
An element from each is visualized to the right, with bolded lines denoting orbits of the corresponding transformation on \mathbb{U}.
Elliptic Möbius transformations are characterized by $t r<2$ and have one interior fixed point. In Fig 1, this point is i, and the orbits are circular. Parabolic Möbius transformations are characterized by $t r=2$ and have one boundary fixed point. In Fig Hyperbolic Möbius transformations are characte ized by $\operatorname{tr}>2$ and have two boundary fixed points. In Fig 3 , these points are 0 and ∞, and the orbits In Fig 3, these are turns
conjugate to that every element of $\operatorname{PSL}(2, \mathbb{R})$ is $\operatorname{PSL}(2, \mathbb{R})$ is a useful tool for studying \mathbb{H}^{2} as it rep resents precisely its set of isometries.

Lie Algebra of PSL(2, \mathbb{R})

We can also learn about $P S L(2, \mathbb{R})$ by investigating the Lie algebra of $S L(2, \mathbb{R})$. Let $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$. The Lie algebra of a matrix group $G \subseteq G L_{n}(\mathbb{K})$, where $G L_{n}(\mathbb{K})$ is the group of invertible n by n matrices, is the tangent space to G at I, denoted

$$
\mathfrak{g}:=\mathfrak{g}(G):=T_{I}(G):=\left\{\gamma^{\prime}(0) \mid \gamma:(-\epsilon, \epsilon) \rightarrow G \text { differentiable and } \gamma(0)=I\right\} .
$$

We can think of a matrix as living in $\mathbb{K}^{n^{2}}$, where the tangent vector at any point is also matrix. In this way, we can view matrix groups as manifolds, in which the dimension of the Lie algebra defines the dimension of the manifold which is equivalent to that of the matrix group. In the case of $S L(2, \mathbb{R})$, the Lie algebra is denoted $s l(2, \mathbb{R})$ and is the set of all traceless 2×2 matrices. To see why, we can prove that for any differentiab
$M_{n}(\mathbb{K})$ where $\gamma(0)=I$, we have

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{det}(\gamma(t))=\operatorname{tr}\left(\gamma^{\prime}(0)\right)
$$

For any $\gamma^{\prime}(0) \in s l(2, \mathbb{R})$, we know $\gamma(t) \in S L(2, \mathbb{R})$ which means $\operatorname{det}(\gamma(t))=1$ and subsequently has

Figure 4: Visual of a manifold which means $\operatorname{det}(\gamma(t))=1$ and subsequen

$s l(2, \mathbb{R})=\left\{\left.\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \right\rvert\, a, b, c, d \in \mathbb{R}, a+d=0\right\}$, which has basis $\left\{\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]\right\}$.
Thus we can think of $S L(2, \mathbb{R})$ as a 3 -dimensional manifold which is embedded in \mathbb{R}^{4} Another useful way to explore the relationship between matrix groups and their Lie algebra is through matrix exponentiation, which is defined for all $A \in M_{n}(\mathbb{K})$ by

$$
e^{A}=I+A+\frac{1}{2!} A^{2}+\frac{1}{3!} A^{3}+\ldots=\sum_{k=0}^{\infty} \frac{1}{k!} A^{k}
$$

It turns out that when applied to an element of a Lie algebra, this exponential map gives us an element of the corresponding matrix group. This also solidifies the connection betwee addition in a Lie algebra and multiplication in the matrix group, since as one might expec $e^{A+B}=e^{A} e^{B}$ for all $A, B \in M_{n}(\mathbb{K})$
One can also prove that $\operatorname{det}\left(e^{A}\right)=e^{\operatorname{tr}(A)}$ for all $A \in M_{n}(\mathbb{K})$, verifying that the exponential map sends elements $A \in \operatorname{sl}(2, \mathbb{R})$, which have $\operatorname{tr}(A)=0$, to elements $e^{A} \in S L(2, \mathbb{R})$ with unit determinant.
also comes with an additional operation to the vector space structure. This operation is called the Lie bracket which is an \mathbb{R}-bilinear form denoted

$$
[\cdot, \cdot]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g} \text {, where }[A, B]=A B-B A \text { for all } A, B \in \mathfrak{g} .
$$

Note that $\operatorname{tr}[A, B]=\operatorname{tr}(A B-B A)=\operatorname{tr}(A B)-\operatorname{tr}(B A)=0$, which verifies that the Lie bracket sends two elements of $s l(2, \mathbb{R})$ to $s l(2, \mathbb{R})$.
Moving from $S L(2, \mathbb{R})$ to $\operatorname{PSL}(2, \mathbb{R})$, notice that we have an immersive inclusion mapping between $\operatorname{PSL}(2, \mathbb{R})$ and $S L(2, \mathbb{R})$ so for any $\gamma:(-\epsilon, \epsilon) \rightarrow S L(2, \mathbb{R})$ satisfying $\gamma(0)=I$, w can generate $p s l(2, \mathbb{R})$ by considering the elements $(f \circ \gamma)(0)$ to generate $p s l(2, \mathbb{R})$. Through f does not impact the contents of the lie algebra described so we find $s l(2, \mathbb{R})=p s l(2, \mathbb{R})$ so in general, we just consider $s l(2, \mathbb{R})$.

Conjugacy Class Structure

In order to describe the conjugacy classes of $\operatorname{PSL}(2, \mathbb{R})$, we first must de fine a few maps. First, we pick any $g \in P S L(2, \mathbb{R})$ to be the group element whose conjugacy classes we are looking at. We define the first map to be $\pi: \operatorname{PSL}(2, \mathbb{R}) \rightarrow P S L(2, \mathbb{R}) / C(g)$, where $\pi(A)=A \cdot C(g)$ to be the typica coset mapping of $P S L(2, \mathbb{R})$ to its quotient group. Next, we note that we have a bijection between our quotient group and the set of the conjugacy classes of g, $\operatorname{Conj}(g)$. In order to make sense of what this means, we first note that as $C(g)$ is closed, the Closed-Subgroup Theorem tells us that $P S L(2, \mathbb{R}) / C(g)$ is in fact morphism f betwo the two has the same dimension as our quotient group. It is important to note though that when looking at the images of f and ϕ, we will need to choose representa tives of each of these cosets in the quotient group in order to ensure our maps cosets in the quotient group in order to ensure our maps are well-defined.

Now, we investigate the differential map $d \phi_{g}: s l(2, \mathbb{R}) \rightarrow s l(2, \mathbb{R}) \cdot g$. The kerne of this map will tell us exactly how many fewer dimensions the image of ϕ_{g} is we already know to be one dimensional so then the image of $d \phi$ and thus tha of ϕ_{g} is two dimensional so ϕ_{g} is a submersion into a two dimensional submanifold of $\operatorname{PSL}(2, \mathbb{R})$. As f is known to not be a subersion and l is an immersion, it follows that π must be a submersion thus $\operatorname{PSL}(2, \mathbb{R}) / C(q) \cong \operatorname{Comj}(g)$ must be two-dimensional as ϕ_{g} is just the composition of our other three maps.
As an example, we can look at the picture below to see how these maps transform the circle C centered at $2+2 i \in \mathbb{U}$ first by the Möbius transformation that can be represented by the matrix $g=\left[\begin{array}{cc}2 & 0 \\ 1 & \frac{1}{2}\end{array}\right]$ which has its image represented by the curve T_{g}. Furthermore, we also have the images of C under the conjugation of the elliptic element $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ denoted T_{E}, the hyperbolic element $\left[\begin{array}{ll}2 & 1 \\ 0 & \frac{1}{2}\end{array}\right]$ denoted T_{H}, and finally the parabolic element $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ with image denoted

Acknowledgements

Reference Material: "Geometry with an Introduction to Cosmic Topology" by Michael Hitchman, "Matrix Groups for Undergraduates" by Kristopher Tapp, and "Introduction to Smooth Manifolds" by John M. Lee, and "Geometry of Möbius Transformations Color Illustrations" by Vladimir Kisil
Big thank you to Paige Hillen for being a great mentor and guiding us through the reading materials!

Introduction

An artificial neural network is a computational model that is based on organic neural networks in brains. A human brain is robust, efficient and flexible at achieving many tasks, including being able to associate unrelated concepts with each iner. Oemory is the McCulloch-Pitts model tive memory is the McCulloch-Pitts model.

Each model neuron takes a value of -1 or 1 , based on a weighted sum of the values of all other neurons. Note that all neurons are pairwise connected in this model. The value is determined by the following update rule:

$$
\begin{equation*}
n_{i}(t+1)=\operatorname{sgn}\left(\sum_{j=1}^{N}\left[w_{i j} n_{j}(t)\right]+b_{i}\right)=\operatorname{sgn}\left(h_{i}\right) \tag{1}
\end{equation*}
$$

Where:

- $n_{i}=i$ th neuron, which takes on one of two values $\{-1,1\}$.
- $t=$ current time iteration/step. We will always start with $t=0$.
- $w_{i j}=$ weight describing how n_{i} is affected by n_{j}.
- $b_{i}=$ bias term for n_{i}. This is a real-valued constant that can change the activation threshold for each neuron. For simplicity's sake, we can let $b_{i}=0$.
- $N=$ length of patterns. In this case, it is also the number of neurons.
- $h_{i}=\sum_{j=1}^{N}\left[w_{i j} n_{j}(t)\right]+b_{i}$, which is a shorthand for the expression inside of the sign function.
The neurons can update synchronously, which means all at the same time, or asynchronously, meaning that only one neuron is updated at each time step. These choices are equivalent.

The Discrete Hopfield Model

The Hopfield Model is a neural network designed to model associative memory using McCulloch-Pitts neurons with predetermined weights. Fundamentally, the $\{-1,1\}^{N}$ to "remember," when a new pattern ζ is in inputted into the network, it frould output one of the stored patterns that best resembles ζ. We define the should output one weights

$$
w_{i j}=\frac{1}{N} \cdot \sum_{\mu=1}^{p} \xi_{i}^{\mu} \xi_{j}^{\mu}
$$

which are chosen in accordance with Hebb's Law of Association. At each time step, the state of the network can be described by the following real-valued function H, which is referred to as an energy function:

$$
\begin{equation*}
H(t)=-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} w_{i j} \cdot n_{i}(t) n_{j}(t) \tag{2}
\end{equation*}
$$

An application of the triangle inequality shows that the energy function is bounded. It is simple to show that the energy function decreases as the system updates, which means that (2) is a Lyapunov Function. Therefore, the system
always converges to a local minimum of the energy function, or the attractors of always converges to a tocal minimum
the network, which is the final output.

By construction, the stored patterns $\left\{\xi^{1}, \ldots, \xi^{p}\right\}$ are local minima of H, but they are not the only attractors. It is clear from the definition of (2) that $-\xi^{\mu}$ and ξ^{μ} have the same energy, so the reverse of a stored pattern is also an attractor.
As it turns out, linear combinaAs it turns out, linear combina
tions of an odd number of stored patterns are also local minima referred to as mixture states. At tractors that are not stored pat terns are referred to as spurious states. These patterns have relatively small basins of attraction compared to the stored pat terns (as shown in Figure 1), but the existence of these states imply that this model does not work perfectly. One can reduce
the basins of attraction for spurious states by changing the bias terms b_{b} of (1), or by introducing stochasticity.

Figure 1 shows each attractor of a model trained on 2 stored patterns (in blue). The model computed the stable state of every element in $\{-1,1\}^{10}$.
Figure 2 shows a model trained on 3 black and white Figure 2 shows a model trained on 3 black and white controlled inputs, giving us our 3 learned patterns. (b) shows the result of 3 random inputs. The first two outputs are opposite attractors, while the third is a spuriou puts are op
attractor.

The Continuous Case

In most scenarios, binary sequences do not accurately represent real-world patterns. Thus it useful to generalize our pattern space from $\{-1,1\}^{N}$ to $[-1,1]^{N}$, thereby allowing our neurons to take on a continuum of values.
A useful continuous variant of (1) we will use is

$$
\begin{equation*}
\tau_{i} \frac{d n_{i}}{d t}=-n_{i}(t)+\sigma\left(\sum_{j=1}^{N} w_{i j} \cdot n_{j}(t)\right) \tag{3}
\end{equation*}
$$

Where τ_{i} is a time constant, chosen such that (3) admits a stable system, and where σ is a strictly increasing, differentiable, and bounded function between -1 and 1 (e.g. tanh). For a discussion on how to obtain suitable τ_{i}, refer to Hertz and Krogh (1991).
As a result, we can obtain a new energy function similar to (2), given by

$$
\begin{equation*}
H_{c}(t)=H(t)+\sum_{i=1}^{N} \int_{0}^{n_{i}(t)} \sigma^{-1}(x) d x \tag{4}
\end{equation*}
$$

Note that even though (3) and (4) suggests a continuous time domain, in practice we will Ntill operate with discrete values of t. One can obtain an update rule by applying numerical methods.

Figure 3: Sample Energy Function
Figure 3 shows an example of an energy function defined over $[-1,1]^{2}$. The minima of the graph are attractors of the system. The blue areas are basins of attraction for each of these attractors; patterns that are equidistant to these basins of attraction are spurious states.

Stochasticity

To minimize the appearance of spurious states, we can introduce a notion of randomness. We consider a new parameter $\beta \in[0, \infty]$, inspired by statistical mechanics. The update rule for each neuron n_{i} becomes the following:

$$
\operatorname{Prob}\left(n_{i}= \pm 1\right)=f_{\beta}\left(\pm h_{i}\right)=\frac{1}{1+\exp \left(\mp 2 \beta h_{i}\right)}
$$

Each spurious state has a "critical point" such that sufficiently chosen β less than Each spirious cane has it from functioning as an attractor. However making too small will increase the amount of noise (and thus, unwanted attractors).

The graph above displays f_{β} with different parameters. As $\beta \rightarrow \infty, f_{\beta}$ becomes deterministic. An optimal β can be found through numerical methods.

Dense Associative Memories

The maximum number of patterns that can be recalled within a certain error threshold, referred to as the storage capacity, is relatively small in the standard Hopfield Model. In the following table, Perror denotes the probability of error pe neuron, $p_{\max }$ denotes the storage capacity and N is the number of neurons.

Note that we use the Gauss error function to compute $P_{\text {error }}$. After some computations, we get that $p_{\max }=N / 2 \log N$. A Dense Associative Memory is a generalization of the Hopfield Model that significantly increases the storage ca pacity by increasing the number of neurons that are connected to each other per connection. The energy function is generalized to the following:

$$
E=-\sum_{\mu=1}^{p} F\left(\sum_{i} \xi_{i}^{\mu} n_{i}\right)
$$

where F is a function depending on the interaction between the neurons. In the image above, a cubic interaction term $F(x)=x^{3}$ is implemented next to the standard Hopfield Model with 3 neurons. The energy function implicitly uses Hebb's Law to compute weights.

Acknowledgements and Citations

We would like to thank our mentor, William Sheppard, and the DRP Committee All material presented on this poster are from the following:
(1) John Hertz, Anders Krogh, Richard G. Palmer (1991) Introduction to the Theory of Neural Computation
(2) Dmitry Krotov, John Hopfield (2021) Large Associative Memory Problem In Neuro-Biology and Machine Learning
Figures 1 and 2 can be found from github.com/DanLeEpicMan/HopfieldModel

Background: Hyperbolic Geometry and Hyperbolic Isometeries

The Hyperbolic Plane is the metric space consisting of the open half-plane

$$
\mathbb{H}^{2}=\left\{(x, y) \in \mathbb{R}^{2} ; y>0\right\}=\{z \in \mathbb{C} ; \operatorname{Im}(z)>0\}
$$

Let $P, Q \in \mathbb{H}^{2}$, we define the distance between P, Q to be

$$
d_{\text {hyp }}(P, Q)=\inf \left\{\ell_{\text {hyp }}(\gamma) ; \gamma \text { goes from } P \text { to } Q\right\}
$$

with the explicit formula

$$
D(P, Q)=d_{\mathrm{hyp}}(P, Q)=\log \frac{|P-\bar{Q}|+|P-Q|}{|P-\bar{Q}|-|P-Q|}
$$

An important idea in geometry is the notion of a distance-preserving function, also called isometry. Let $(X, d),\left(X^{\prime}, d^{\prime}\right)$ be two metric spaces. Let $\varphi: X \rightarrow X^{\prime}$ be a bijection. Then φ is an isometry if

$$
d^{\prime}(\varphi(P), \varphi(Q))=d(P, Q)
$$

For all $P, Q \in X$. Notably, all hyperbolic isometries can be written in the form of a fractional linear map: Let $z \in \mathbb{H}^{2}$, then a fractional linear map is the function

$$
z \mapsto \frac{a z+b}{c z+d}, z \mapsto \frac{c \bar{z}+d}{a \bar{z}+b}
$$

where $a, b, c, d \in \mathbb{R}$ and $a d-b c=1$.

Topological Groups

A group is the data (G, \cdot) of a set G and a binary operation \cdot on G satisfying these axioms:

1. \cdot is associative: $\forall a, b, c,(a \cdot b) \cdot c=a \cdot(b \cdot c)$.
2. Identity: there exists $e \in G$ such that for all $a \in G, a \cdot e=a=e \cdot a$. 3. Inverse: for all $a \in G$, there exists $a^{-1} \in G$ such that $a \cdot a^{-1}=e=$ $a^{-1} \cdot a$.
A topological space is a pair (X, \mathcal{T}) where X is a set and \mathcal{T} is a collection of subsets of X such that
3. $\varnothing, X \in \mathcal{T}$.
4. Let $X_{1}, X_{2} \in \mathcal{T}$. Then $X_{1} \cap X_{2} \in \mathcal{T}$.
5. Let $\left\{X_{i}\right\}$ be a collection of elements in \mathcal{T}. Then

$$
\bigcup X_{i} \in \mathcal{T}
$$

We say that \mathcal{T} is a topology on \mathbb{X}. Elements of \mathcal{T} are called open sets. A subset $A \subseteq X$ is closed if its complement $X-A$ is open. A topological group is a group G that is also a topological space such that the group operation $(g, h) \mapsto g h$ and inversion $g \mapsto g^{-1}$ are continuous functions.

General Linear Group, Special Linear Group, and Projective Linear Group

- The general linear group, denoted by $\mathrm{GL}(n, F)$, is the set of all invertible $n \times n$ invertible complex matrices
-The special linear group, denoted by $\operatorname{SL}(n, F)$, is the set of $n \times n$ matrices with determinant 1.
We can replace F with \mathbb{C}, \mathbb{R}, etc. We will consider the case of real numbers and $n=2$. Define the projective linear group

$$
\operatorname{PSL}(2 ; \mathbb{R})=\operatorname{SL}(2, \mathbb{R}) /(\pm I)
$$

Let V be a real vector space of dimension n. Then $G L(V) \cong G L(n, F)$. We have the following diagram of short exact sequences that illustrates the relationships of these groups:

These Groups have the following relations to geometric spaces
$\cdot \operatorname{SL}(2, \mathbb{R})$ is the group of all linear transformations that preserve oriented area in \mathbb{R}^{2}.

- $\operatorname{PSL}(2, \mathbb{R})$ is the group of orientation-preserving isometries in \mathbb{H}^{2}

Group Actions on Hyperbolic Space

Let G be a group. Let A be a set. A group action of G on A is an operation : $G \times A \rightarrow A,(g, a) \mapsto g \cdot a$ that satisfy two axioms:

1. Associative: $\forall g_{1}, g_{2} \in G, \forall a \in A, g_{1} \cdot\left(g_{2} \cdot a\right)=\left(g_{1} \cdot g_{2}\right) \cdot a$.
2. Unitary: $\forall a \in A, e \cdot a=a$.

We say " G acts on A ".
The orbit of $a \in A$ is given by the set $O(a)=\{g \cdot a \mid g \in G\}$
In the context of hyperbolic space, we have $\operatorname{PSL}(2 ; \mathbb{R})$ acting on \mathbb{H}^{2} by fractional linear transformations:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \cdot z=\frac{a z+b}{c z+d}
$$

This gives us a way to describe all hyperbolic isometries in terms of groups.

Fuchsian Groups

To discuss Fuchsian Group, we introduce the following concepts: A subgroup of a topological group Γ is called a discrete subgroup if it contains no limit points
Examples:
$\cdot \mathbb{Z}$ is a discrete subgroup of \mathbb{R}

- \mathbb{Q} is not a discrete subgroup of \mathbb{R}.

A group action is properly discontinuous if:
$\forall x \in X$, there is a neighborhood V of x such that there are only finitely many $\gamma \in \Gamma$ where $\gamma V \cap V \neq \varnothing$.

Or equivalently, $\forall x \in X, O(x)$ under the action of Γ is locally finite.
With the necessary background information, we provide two equivalent characterizations of a Fuchsian group

- A Fuchsian group is a discrete subgroup of $\operatorname{PSL}(2 ; \mathbb{R})$
- A Fuchsian group is a group that acts properly discontinuously on \mathbb{H}^{2}.

Applications of Hyperbolic Space/Groups to Neuroscience

Despite the abstract nature of topological groups, computational neuroscientists are able to use related concepts to apply them to the study of the brain. Here are some applications:

- Wang et. al. (2023) showed that the neurons in a particular part of the mouse brain (CA1 region of hippocampus) that facilitate spatial perception represent spatial information according to hyperbolic geometry.
- Manifold Gaussian process latent variable model (mGPLVM) introduced by Jensen et. al. (2020) is a novel method to understand neural representations of visual features and it does not assume Euclidean feature spaces but to identify the related manifolds to which the features belong.

Acknowledgements

Reference Material: "Low Dimensional Geometry" by Francis Bonahon
"Fuchsian Groups" by Svetlana Katok
"Foundations of Hyperbolic Manifolds" by John G. Ratcliffe
Math 111A Lecture Notes By Jeremy Brightbill, Math 240A Lecture Notes by John Douglas Moore.
Thank you to the UCSB Directed Reading Program and to our men tor Jaime Vandeveer for making this project possible.

UC SANTA BARBARA
 Department of Mathematics

Introduction to Orbifolds

Yang Hu, Ethan Palomares, Leslie Mavrakis
University of California, Santa Barbara

Manifolds

While our main topic of discussion is orbifolds, some preliminary properties of manifolds will help clarify our description of an orbifold. A topological space M is a topological manifold of dimension n, which we will shorten to manifold, if it satisfies the following three properties:

- M is a Hausdorff space

- M is second countable
- M is locally Euclidean of dimension n

We will omit a thorough description of these properties, but the important part for the orbifold comparison is that manifolds are locally Euclidean; every point in the manifold has a neighborhood that is diffeomorphic to an open subset of \mathbb{R}^{n}

Classification of 2-Dimensional Manifolds

Classification Theorem for Closed Surfaces: Every compact connected surface is homeomorphic to a sphere, a connected sum of tori, or a connected sum of projective planes.

Here we will introduce the classification of orientable closed 2-manifolds.

2-sphere S^{2}
$\chi=2$
genus $\mathrm{g}=0$

2-torus T	$\mathrm{T} \# \mathrm{~T}($ connected sum $)$
$\chi=0$	$\chi=-2$
$\mathrm{~g}=1$	$\mathrm{~g}=2$

Figure 1. Orientable Closed 2-manifolas

Euler Characteristics for Manifolds

The Euler characteristic χ offers a way to categorize the manifolds. If a surface M has a cell decomposition with V vertices, E edges and F faces, its Euler Characteristic is calculated by:

$$
\begin{equation*}
\chi=V-E+F \tag{1}
\end{equation*}
$$

For orientable surfaces, it's calculated as:

$$
\begin{equation*}
\chi=2-2 g \tag{2}
\end{equation*}
$$

where g is the genus.
It follows that if \hat{M} is a d-fold covering of M then $\chi(\hat{M})=d \chi(M)$ since \hat{M} has a cell decomposition obtained by lifting cells from M, and each cell of M has d lifts to M.

Acknowledgements

We would like to thank our Graduate mentor, Leslie Mavrakis, for all the help and guidance she has given us throughout the project.

Orbifolds

Orbifolds can be viewed as generalizations of manifolds. They retain some key features of manifolds, while also introducing new concepts. An orbifold Q is essentially a topological space that locally resembles "quotients" of Euclidean space, which we'll clarify. It follows these three properties:

- Q is a Hausdorff space.

- Q is second countable
- Q is locally modeled on the quotient spaces of Euclidean space by finite group actions.

What distinguishes orbifolds from manifolds is the third property. Rather than being locally Euclidean, each point in an orbifold has a neighborhood that is diffeomorphic to the quotient of an open subset of \mathbb{R}^{n} under the action of a finite group. For example, a point may have a neighborhood that has been "folded" or "creased" in a certain way. Generally, most points will have the trivial group as the associated action, and the neighborhood around these points will be diffeomorphic to a subset of \mathbb{R}^{n}

Singular locus:

The set of points with a nontrivial associated group is referred to as the "singular locus." In dimension 2, the singular locus has:

- Cone Points - Cyclic Rotation \mathbb{Z}_{n}
- Mirror Points - Reflection
- Corner Points - Dihedral Group

An orbifold with an empty singular locus is just the underlying manifold

Figure 2. Pillow Case Example: 4 singular cone points where the local group of symmetries is \mathbb{Z}_{2}.

Euler Characteristics for Orbifolds

We would like to extend the Euler Characteristics formula to orbifolds. Considering the universal cover $\tilde{D} \rightarrow D^{2}(n)$. This is an n-fold cyclic branched cover of the disc, branching over the cone point p in $D^{2}(n)$ where p accounts for only $1 / n$ of a vertex. The orbifold covering transformation group Z_{n} of \tilde{D} fixes a point projecting to p. Hence, we might perceive p as having n "separate lifts", each taking up $1 / n$ of the point. This thought process leads to the following definition. The orbifold Euler characteristic of Q is

$$
\begin{equation*}
\chi(Q)=\sum_{\sigma \in Q} \frac{(-1)^{\operatorname{dim}(\sigma)}}{|\Gamma(\sigma)|}, \tag{3}
\end{equation*}
$$

where σ ranges over (open) cells in X_{Q} and $\Gamma(\sigma)$ is the local group assigned to points in σ.

Classification of $S O(3)$

The key observation is that any finite subgroup G of $S O(3)$ naturally acts on the sphere S^{2}, and the quotient space S^{2} / G is a 2-orbifold. The Euler characteristic χ of an orientable 2 -orbifold is given by the formula:

$$
\begin{equation*}
\chi=2-2 g-\sum\left(1-\frac{1}{n_{i}}\right), \tag{4}
\end{equation*}
$$

where g is the genus and would be 0 here.
For $\chi>0$, the formula simplifies to $2-\sum\left(1-\frac{1}{n_{i}}\right)>0$, which is equivalent to $\sum\left(1-\frac{1}{n_{i}}\right)<2$. Therefore, we can have:

- The sphere S^{2}, which has $\chi=2$ and no cone points.
- $S^{2}(n)$ for $n=2,3,4, \ldots$, which is the sphere with one cone point of order n
- $S^{2}(n, m)$ for $n, m=2,3,4, \ldots$, which is the sphere with two cone points of
order n and m.
- $S^{2}(2,3, n)$ for $n=3,4,5$ which is the sphere with three cone points of order 2,3 and n.
$S^{2}(n)$ and $S^{2}(n, m)$ where $n \neq m$ are "bad orbifolds," meaning they are not a quotient of S^{2}, so the possible forms of G are:
- $S^{2}(n, n)$ where G is cyclic of order n.
- $S^{2}(2,2, n)$ where G is dihedral of order $2 n$. Since any two rotations about distinct axes in 3D space either generate a dihedral group or the whole group $S O(3)$ (if the axes are orthogonal), we see that G must be a dihedral group.

- The action of G on S^{2} have more than two axes of rotation. The only way this can happen is if G is the symmetry group of a regular polyhedron since those are the only configurations of more than two axes of rotation in 3D space that are preserved by a group action. This corresponds to $S^{2}(2,3,3)$ if G are the symmetries of a regular tetrahedron, $S^{2}(2,3,4)$ if G are the symmetries of a cube or an octahedron, and $S^{2}(2,3,5)$ if G are the symmetries of an icosahedron or a dodecahedron which gives the symmetry groups of the Platonic solids.

References

[^1]
COMPLEX MANIFOLDS

An n-dimensional complex manifold is a topological space that is locally isomorphic to \mathbb{C}^{n}. This means man folds can take arbitrary, and often extremely complicated, forms on a global scale, but "zooming in" allows us to study their local properties win reative ease. This construction is defined by an atlas of open sets $\left(U_{i}\right)_{i \in M}$ tha cover our manifold, each with a chart (φ) that that links it to \mathbb{C}

In order for this construction to be useful. It must guarantee continuity of functions on the surface of our manifold This is achieved through requiring that our charts (φ_{i}) be holomorohic (analytic) diffeomorphisms, and requiring
that, on the intersection, the composition $\varphi_{i}^{-1} \circ \varphi_{i}$ is a smooth map.

TANGENT BUNDLES

Now that we know what the surface of a manifold looks like, we can begin talking about what happens along that surface. At any particular point p we define $T_{p} M$, the tangent space at that point. This space in generated by using the partial derivatives of our chart with respect to the basis vectors in V_{i} at the preimage of our point,

$$
T_{p} M=\left\langle\left.\frac{\partial}{\partial e_{1}}\left(\varphi_{i}\right)\right|_{\varphi_{i}^{-1}(p)},\left.\frac{\partial}{\partial e_{2}}\left(\varphi_{i}\right)\right|_{\varphi_{i}^{-1}(p)}, \cdots,\left.\frac{\partial}{\partial e_{2 n}}\left(\varphi_{i}\right)\right|_{\varphi_{i}^{-1}(p)}\right\rangle=\left\langle\frac{\partial}{\partial e_{1}}, \frac{\partial}{\partial e_{2}}, \cdots, \frac{\partial}{\partial e_{2 n}}\right\rangle
$$

The notation on the
right hand side is less
right hand side is
formal, but is permis
sible in the local $\left(U_{2}\right)$
frame. Note that this
basis is isomorphic to
basis is isomorphic
$\mathbb{R}^{2 n}$ under $\frac{\partial}{0}$
$\mathbb{R}^{2 n}$ under ${ }^{\partial \epsilon}$, $\leftrightarrow e_{1}$.
Which yields the usual
understanding of a tan-
gent space, depicted for
a 2 -(real)-dimensional
a 2-(real)-dimensiona
manifold on the right.
The tangent space is speciicic to each individual point, because it relies on evaluating the partial derivative a the unique (restricted to U_{i}) preimage of p. In order to address the manifold at large, we can define a tangen bundle ($T M)$ which is the set of all pairs of points (p), and vectors in that point's tangent space.

$$
T M=\left\{(p, \vec{v}) \mid p \in M, \vec{v} \in T_{p} M\right\}
$$

Naturally, there are a LOT of vectors in the tangent space of any particular point. The (tangent) vector field (ς provides us a method for selecting one of these vectors, given a particular point.

$$
\begin{aligned}
\xi:= & M \mapsto T M \\
& p \mapsto(p, \vec{v})
\end{aligned}
$$

For the purposes of integration, we want to remember which point each of these vectors comes from. This why its essential for the vector field to map to the tangent bundle rather than a particular tangent space.

COTANGENT BUNDLES

Using our definitions of tangent spaces, bundles, and fields, we will define cotangent spaces, bundles, and fields
A covector (ω) also A covector (ω)(also called a 0 -form, or a linear functional) is a function that takes in a vector and outputs a scalar.

Naturally a cotangent vector is a covector who's domain is the tangent space (at a point), so we can be sur that it intakes tangent vectors. Applying what we know about tangent spaces, we can see that the cotangen space should be the space of all cotangent vectors.

$$
T_{p}^{*} M=\left\{\omega \mid \omega: T_{p} M \mapsto \mathbb{C}\right\}
$$

COTANGENT BUNDLES (CONT.)

 Here we use the notation for the dual of the tangent space since thats exactly what the cotangentspace is! It is the set of all maps(covectors) from the tangent space to the underlying field(C in our case). In light of this, we can define a basis for the cotangent space, with the conventional linear
functional basis of a dual space

$$
T_{p}^{*} M=\left\langle d e_{1}^{p}, d e_{2}^{p}, \cdots, d e_{2 n}^{p}\right\rangle, \quad d e_{i}^{p}\left(\left.\frac{\partial}{\partial e_{j}}\right|_{p}\right)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

Similarly, the cotangent bundle is the set of all point-cotangent vector pairs

$$
T^{*} M=\left\{(p, \omega) \mid p \in M, \omega \in T_{p}^{*} M\right\}
$$

Again, this is the dual of the tangent bundle
Final, in the it a map that, given a point, provides a covector in the cotangent space of that point

$$
\alpha:=\begin{gathered}
M \mapsto T^{*} M \\
p \mapsto(p, \omega)
\end{gathered}
$$

When we require this map to be smooth, we realize this "covector field" as a section of the cotangent bundle, or a differential one form

DIFFERENTIAL 1-FORMS AND EXTERIOR DERIVATIVES

Differential 1 -forms are functions that are nearly equivalent to covector fields, the main difference is that we allow them to intake a poin point-scalar pair. Differential forms are written

$$
\alpha(p, \vec{v})=\left(p, \sum_{i=1}^{2 n} f_{i}(p) d e_{i}^{p}(\vec{v})\right)=\left(p, f_{1}(p) d e_{1}^{p}(\vec{v})+f_{2}(p) d e_{2}^{p}(\vec{v})+\cdots+f_{2 n}(p) d e_{2 n}^{p}(\vec{v})\right)
$$

So, in the particular case where $\vec{v}=\frac{\partial}{\partial e_{i}}$ that we achieve

$$
\alpha\left(p,\left.\frac{\partial}{\partial e_{i}}\right|_{p}\right)=0+\cdots+f_{i}(p) d e_{i}^{p}\left(\left.\frac{\partial}{\partial e_{i}}\right|_{p}\right)+\cdots+0=\left(p, f_{i}(p)\right)
$$

second term, α of a point allows us to "measure" the value of α in the $\frac{\partial}{\partial_{i} \mid}$ direction. So, summing α along a curve is equivalent to integrating f_{i} with respect to e_{i}. More deeinerally, evaluating along some vector field, ξ, allows us to integrate along our entire manifold (with respect to ξ). Thus, 1 -forms are the tools we use in every one dimensional integral. We can use the exterior
derivative to achieve 2 -forms, which allow us to integrate area, and eventually m-forms, which derivative to achieve 2 -forms, which allow us to integrate area, and eventually m-forms, which
measure m-dimensional oriented density.
The exterior derivative, d, asks us to differentiate each of our f fs with respect to each e^{p} and to note
that differentiation in the result

$$
d(\alpha)=\sum_{j=1}^{2 n} \sum_{i=1}^{2 n} \frac{\partial f_{i}}{\partial e_{j}} d e_{j}^{p} \wedge d e_{i}^{p}
$$

The wedge product (Λ) here is a complicated algebraic structure that explicitly outtines how to eval
uate the vector part of our input.

COHOMOLOGIES

In order to better understand the properties of a certian manifold, it can be helpful to understana how differential forms of change as we differentiate them. For this we will use a cohomology. A cohomology is a sequence of groups (and maps from one group to the next) with a useful property
called exactness, that every element becomes 0 after being mapped twice.

Inspecting the quotient group $\operatorname{ker}\left(\varphi_{i}\right) /{ }_{I m}\left(\varphi_{i-1}\right)$ allows us to measure just how fast this process is hap-

THE DOLBEAULT COHOMOLOGY

Since we are working with a complex manifold. We can chose a convenient basis to address our langent and cotangent spaces

$$
\left\langle z_{1}, \overline{z_{1}}, \cdots, z_{n}, \overline{\bar{z}_{n}}\right\rangle
$$

This choice of basis leads to a method for spliting the exterior derivative

$$
d=\partial+\bar{\partial}
$$

Where ∂ takes the partial derivatives with respect to the complex basis $\left\langle z_{1}, z_{2}, \cdots, z_{n}\right\rangle$, and ∂ takes the partial derivatives with respect to the complex conjugate basis $\left\langle\overline{\bar{z}_{1}, z_{2}}, \cdots, \bar{z}_{n}\right\rangle$. Using these operator we can construct a cohomology in two directions. Begining with $\Omega^{0,0}$, the space of 0 -forms (covectors) we construct,

Note that $\partial \circ \overline{\bar{d}}=\overline{\overline{0}} \circ \partial$ and that $\Omega^{i, j}=\overline{\Omega^{i, i}}$. Inspecting $i=1, j=0$ reveals that $\Omega^{1,0}$ are the holomorphic
Notorms, and $\Omega^{0,1}$ are the antiholomorphic 1 -forms, on our manifold.
THE HODGE DIAMOND
We now inspect the downward cohomology of the dobeault cohomology. We name the quotient groups $H^{i j}(M)=\operatorname{ker}\left(\bar{\partial}_{(i, j)}\right) / \operatorname{Im}\left(\bar{\partial}_{(i, j-1)}\right)$
We call the dimension of these groups the hodge numbers, $h^{i, j}=\left|H^{i, j}(M)\right|$. Then we arrange these into the Hodge diamond
The hodge diamond is ex ceptionally useful in algebraic manifolds. The row that each of these hodge numbers are in corresponds to the weight of the represented group. This contained within the cosets
that make up each individual

HODGE STRUCTURES

 weight k

$$
H^{k}(M, \mathbb{C})=\bigoplus H^{i, j}(M)
$$

In the case of hodge structures of weight 1 we know

$$
H^{1}(M, \mathbb{C})=H^{1,0}(M) \oplus H^{1,0}(M)=H^{1,0}(M) \oplus \overline{H^{1,0}}(M)
$$

So we conclude thal $H(M, \mathbb{C})$ is of even dimension. This must also be true for the lattice subs
niry a torus

$$
T=H^{0,1}(M) / H^{1}(M, \mathbb{Z})
$$

The map from a complex torus to the cohomology groups generated on that torus yields an inverse map and thus we establish a bijection between complex tori and hodge structrues of weight 1 $T \leftrightarrow H^{1}(M, \mathbb{C})$

ACKNOWLEDGEMENTS AND REFERENCES

Markov-Style State Machines

Nathaniel Hamovitz, Ron Kibel, Rianna Alers

University of California Santa Barbara

Reinforcement Learning

Reinforcement learning (RL) is a technique for training an agent to act favourably in an arbitrary environment. Environments consist of states, actions observations, and rewards. The agent's job is to choose actions that maximize the total reward.
There are many approaches to solving this task. The agent can try to predict the long-term consequences of its actions and maximize its long-term benefits (valuebased approach). It can also try to learn the environment iself (model-based $R \mathrm{~L}$, which refers to optimizing the sequence of actions we take to maximize ou current and future rewards.

Markov Models

These models come in different variants, with different tradeoffs. The following four classes of models are all "stochastic, discrete state, discrete time" [1] finite state machines with Markovian dynamics - that is, the next state depends only on hecision Proces (Morion Decision Processes), but you may be familiar with other Markovian processes:

States Completely Observable?	Control over State Transitions?	
	NO	YES
YES	Markov Chain	MDPs
NO	Hidden Markov Model	POMDPs

MDPs and POMDPs

Both MDPs and POMDPs are especially helpful in the RL setting because they can represent the relationship between the agent and the environment.

- In an MDP, we assume the environment is fully observable. As such, the states fully capture all relevant information for decision-making (state transitions contain $P_{a}\left(s \mid s^{\prime}\right)$, the probability that taking action a at time t in state s will lead us to state s^{\prime} at time $t+1$).
- We can generalize an MDP into a POMDP by assuming that the environment is only partially observable. This implies that states in our model only capture part of the true environment-observations give us information that are only partially informative, which makes it more challenging! We thus need to introduce what is known as the belief state, which is a probability distribution over all states encoding how closely a state resembles the true environment [3].
Formally, a POMDP is a tuple of the following items
- S, a set of states
- A, a set of actions
- $P\left(s_{t} \mid a, s_{t-1}\right)$, state-action transition probabilities
- $R: S \times A \rightarrow \mathbb{R}$, state-action reward function
- O, a set of observations
- $P(o \mid s)$, conditional observation probabilities
- $\gamma \in[0,1)$, the discount facto

Adaptive State Aggregation for MDPs
MDPs can be solved by iterating the operator

$$
T_{s}(\mathbf{V})=\min _{a \in \mathcal{A}}\left(r(s, a)+\gamma \cdot \mathbf{P}_{s, a}^{\top} \mathbf{V}\right)
$$

Value iteration is simple and guarantees convergence, but is computationally expen sive. For large state spaces solving an MDP with this technique becomes infeasible We can use state aggregation to reduce these costs by dynamically grouping states with similar cost-to-go values [2]

This algorithm alternates between two phases: a global update phase and an aggre gated update phase. The global update phase performs value iteration on S and the aggregated update phase groups together states with similar cost-to-go values We need both phases because the aggregated update phase will require updated knowledge of V^{\star} to perform aggregation. In the following algorithms, A_{i} reference our state-aggregation and B_{i} reference global iterations.

Value Iteration

We must use some form of value-iteration to obtain a value function for our aggre gation. We observe an algorithm using a pre-specified aggregation where W is the value funcion generath is the sizas and \hat{v} is incuced value function.
 maintain a simia contal maintain a similar convergence bound [2].
$\frac{\text { Algorithm } 1 \text { Random Value Iteration with Aggregation }}{\left.\text { Input: } \mathbf{P}, r, \gamma, \boldsymbol{\Phi},\left\{\alpha_{t}\right\}\right\}_{=1}}$
Input: $\mathbf{P}, r, \gamma, \boldsymbol{\Phi},\left\{\alpha_{t}\right\}_{t=1}^{\infty}$
Initiaize $\mathbf{W}_{0}=0$
not $t=1, \ldots, n$ do
nitize
for $j=1, \ldots, K$ do
$W_{t+1}(j)=\left(1-\alpha_{i}\right) W(j)+{ }^{2}$
end for
end for
eutpout 1

State Aggregation

Divide the state space S into K subsets and view these subsets as mega-states. The value function generated by each mega-state can be used to find the optimal value V^{*}. The algorithm is below
Algorithm 2 Value-based Aggregation [2]
Input: $\varepsilon, V=(V(1), \ldots, V(|S|))^{T}$
$b_{1}=\min _{s \in S \mid} V(s), b_{2}=\max _{s \in|S|} V(s), \Delta=\left(b_{2}-b_{1}\right) \mid \varepsilon$
for $i=1, \ldots, \Delta$ do

$\hat{S}_{i}=\left\{s \mid V(s) \in\left[b_{1}+(i-1) \epsilon, b_{1}+i \epsilon\right)\right\}$
$\tilde{W}(i)=b_{i}+\left(i-\frac{1}{3}\right) \varepsilon$
end for
Return $\left\{S_{i}\right\}_{i=1}^{K}$ and W

Adaptive State Aggregation Algorithm

Combining the two techniques above, we get the following algorithm where A_{i} are our state-aggregation and B_{i} are our global iterations.
his method is separate from other aggregation techniques because it learns the cost to-go values continuously, which aggregation methods need to generate mega-states,
Algorithm 3 Value lteration with Adaptive Aggregation [2]
Input: $\mathbf{P}, r, \varepsilon, \gamma,\left\{\alpha_{t}\right\}_{t=1}^{\infty},\left\{\mathcal{A}_{i}\right\}_{i=1}^{\infty},\left\{\mathcal{B}_{i}\right\}_{i=1}^{\infty}$
Initialize $W_{0}=0, V_{1}=0, t_{s a}=$
for $t=1, \ldots, n$ do
if $t \in B_{i}$ then
if $t \in B_{i}$ then $\begin{aligned} & \text { if } t=\min \left\{B_{i}\right\} \text { then }\end{aligned}$
$\quad \mathbf{V}_{\mathrm{t}-1}=\tilde{\mathbf{V}}\left(\mathbf{W}_{\mathrm{t}-1}\right)$
end if
end if
for $j=1, \ldots,|S|$ do
State $V_{t}(j)=T_{j} V_{t-1}$
end for
else
Find current i s.t. $t \in \mathcal{A}$
if $t=\min \left\{A_{i}\right\}$ then
if $t=\min \left\{A_{i}\right\}$ then
Run our Value-base
Set the $\left\{S_{i}\right\}_{i=1}^{K}$ and W_{t} to be the output of our Algorithm
end if
for $j=1, \quad K$ do
for $j=1, \ldots, K$ do
Sample state s uniformly from set S_{i}
$W_{t}(j)=\left(1-\alpha t_{s} a\right) W_{t-1}(j)+\alpha_{t s a} T_{s} \mathbb{V}\left(\mathbf{W}_{\mathbf{t}-1}\right)$
end for
$t_{s a}=t_{s a}+1$

$\substack{\text { end is } \\ \text { end for }}$

end for
if $n \in \mathcal{B}$, then return V
end if $\tilde{V}\left(W_{1}\right.$
return $\tilde{\mathrm{V}}\left(\mathrm{W}_{\mathrm{n}}\right)$

Acknowledgements

We are grateful to Charles Kulick for his mentorship and guidance.

References

[1] Anthony R. Cassandra. POMDP FAQ. URL: https://pomdp.org/faq.html.
[2] Guanting Chen et al. "An Adaptive State Aggregation Algorithm for Markov Decision Processes" In: (2021). arXiv: 2107.11053 [cs. LG]. cesses". In: Journal of Artificial Intelligence Research 13 (Aug. 2000).

Mathematics of General Relativity

Connor Lindsay

University of California Santa Barbara

Background

The theory of general relativity describes gravity and is based on coordinate invariance and the equivalence principle. In order satisfy these, we describe space as a smooth manifold equipped with a metric, so let us define what these are:

Smooth manifold
This is a space that may have curved geometry, but locally looks like \mathbb{R}^{n}. That is, for every point in the manifold, there exists a neighborhood around it where a diffeomorphism to \mathbb{R}^{n} exists.

Metric

A metric in general allows for a notion of distance within a space. For us, the metric will be a map taking vectors to dual vectors.

$$
g_{a b} V^{a}=V_{b}
$$

Tensor
Coordinate invariant objects used to build the physics of general relativity. We will use Einstein summation notation to represent tensors, where repeated indices are summed over.

Levi-Civita Connection

In general relativity, our manifold can be curved, so tangent spaces at every point are independent from each other. We need the LeviCivita connection to relate tangent spaces, given by,

$$
\Gamma^{a}{ }_{b c}=\frac{1}{2} g^{a d}\left(\partial_{b} g_{d c}+\partial_{c} g_{d b}-\partial_{d} g_{b c}\right)
$$

The connection is a coordinate dependent object, and so it is not tensorial. Instead the connection defines a notion of parallel transport in the manifold, as well as other useful properties [2]:

Covariant Derivative
The covariant derivative is a coordinate invariant form of the derivative.

$$
\nabla_{a} V^{b}=\partial_{a} V^{b}+\Gamma_{c a}^{b} V^{c}
$$

Geodesic Equation
The geodesic equation allows for you to calculate the path of an object in free fall.

$$
\frac{d^{2} x^{a}}{d s^{2}}+\Gamma^{a}{ }_{b c} \frac{d x^{b}}{d s} \frac{d x^{c}}{d s}=0
$$

Riemann Curvature Tensor

The Riemann Curvature tensor, built out of the connection, fully describes the curvature of the manifold at every point

$$
R_{b c d}^{a} V^{b}=\left[\nabla_{c}, \nabla_{d}\right] V^{a}
$$

This is based on the idea of parallel transporting a vector around a loop to detect a deviation from flat space.

By simplifying the above expression, we can also write this in terms of the Levi-Civita connection which is useful for calculation [2].

$$
R^{a}{ }_{b c d}=\partial_{c} \Gamma^{a}{ }_{b d}-\partial_{d} \Gamma^{a}{ }_{b d}+\Gamma^{a}{ }_{c e} \Gamma^{e}{ }_{b d}-\Gamma^{a}{ }_{d e} \Gamma^{e}{ }_{b c}
$$

Ricci tensor and scalar
The Ricci tensor, $R_{b d}$, and the Ricci scalar, R, are both built by contracting indices from the Riemann curvature tensor and are used in the Einstein field equations.

$$
R_{b d}=R_{b a d}^{a}, \quad R=g^{b d} R_{b a d}^{a}
$$

Einstein-Hilbert Action

The curvature of our space is determined by the physical configuration of the system, so we need a way to solve for the metric based on this. To do this we can use the principle of least action and variational calculus
Action

The action, denoted S, is a quantity obtained by integrating a scalar over the entire manifold. The scalar is chosen to embody the physical properties of the system studied.

Principle of Least Action
This states that any system will be at a minimum of its action. This means we can find the equations of motion by varying an action against its parameters.

In general relativity the Einstein-Hilbert action is used for our system, given below [2],

$$
S=\int \sqrt{|g|} R d^{n} x
$$

Here R is the Ricci scalar, and $|g|$ is the determinant of the metric. Together these encode the curvature of space, and so by finding the variation of this with respect to the metric we get the Einstein field equations.

Einstein Field Equations

For an n dimensional manifold, the Einstein field equations are a set of n^{2} partial differential equations that solve for the metric.

$$
R_{a b}-\frac{1}{2} R g_{a b}=T_{a b}
$$

Here $R_{a b}$ is the Ricci tensor, R the Ricci scalar and $T_{a b}$ is the energy momentum tensor, describing the energy present in a system.

In general, these are difficult equations to solve, but specific config urations have analytic solutions [2].
Einstein-Hilbert-Palatini Formalism

When choosing a connection we assumed it to be Levi-Civita since it has useful properties, but the Palatini formalism seeks to give a reason why this is the correct connection to use.

$$
\Gamma^{a}{ }_{b c}=\Gamma^{a}{ }_{c b}
$$

The Levi-Civita connection is torsion free, satisfying the above property, allowing for the simplification of the Riemann curvature tensor.

$$
\nabla_{a} g_{b c}=0
$$

It is also metric compatible, allowing for simplifications when varying the Einstein-Hilbert action.

In the Palatini formalism we choose an arbitrary affine connection for our manifold as a second parameter for variation. This variation gives the usual Einstein field equations and an equation restricting our arbitrary connection. Solving these restrictions shows the only physical solutions to the equations of motion are given by the Levi-Civita connection [1].

Acknowledgements

I would like to thank Patrick Vecera for his guidance as well as the UCSB Directed Reading Program for the opportunity to work on this project.

References

[1] Antonio N. Bernal et al. "On the (non-)uniqueness of the Levi-Civita solution in the Einstein-Hilbert-Palatini formalism". In: Physics Letters B 768 (May 2017), pp. 280-287.
[2] S.M. Carroll. Spacetime and Geometry. Cambridge University Press, 2019 ISBN: 9781108488396.

Modern Portfolio Theory: The Markowitz Model
Xinyue Li, Anna Maximova, Yujing Kang; Mentored by: Doris Padilla \& Alex Bernstein University of California, Santa Barbara

Abstract

Financial markets are notoriously complex and unpredictable. Therefore, investors must consider several factors and strategies in order to increase profits. Modern oses analysis to model the relationships between profits and losses in the portfolio election process. Ultimately, the objective is to maximize expected investment return given a certain risk amount. In our project, using a dimension reduction procedure, we apply modern portfolio theory to a high-dimensional data set. The results include a sequence of optimal portfolios (efficient frontier).

Introduction

Let's generalize the description of the financial market with the following notation, Assets: there are N assets (securities) which are traded in our market. Let S_{t}^{i} represent the price of asset i at time t.
Returns: The return of an asset i is given to be $R_{i} \equiv \frac{S_{1}^{i}-S_{0}^{i}}{S_{0}^{i}}$. The market with N assets is characterized by the random vector $R=\left(R_{1}, \ldots, R_{N}\right)$.
Portfolio Values: The initial value of a portfolio equals $x=\left(x_{1}, \ldots, x_{N}\right)$; that is, at time zero, the investor invests amount x_{i} into asset i.

Reward vs Risk: Our portfolio selection process is characterized through a trade-off between reward and risk. The variables expectation $\left(\mathbb{E}\left[R_{x}\right] \equiv m_{x}\right)$ and variance $\left(\operatorname{Var}\left[R_{x}\right] \equiv \sigma_{x}^{2}\right)$, respectively, capture this unique relationship. Suppose,

- m represents the vector of expected returns, $m=\left(m_{1}, \ldots, m_{N}\right)$.
- V is the covariance matrix of returns, that is: $V=\left(\sigma_{i j}\right)$ where $\sigma_{i j}=$ $\operatorname{Cov}\left(R_{i}, R_{j}\right)$. Note that, $W \equiv V^{-1}$
roblem Statement: Consider the following scenario: an investor wishes to determine an optimal allocation of his/her assets according to an individual risk preference $\tau \geq 0$, also called the risk parameter. Applying Markowitz's result in [4] \& [1], this problem can be solved as follows.

$$
\begin{equation*}
\max _{x \in \mathbb{R}^{N}}\left\{\tau m_{x}-\sigma_{x}^{2}\right\} \text { subject to } \sum_{i=1}^{N} x_{i}=1 \text {. } \tag{1}
\end{equation*}
$$

The trade-off lies in the conflicting parameters m_{x} and σ_{x}^{2}. Usually, a higher expected return is associated with more risk, and vice versa. Intuitively, the goal remains to maximize return while minimizing risk.
Principal Component Analysis: Principal component analysis (PCA, [2]) is a dimension reduction procedure, whose benefits include:

- Data transformation into a new space, with the same order, and orthogonal axes (i.e principal components).
The newly formed axes are ordered, decreasingly, in terms of their explained variability (weight). That is, the first principal component explains more variance than the second one, and the pattern continues.
In our project, we apply PCA to our covariance matrix V for the following reasons: - Understand the major sources of variance and the effect of those factors on each security in our data set.
- Optimal portfolios require the inversion of a covariance matrix (see Thm 2). Our sample V has a condition number on the order of 10^{20}. The inversion of such a large covariance matrix (dim: 5119×5119) is numerically unstable.

Theoretical Results

Assumptions:

- The law/distribution of the portfolio return is fully characterized by the mean $\mathbb{E}\left[R_{x}\right]$ and variance $\operatorname{Var}\left[R_{x}\right]$.
- The covariance matrix V is positive definite; that is, $\langle x, V x\rangle>0, \forall x \neq 0$.
- There are at least two assets i and j where $m_{i} \neq m_{j}$.

$$
\begin{align*}
& \text { Theorem 1. The expected return \& variance of a portfolio } R_{x} \text { equals, } \\
& \qquad \mathbb{E}\left[R_{x}\right]=\sum_{i=1}^{N} x_{i} m_{i}=\langle x, m\rangle, \operatorname{Var}\left[R_{x}\right] \equiv \sum_{i, j=1}^{N} x_{i} \sigma_{i j} x_{j} \equiv\langle x, V x\rangle \tag{2}
\end{align*}
$$

Proof. Note that, $R_{x} \equiv \sum_{i=1}^{N} x_{i} R_{i}$ and $M_{x}=\sum_{i=1}^{N} x_{i} m_{i}$. As a result, by definition:

$$
\begin{aligned}
& \mathbb{E}\left[R_{x}\right]=\mathbb{E}\left[\sum_{i=1}^{N} x_{i} R_{i}\right]=\sum_{i=1}^{N} x_{i} \mathbb{E}\left[R_{i}\right]=\sum_{i=1}^{N} x_{i} m_{i} \equiv\langle x, m\rangle \\
& \operatorname{Var}\left[R_{x}\right]=\mathbb{E}\left[R_{x}-\mathbb{E}\left[R_{x}\right]\right]^{2}=\mathbb{E}\left[R_{x}-M_{x}\right]^{2}
\end{aligned}
$$

Continuing to expand the variance, we get the final answer:

$$
\mathbb{E}\left[R_{x}-M_{x}\right]^{2}=\mathbb{E}\left[\sum_{i=1}^{N} \sum_{j=1}^{N} x_{i} x_{j}\left(R_{i}-m_{i}\right)\left(R_{j}-m_{j}\right)\right]=\sum_{i, j=1}^{N} x_{i} x_{j} \operatorname{Cov}\left(R_{i}, R_{j}\right) \equiv\langle x, V x\rangle
$$

$$
\begin{align*}
& \text { Theorem 2. For each risk tolerance parameter } \tau \geq 0 \text { the Markowitz portfolio selection problem has a unique } \\
& \text { solution, } \\
& \qquad x_{\tau}^{*}=\frac{W e}{\langle e, W e\rangle}+\frac{\tau}{2}\left(W m-\frac{\langle e, W m\rangle}{\langle e, W e\rangle} W e\right) \text {, with } e=(1,1, \ldots, 1) . \tag{3}
\end{align*}
$$

Proof. Suppose $L(x, \lambda)$ represents the Lagrange Multiplier i.e.

$$
L(x, \lambda)=\underbrace{\tau\langle m, x\rangle-\langle x, V x\rangle}_{\text {function to maximize }}+\underbrace{\lambda(\langle x, e\rangle-1)}_{\text {constraint }}
$$

The objective is to solve for the vector $x \equiv x_{\tau}^{*}$ such that i) $L_{x}=0$ and ii) $m \tau-2 V x+\lambda e=0$. If $\tau=0$, we see that:

$$
\begin{aligned}
-2 V x+\lambda e=0 & \Leftrightarrow-2 x+\lambda W e=0 ; \quad \text { (applying } W \text { both sides) } \\
& \Leftrightarrow \lambda=\frac{2}{\langle e, W e\rangle} ; \quad(\text { since }\langle x, e\rangle=1) .
\end{aligned}
$$

So the minimum variance portfolio becomes:

$$
-2 x+\frac{2}{\langle e, W e\rangle} \times W e=0 \Rightarrow x^{\min } \equiv x_{\{\tau=0\}}^{*}=\frac{W e}{\langle e, W e\rangle} .
$$

Assume $\tau>0$. Define $z \equiv x-x_{0}^{*}$. Equiv, $x=z+\frac{W e}{\langle e, W e\rangle}$ Then, Equations $\left.\left.i\right) \& i i\right)$ can be re-written as such:

$$
\begin{aligned}
& \left.i^{*}\right) m \tau-2 V\left(z+x_{0}^{*}\right)+\lambda e \equiv m \tau-2 V\left(z+\frac{W e}{\langle e, W e\rangle}\right)+\lambda e=0 \text {; } \\
& \left.i i^{*}\right)\langle z, e\rangle=0 .
\end{aligned}
$$

Applying W to Equation $\left.i^{*}\right)$ and simplifying, we obtain: $\lambda=\frac{2}{\langle e, W e\rangle}-\frac{\tau\langle e, W m\rangle}{\langle e, W e\rangle}$. In conclusion,

$$
\tau W m-2 z-\frac{\tau\langle e, W m\rangle}{\langle e, W e\rangle} W e=0 \quad \Rightarrow \quad z=\frac{\tau}{2} z^{*} \text { where } z^{*}=W m-\frac{\langle e, W m\rangle}{\langle e, W e\rangle} W e .
$$

Coding Application

We collect data from [3], which provides daily stock returns for all US-based securities and ETFs trading on the NYSE, NASDAQ, and NYSE MKT. Stocks which contained missing values were excluded from the analysis, leaving a fina sample of 5,119 assets across 218 data points (January 2nd, 2017-November 10th, 2017)

Dimension Selection: Let V represent the covariance matrix constructed from our estimated factors using the Principal Component method. Our analysis from Fig. 1 concludes that 3 eigenvectors sufficiently explain the majority of uncertainty in our dataset.

Spree Plot for Principal Components

Results: Using this lower-dimensional matrix V, we applied Theorem 2 to find the optimal portfolio x_{τ}^{*}. The points $\left(\sigma_{x}^{2}, m_{x}\right)$ on the efficient frontier represent he variances (x-axis) and expectations (y-axis) of the returns on x_{τ}^{*} with risk folerance $\tau \geq 0$. Intuition: more money means higher risk.

References

[1] Igor V. Evstigneev. Mathematical Financial
Switzerland, 2015. IsBv: 978-3-319-16570-7.
Eonomics. Springer International Pubishing 22] Richard Johnson and Dean Wichern. Applied
ucation Limited, 2014. ISBN: $978-1-292-02494-3$. datasets/borismar junovic/price-volume-data-for-al1.-ust-stos ://www . kaggle . com/ 4] Harry Markowitz, "Portfolio Selection". In: Journal of Finance 7.1 (1952), pp. 77-91

A Brief Introduction to Lie Algebras

Lana Azar and Mychelle Parker

University of California Santa Barbara - Directed Reading Program 2023

What are Lie Algebras?

We define a Lie Algebra over a field \mathbb{F} as an \mathbb{F}-vector space L, together with a bilinear map, which we call the Lie bracket. The Lie bracket is defined as

$$
L \times L \Rightarrow L, \quad(x, y) \mapsto[x, y]
$$

satisfying

$$
[x, x]=0, \forall x \in L,
$$

$[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0, \forall x, y, z \in L$.
This second condition is known as the Jacobi identity. Here is a consequence of those two conditions:

$$
\begin{gathered}
0=[x+y, x+y]=[x, x]+[x, y]+[y, x]+[y, y]=[x, y]+[y, x] \\
\Longrightarrow[x, y]=-[y, x]
\end{gathered}
$$

We note that the Lie bracket $[x, y]$ is often referred to as the commutator of x and

Examples of Lie Algebras

Here we highlight three examples of Lie Algebras.
(1) Suppose V is a finite-dimensional vector space over field \mathbb{F} and let $g l(V)$ be the set of all linear maps from V to $V . g l(V)$ is also a vector-space over \mathbb{F} and is a Lie algebra, known as the general linear algebra, defined by the Lie bracket

$$
[x, y]:=x \circ y-y \circ x, \forall x, y \in g l(V)
$$

where o denotes the composition of maps. We can check that the Jacobi identity holds for this Lie algebra:

$$
[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0, \forall x, y, z \in g l(V)
$$

$\Longrightarrow(x \circ[y, z]-[y, z] \circ x)+(y \circ[z, x]-[z, x] \circ y)+(z \circ[x, y]-[x, y] \circ z)=0$ $\Longrightarrow x \circ(y \circ z-z \circ y)-(y \circ z-z \circ y) \circ x+y \circ(z \circ x-x \circ z)-(z \circ x-x \circ z) \circ y$

$$
+z \circ(x \circ y-y \circ x)-(x \circ y-y \circ x) \circ z)=0
$$

$$
\Longrightarrow 0=0
$$

since the composition of linear maps is commutative.
(2) Let $g(n, \mathbb{F})$ be the vector space of all $n \times n$ matrices over \mathbb{F} with the Lie bracket defined by

$$
[x, y]:=x y-y x,
$$

where $x y$ is the usual product of matrices x and y. Since $g l(n, \mathbb{F})$ is a vector space, it has a basis consisting of the matrix units $e_{i j}$ for $1 \leq i, j \leq n$, where $e_{i j}$ s the $n \times n$ matrix that has a 1 in the $i j$-th position and 0 in all other positions Letting δ be the Kronecker delta, defined by $\delta_{i j}=1$ if $i=j$ and $\delta_{i j}=0$ otherwise, we have

$$
\left[e_{i j}, e_{k l}\right]=\delta_{j k} e_{i l}-\delta i l e_{k j},
$$

which can be verified using the Lie bracket.
(3) Let $s l(n, \mathbb{F}) \subseteq g l(n, \mathbb{F})$ denote the set of all $n \times n$ matrices such that the matrices have trace equal to zero. Then, we can define the Lie bracket

$$
[x, y]:=x y-y x, \forall x, y \in \operatorname{sl}(n, \mathbb{F})
$$

and $s l(n, \mathbb{F})$ is a Lie algebra, known as the special linear algebra. The two properties of Lie brackets are inherited from $g l(n, \mathbb{F})$.

Subalgebras

A Lie subalgebra of a Lie algebra L is defined to be a vector space $K \subseteq L$ such that

$$
[x, y] \in K, \forall x, y \in K .
$$

In our previous example of Lie algebras, particularly example 2, we saw that $s l(n, \mathbb{F})$ is a subalgebra of the Lie algebra $g l(n, \mathbb{F})$. Another way to think about the definition of a subalgebra is as follows: a subalgebra L^{\prime} of a Lie algebra L is a subset of elements of L that themselves form a Lie algebra with the same commutator and field as that of L.

Ideals

Given a Lie algebra L a subalgebra I of L is defined to be an ideal if

$$
[x, y] \in I \quad \text { for all } \quad x \in L, y \in I
$$

If I and J are both ideals of a Lie algebra L, then $I \cap J, I+J$, and $[I, J]$ are also ideals, where

$$
I+J:=\{x+y \mid x \in I, y \in J\}
$$

$$
[I, J]:=\operatorname{Span}\{[x, y] \mid x \in I, y \in J\}
$$

Examples of ideals:

(1) L is an ideal of itself.
(2) $\{0\}$ is the trivial idea
(3) A frequently non-trivial ideal is the center of L, which is defined to be

$$
Z(L):=\{x \in L \mid[x, y]=0 \text { for all } y \in L\}
$$

(4) If $I=J=L$, then we write $L^{\prime}=[L, L]$. This ideal is the derived algebra of L.

Given an ideal I we can define a new Lie algebra by considering the cosets $z+I=\{z+x$ $x \in I$ and then define the corresponding quotient Lie algebra

$$
L / I:=\{z+I \mid z \in L\}
$$

where the bracket relation on L / I is given by

$$
[w+I, z+I]:=[w, z]+I \text { for } w, z \in L
$$

Theorem: There is a bijective correspondence between the ideals of L / I and the ideals of L that contain I.

Proof. If J is an ideal of L and $I \subseteq J$, then J / I is an ideal of L / I. If K is an ideal of L / I, then $J:=\{z \in L \mid z+I \in K\}$ is an ideal of L that contains I.

Homomorphisms

If L_{1} and L_{2} are Lie algebras over a field F, then a map $\varphi: L_{1} \rightarrow L_{2}$ is a homomorphism if φ is a linear map and

$$
\varphi([x, y])=[\varphi(x), \varphi(y)] \text { for all } x, y \in L_{1}
$$

If φ is also bijective, then we say that it is an isomorphism.
If $L_{1}=L_{2}$, then any homomorphism between them can be referred to as an endomorphism An isomorphism between a Lie algebra and itself is called an automorphism.

Adjoint

For a Lie Algebra L we define its adjoint homomorphism ad : $L \rightarrow g l(L)$ by $(\operatorname{ad}(x)(y):=[x, y]$ for all $x, y \in L$

Example: Consider the case when $L=s l(2, \mathbb{C})$. A basis for this Lie algebra is

$$
h=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad e=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad f=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],
$$

with structure equations

$$
[h, e]=2 e,[h, f]=-2 f,[e, f]=h
$$

Then for any $x \in L$ we know $x=a_{1} h+a_{2} e+a_{3 f}$ with $a_{i} \in \mathbb{C}$. Then to understand $\operatorname{ad}(x) \in g l(L)$ we see that
$\operatorname{ad}(x)(h)=[x, h]=\left[a_{1} h+a_{2} e+a_{3} f, h\right]=-2 a_{2} e+2 a_{3} f$
$\operatorname{ad}(x)(e)==[x, e]=\left[a_{1} h+a_{2} e+a_{3} f, e\right]=2 a_{1} e-a_{3} h$
$\operatorname{ad}(h)(f)=[x, f]=\left[a_{1} h+a_{2} e+a_{3} f, f\right]=-2 a_{1} f+a_{2} h$.

Lie Algebra Isomorphism Theorems

(1) Let $\varphi: L_{1} \rightarrow L_{2}$ be a homomorphism of Lie algebras. Then $\operatorname{ker} \varphi$ is an ideal of $L_{1}, \operatorname{im} \varphi$ is a subalgebra of L_{2} and

$$
L_{1} / \operatorname{ker} \varphi \cong \operatorname{im} \varphi .
$$

(2) If I and J are ideals of a Lie algebra J, then

$$
(I+J) / J \cong I /(I \cap J) .
$$

(3) Suppose that I and J are ideals of a Lie algebra L such that $I \subset J$. Then J / I is an ideal of L / I and
$(L / I) /(J / I) \cong L / J$.
Example: Fix a field F and consider the linear map $\operatorname{tr}: g l(n, F) \rightarrow F$ which is defined by taking the trace of a matrix. It can be shown that tr is a surjective Lie algebra homomorphism and that ker $\operatorname{tr}=s l(n, F)$. Thus by the first isomorphism theorem we can conclude that
$g l(n, F) / s l(n, F) \cong F$.

References

[1] Karin Erdmann and Mark J. Wildon. Introduction to Lie Algebras. Springer, 2006.

A Brief Introduction to Machine Learning

Tyler Ramil and Terry Wang
University of California Santa Barbara

Intro to The Statistical Learning Framework

The basic statistical learning setting involves a learner who is given a set of objects (the "domain set"), a set of labels, and a training set consisting of labeled examples. As an example, consider the domain to be the set of all papayas where each papaya can be represented by its color and softness. So these papayas may be labeled with $\mathcal{Y}=\{0,1\}$, where 0 means not tasty and 1 means tasty. The learner's goal is to output a prediction rule, $h: \mathcal{X} \rightarrow \mathcal{Y}$ that can
be used to predict the label of new objects. In our papaya example this would be used to predict the label of new objects. In our papaya example, this would rempling ebiects from a probability distribution and then labeling them according on on labeling function. The error of a predictor is defined as the probability that it predicts the wrong label for a randomly chosen object (papaya) from the distribution. The learner is blind to the underlying distribution and labeling function and can only interact with the environment through the training set.

ERM and Overfitting

The concept of Empirical Risk Minimization (ERM) can be used to analyze how a learning algorithm performs. The algorithm receives a training set S, which is sampled from an unknown distribution \mathcal{D} and labeled by some target function f. It outputs a predictor $h_{S}: \mathcal{X} \rightarrow \mathcal{Y}$, where the subscript S emphasizes that the predictor depends on S. The goal is to find a predictor that minimizes the error with respect to the unknown \mathcal{D} and f. Since the true error is unknown to the learner, a useful notion of error is the training error, which is the error the predictor incurs over the training sample:

$$
L_{S}(h) \stackrel{\text { def }}{=} \frac{\left|\left\{i \in[m]: h\left(x_{i}\right) \neq y_{i}\right\}\right|}{m},
$$

where $[m]=\{1, \ldots, m\}$.
The idea behind ERM is to find a predictor that minimizes the training error, which is a measure of how well the predictor fits the training data. However, this approach can lead to overfitting, where the predictor fits the training data too well and does not generalize well to new data. This means that the predictor may have a low training error but a high error on new data.

ERM with Inductive Bias

Even though the ERM rule may lead to overfitting, there are ways to address this problem. One solution is to apply the ERM learning rule over a hypothesis class, denoted by \mathcal{H}. Each $h \in \mathcal{H}$ maps from input space \mathcal{X} to output space \mathcal{Y}. The $\operatorname{ERM}_{\mathcal{H}}$ learner chooses a predictor $h \in \mathcal{H}$ with the lowest possible error over the training sample S ,

$$
\operatorname{ERM}_{\mathcal{H}}(S) \in \underset{h \in \mathcal{H}}{\operatorname{argmin}} L_{S}(h)
$$

where argmin stands for the set of hypotheses in \mathcal{H} that achieve the minimum value of $L_{S}(h)$ over $\mathcal{H} .[1]$ This is an inductive bias, which biases the learner toward a specific set of predictors based on prior knowledge about the problem. For example, relating back to the papaya example given earlier, we might assume that there is a softness threshold after which a papaya is too hard to be tasty. However, choosing a more restricted hypothesis class may introduce a stronger inductive bias.
A fundamental question in learning theory is which hypothesis classes lead to ERM learning that does not overfit. To answer this is dependent on the problem at hand and the choice of our hypothesis class. The tradeoff between restricting the hypothesis class and avoiding overfiting is something that is highly considered in machine learning
Overall, ERM is a very useful tool that is used in machine learning, but given its limitations, such as overfitting, we must pay attention to how we work to resolve such issues.

A Formal Learning Model

PAC Learning Probably Approximately Correct (PAC) learning is a framework for supervised learning that allows us to quantify the trade-off between the accuracy of a learned model and the number of training examples required to achieve that accuracy. In PAC learning, we seek to find a hypothesis that is "probably approximately correct" with respect to an unknown target function, given a finite set of training examples drawn from some distribution over the input space. Formally, we have the following definition:

Definition (PAC Learnability)

A hypothesis class \mathcal{H} is PAC learnable if there exist a function $m_{\mathcal{H}}:(0,1)^{2} \rightarrow \mathbb{N}$ and a learning algorithm with the following property: For every $\epsilon, \delta \in(0,1)$, for every distribution \mathcal{D} over \mathcal{X}, and for every labeling function $f: \mathcal{X} \rightarrow\{0,1\}$, if the realizable assumption holds with respect to $\mathcal{H}, \mathcal{D}, f$, then when running f the algorithm rithm on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ such that with generated by \mathcal{D} an $1-\delta$ (over the choice of the examples), $L_{(D, J)}(h) \leq \epsilon[1]$

A limitation of PAC learning is that it assumes that the target function belongs to the hypoth esis class being considered, which may not always be the case. Also, the PAC framework assumes that the training examples are drawn independently and identically from some fixed distribution, which may not be true in most real-world scenarios. Finally, the sample complexity bounds for PAC learning can be quite loose in some cases, leading to a large number of training examples being required to achieve a desired level of accuracy.

Perceptron Algorithm

Perceptron is an implementation of ERM rule. It's an iterative algorithm that output a sequence of vectors $w^{(1)}, w^{(2)}, \ldots$. At iteration i, the algorithm would update w based on is an example of Perceptron algorithm implemented in Python and screenshots of two iterations. The misclassified point that is causing the update is marked with a red x .

Boosting

Weak Learnability

The limitations of PAC learning, which ignores the computational aspect of learning, motivates a new type of learnability: γ-Weak-Learnability.

Definition (γ-Weak-Learnability):

A learning algorithm, A, is a γ-weak-learner for a class \mathcal{H} if there exists a function $m_{\mathcal{H}}:(0,1) \rightarrow \mathbb{N}$ such that for every $\delta \in(0,1)$, for every distribution assumption holds with respect to $\mathcal{H} \mathcal{D}, f$ then when running the lizabning algorithm on $m \geq m_{\mathcal{H}}(\delta)$ i.i.d. examples generated by \mathcal{D} and labeled by , the algorithm returns a hypothesis h such that with probability of at leas
$1-\delta, L_{(\mathcal{D}, f)}(h) \leq 1 / 2-\gamma$ - A hypothesis class \mathcal{H} is γ that class. [1]

This is a weaker definition than the PAC learning definition. While PAC learning implies the ability to find a classifier with error rate at most an arbitrary smal number $\epsilon>0$, our weak learning only need to find a hypothesis with error rate less than $\frac{1}{2}-\gamma$. With the Weak Learnability, we can now introduce the AdaBoos algorithm

AdaBoost

AdaBoost, short for Adaptive Boosting, is an algorithm using a weak learner to find a hypothesis with relative low empirical error. The boost proceeds in several consecutive rounds. Eventually, the result is a relative strong hypothesis that's the weighted combination of the several weak hypotheses. At each round i, the algorithm defines a distribution D_{i} over the input training set. Then the weak learner passes this distribution and the training set and supposedly it should return a hypothesis h_{i} with error ϵ_{i} :

$$
\epsilon_{i} \stackrel{\text { def }}{=} L_{D_{i}}\left(h_{i}\right) \stackrel{\text { def }}{=} \sum_{j=1}^{m} D_{i_{j}} 1_{h_{i}\left(x_{j}\right) \neq y_{j}} \leq \frac{1}{2}-\gamma
$$

After each round, the algorithm would assign a weight, $w_{i}=\frac{1}{2} \log \left(\frac{1}{\epsilon_{i}}-1\right)$ to h_{i} and then it will update D_{i} so that in the next round, the probability of appearance of the samples on which h_{i} errs is higher than it is in the current round. This ensures that additional rounds create a stronger learner overall.

Acknowledgements

We thank Lucas Fagan for his guidance as well as the UCSB Directed Reading Program for the opportunity to work on this project.

References

[1] S. Ben-David. Understanding Machine Learning. New York, NY: Cambridge University
Press, 2014 .

Algebraic Geometry

Structure from motion
Structure from Motion is an interdisciplinary field that merges the principles of algebraic geometry and computer vision. Its primary objective is to reconstruct three-dimensional structure from a sequence of two-dimensional images. Through techniques such as camera calibration and feature extraction, points across multiple images. By triangulating these correspondences, we obtain a set of 3D points that represent the object's structure. Algebraic geometry provides a mathematical framework to handle perspective distortions and depth ambiguities inherent in 2D image captures.

Algebraic Geometry

et $R=k\left[x_{1}, \ldots, x_{n}\right]$ where k is algebraically closed.

Affine Variety: Given polynomials $f_{1}, \ldots, f_{s} \in R$, an affine variety is the set

$$
V=\left\{\left(a_{1}, \ldots, a_{n}\right) \in k^{n} \mid f_{i}\left(a_{1}, \ldots, a_{n}\right)=0 \text { for all } 1 \leq i \leq s\right\}
$$

initely Generated Ideal: Given polynomials $f_{1}, \ldots, f_{s} \in R$ we call an ideal generated by

$$
\left\langle f_{1}, \ldots, f_{s}\right\rangle=\left\{\sum_{i=1}^{s} h_{i} f_{i} \mid h_{1}, \ldots, h_{s} \in R\right\} .
$$

Hilbert's basis theorem assures that every ideal $I \leq R$ is finitely generated. An ideal I can be classified as a radical ideal \sqrt{I} if

$$
I=\sqrt{I}=\left\{f \in R \mid f^{n} \in I \text { for some } n\right\}
$$

Additionally, we would like to define for an affine variety $V \subseteq k^{n}$ the ideal associated with the variety is
$\mathbf{I}(V)=\left\{f \in k^{n} \mid f\left(a_{1}, \ldots, a_{n}\right)=0\right.$ for all $\left.\left(a_{1}, \ldots, a_{n}\right) \in V\right\}$
deal-Variety Correspondence:
The correspondence
affine varieties $\xrightarrow{\mathbf{1}}$ radical ideals and radical ideals \longrightarrow affine varieties
gives an inclusion reversing bijection. $\mathbf{I}(\mathbf{V}(I))=\sqrt{I}$
n-Dimensional Projective Space: The n-dimensional projective space over k is denoted $\mathbb{P}^{n}(k)$ This is,

$$
\mathbb{P}^{n}(k)=\left(k^{n+1} \backslash\{0\}\right) / \sim
$$

Where the equivalence relationship \sim is denoted by

$$
\begin{aligned}
\left(x_{0}^{\prime}: \cdots: x_{n}^{\prime}\right) \sim\left(x_{0}: \cdots: x_{n}\right) & \Longleftrightarrow\left(x_{0}^{\prime}, \ldots, x_{n}^{\prime}\right)=\lambda(\\
& \text { for some } \lambda \neq 0 .
\end{aligned}
$$

We will say that $\left(x_{0}: \cdots: x_{n}\right)$ are homogeneous coordinates.

Reconstruction

Overview - Reconstruction is achieved by taking a series of 2D input images and matching features to reconstruct camera positions and 3D points.

Feature Extraction/ Feature Matching - Detects prominent points or lines in each image using the SIFT algorithm (Scale-Invariant Feature Transform). Matches the extracted features across different images to identify common parts of the scene.
Geometric Verification - Not all feature matches from the previous step are correct, many are outliers. For verification, it is necessary
to compute a geometric transformation to map features between to compute a geometric transformation to map features between
images. If such a transformation exists, the features are geometrically verified. This is an algebraic geometry problem that involves solving systems of polynomial equations.
To account for outliers, the RANSAC sampling method is used which increases robustness.
Reconstruction - Using a pair of geometrically verified images, the features of these images are matched to their corresponding 3D ordinates. Next, a new image is registered by estimating its camera pose using 2D-3D correspondences and solving polynomial equations. The 3D coordinates of the new image are reconstructed by triangulation and considering the Euclidean distance degree. To improve robustness, bundle adjustment is used to refine the camera process.

Camera Model
n order to produce a mapping between 3D and 2D we must specify a camera model used. We have selected a pinhole camera which uses homogeneous coordinates to classify points on the same ray. This produces a map, $\mathbb{P}^{3} \rightarrow \mathbb{P}^{2}$.
Algebraically each camera C is given as a 3×4 matrix A of rank 3. We will use this notion of cameras to produce a fiber of a joint camera map

$$
\Phi=\mathcal{X} \times \mathcal{C}_{m} \rightarrow \mathcal{Y} .
$$

This maps a collection of $X \in \mathcal{X} 3$ D points and an n-tuple of cameras $\left(C_{1}, \ldots, C_{n}\right) \in \mathcal{C}_{m}$ to the $n 2 \mathrm{D}$ images.

Multiview Geometry for Verification

Using the previously defined camera model, the joint image of the cameras is given by $\Phi_{C}\left(\mathbb{P}_{\mathbb{R}}^{3}\right)$. The Zaraski closure of the joint imaage gives the joint image variety

$$
M_{C}:=\Phi_{C}\left(\mathbb{P}_{\mathbb{R}}^{3}\right)
$$

Muliview Constraints

Let A_{1}, \cdots, A_{m} be the 3×4 matrices of rank three that define the cameras.
 homogeneous. This produces the following $3 m \times(m+4)$ matrix:
$M_{A}:=\left[\begin{array}{ccccc}A_{1} & x_{1} & 0 & \cdots & 0 \\ A_{2} & 0 & x_{2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ A_{m} & 0 & 0 & \cdots & x_{m}\end{array}\right]$

For 2 cameras $(m=2), M_{A}$ is a 6×6 matrix. Its bilinear determinant defines the multiview hypersurface M_{C} in $\mathbb{P}_{\mathbb{R}}^{2} \times \mathbb{P}_{\mathbb{R}}^{2}$ The matrix representation $F \in R^{3 \times 3}$ of this bilinear form $x_{2}^{\top} F x_{1}$ is known as the fundamental matrix.

Symetry of Joint Camera Map

The joint camera map Φ carries a symmetry, where a group G acts on the fibers of Φ
Suppose that Cm consists of tuples of calibrated cameras $\left[R_{1} \mid t_{1}\right], \ldots,\left[R_{m} \mid t_{m}\right]$ where $R_{i} \in S O(3)$ and $t_{i} \in \mathbb{R}^{3}$. Take $X=(\mathbb{P})^{n}$ again to consist of tuples of 3 D projective points. Now the relevant group is

$$
G=\left\{g \in \mathrm{GL}(4, \mathbb{R}): g=\left[\begin{array}{ll}
R & t \\
0 & \lambda
\end{array}\right] \text { for some } R \in \mathrm{SO}(3), t \in \mathbb{R}^{3}, \lambda \in \mathbb{R} \backslash\{0\}\right\}
$$

Two projective cameras example

Fix two projective pinhole cameras $C_{1}, C_{2}: \mathbb{P}^{3} \rightarrow \mathbb{P}^{2}$ represented by matrices A_{1}, A_{2}. Consider the set of corresponding point pairs defined as the multiview variety:

$$
M_{c}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{P}^{2} \times \mathbb{P}^{2}: \exists X \in \mathbb{P}^{3} \text { s.t. } C 1(X)=x_{1}, C 2(X)=x_{2}\right\} .
$$

This equation for M_{c} may be written as $x^{T} F x_{1}=0$ where for $1 \leq i, j \leq 3$
$F_{i j}=(-1)^{i+j} \operatorname{det}$ (submatrix $\left(\left[A_{1} \mid A_{2}\right],\{1,2,3,4\},\{1,2,3,4,5,6\} \backslash\{i, j+3\}\right)$.

References and Acknowledgments

 Commutatative Alsebebra. Sprininel, 2015 .(2) Joe Kileel and Kathén Koohn. Snapshot of algebraic vision. arxiv.ors, 2022.

A special thanks to our fantastic mentor, Greg McGrath, who made this project possible.

Intro to SINDy

Accurately modeling the nonlinear dynamics of a system from measurement data is a challenging yet vital topic. Sparse Identification of Nonlinear Dynamics (SINDy) is a data-driven method used for uncovering the underlying dynamics of a nonlinear system from observational data. The key idea behind SINDy is to ex press the dynamics of the system as a sparse linear combination of a library of candidate functions or basis functions. These basis functions can be chosen based on prior knowledge or intuition about the system, such as polynomials, trigonometric functions, or exponential functions.
SINDy has found applications in various fields, including physics, biology, engineering, and finance. It enables the discovery of simplified mathematical models that capture the essential dynamics of complex systems, even in the absence of complete knowledge about the system's governing equations.

The SINDy Method

Consider the following initial value problem

$$
\frac{d x}{d t}=f(x, t), \quad x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}
$$

where f is a Lipschitz continuous function in x. SINDy addresses the problem of inferring the function f from data and takes advantage of the fact that many potential functions f. This avoids the intractable combinatorial search across all possible model structures. SINDy approximates f by a generalized linear model

$$
f(x) \approx \Sigma_{k=1}^{p} \theta_{k}(x) \xi_{k}=\Theta(x) \xi
$$

with the fewest nonzero terms in ξ as possible. In the formula above, $\theta_{k}(x)$ represents the candidate functions we fit to the data and ξ_{k} is the corresponding resents the candidate functions we fit to the data and ξ_{k} is the corresponding
coefficients of these functions that demonstrate the weight of these functions on the overall dynamics. $\Theta(x)$ is a library of candidate nonlinear functions and may be constructed from \mathbf{X}, e.g.,

$$
\Theta(X)=\left[1 X X^{2} \cdots X^{d} \cdots \sin (X) e^{X} \cdots\right]
$$

Then, it is possible to use sparse regression to solve for the relevant terms that are active in the dynamics.The dynamical system can then be represented as

$$
\dot{X}=\Theta(X) \Xi
$$

where Ξ contains a column vector ξ_{k} that represents the coefficients determining the active terms in the $k^{\text {th }}$ row. A parsimonious model will provide an accurate model in fit with as few terms as possible in Ξ. Such a model may be identified using a convex ℓ_{1}-regularized sparse regression

$$
\xi_{k}=\operatorname{argmin}_{\xi_{k}}\left\|\dot{X}_{k}-\Theta(X) \xi_{k}^{\prime}\right\|_{2}+\lambda\left\|\xi_{k}^{\prime}\right\|_{1}
$$

Here X_{k} is the $k^{\text {th }}$ column of X, and λ is a sparsity-promoting knob. The sparse vector ξ_{k} may be synthesized into a dynamical system:

$$
\dot{x}_{k}=\Theta(x) \xi_{k}
$$

Note that x_{k} is the $k^{\text {th }}$ element of \mathbf{x} and $\Theta(\mathbf{x})$ is a row vector of symbolic functions of \mathbf{x}.

Applying SINDy to the Duffing Equation

The Duffing equation is a mathematical model that describes the motion of a damped, driven oscillator. It is named after the German engineer Georg Duffing, who first introduced it in the early 20th century. The simplified version of this equation we explore takes the form

$$
\ddot{x}+\gamma \dot{x}+\beta x+\epsilon x^{3}=0 .
$$

In this equation, x represents the displacement of the oscillator, t is time, overhead dot rep resents differentiation. γ controls the amount of damping, β controls the linear stiffnes and ϵ controls the amount of non-linearity in the restoring force. We consider three dynam ical systems generated by the equation. Our goal is to test how well SINDy performs in three different situations.
Case I: Damped Linear Oscillator $(\epsilon=0)$
A harmonic oscillator is a fundamental concept that refers to a system exhibiting simple harmonic motion. The mathematical description of this system is:

$$
\ddot{x}+\gamma \dot{x}+\beta x=0
$$

This ordinary differential equation can be solved algebraically. By assuming $\gamma>0, \beta>0$ $\gamma^{2}-4 \beta<0$, and setting the initial conditions to be $x(0)=1$ and $\dot{x}=0$, the exact solution for this ODE is:

$$
x(t)=e^{-\frac{\gamma t}{2}}\left(\cos \omega t+\frac{\gamma}{4 \omega} \sin \omega t\right)
$$

where $\omega^{2}=\gamma^{2}-4 \beta$. By comparing the $x-t$ graph of the exact solution to the $x-t$ graph generated by SINDy algorithm and the $x-t$ graph approximated by the Runge Kutta Method(ode45) with the same initial conditions, we conclude that SINDy is efficien in identifying the dynamics of harmonic oscillators.

$\gamma=1 ; \beta=1 ; \dot{\varepsilon}=0$

\qquad

$\gamma=1 ;{ }^{\prime}=1 ; \varepsilon=0.1$.

Case II: Undamped Nonlinear Oscillator $(\gamma=0)$
An undamped oscillator is a system that exhibits oscillatory motion without any dissipation or damping effects. The mathematical description of this system is:

$$
\ddot{x}+\beta x+\epsilon x^{3}=0
$$

This equation cannot be solved algebraically due to the involvement of the nonlinearity ϵx^{3} Considering ϵ to be a small parameter, we apply multiple-scale analysis to construct a uniformly valid approximation to the solution of the undamped nonlinear oscillator:

$$
\begin{equation*}
x(t)=\cos \left(1+\frac{3 \epsilon}{8}\right) t+O(\epsilon) \tag{1}
\end{equation*}
$$

By comparing the $x-t$ graph of the leading-order approximation to the undamped nonlinear oscillator with the $x-t$ graph obtained by SINDy and numerics, we conclude that SINDy performs well in the undamped case
Case III: Duffing oscillator $(\gamma \neq 0, \epsilon \neq 0)$
The last case is more general with both γ and ϵ not equal to 0 . Having built confidence in our methodology in the previous two cases, we rely solely on numerical simulations of the SINDy with equation to test the SINDy method. We then compare the graph generated by performs well performs well.

Applying SINDy to the Lorenz system

Lorenz system

The Lorenz system refers to a set of three differential equations that were dis covered by the mathematician and meteorologist Edward Lorenz in 1963. These equations are used to describe a simplified model of atmospheric convection which is the process by which heat is transferred through the motion of a fluid. It is a well-known model in chaos theory
The system is defined by the following equations:

$$
\begin{aligned}
x^{\prime} & =\sigma(y-x), \\
y^{\prime} & =x(\rho-z)- \\
z^{\prime} & =x y-\beta z .
\end{aligned}
$$

In these equations, x, y, and z represent the variables that describe the state of the system over time, and t represents time itself. σ, ρ, and β are parameters tha determine the behavior of the system. We simulate the system with ode45, and show the resulting chaotic trajectory of the system upright corner of the figure below.
We then apply SINDy to the data generated by the numerics. We choose all polynomials up to $3^{r d}$ order as our library of functions. The output of the SINDy algorithm is a sparse matrix of coefficients Ξ. We show the coefficient matrix Ξ found by the SINDy algorithm below:

1
Comparing the two graphs, we conclude that SINDy works efficiently to identify the dominant terms that account for the observed behaviors of the Lorenz sys tem.

Acknowledgements

I express my gratitude to my mentor Jimmie Adriazola for his invaluable guidance and unwavering support throughout the project as well as the UCSB Directed and unwavering support throughout the project as well as the UCSB Directed Reading Program for the opportunity to work on this project.

References

1. S.L. Brunton, J.L. Proctor, J.N. Kutz(2016), Discovering governing equations from data by sparse identification of nonlinear dynamical systems, National Acad Sciences
2. S.L. Brunton J.N. Kutz (2019), Data-driven Science and engineering: Ma chine Learning, Dynamical Systems, and Control, Control-Cambridge University Press, NY.

An Introduction to Clifford Algebra

Jiayu Bian, Teo Zeng, Yoonsoo Cha
University of California Santa Barbara

Definitions and Notations

- $\mathrm{e}_{1}, \mathrm{e}_{2} \in \mathbb{R}^{2}$ are said to be orthonormal unit vectors if

$$
\left|\mathbf{e}_{\mathbf{1}}\right|=\left|\mathbf{e}_{2}\right|=1, \quad\left\langle\mathbf{e}_{1}, \mathbf{e}_{2}\right\rangle=0,
$$

where $|\cdot|$ is the norm and $\langle\cdot, \cdot\rangle$ is the inner product. They form a basis of \mathbb{R}^{2}, and geometrically this means that e_{1} and e_{2} have length 1 and are perpendicular to each other.

- For $\mathbf{a}=a_{1} \mathbf{e}_{\mathbf{1}}+a_{2} \mathbf{e}_{\mathbf{2}}$ and $\mathbf{b}=b_{1} \mathbf{e}_{\mathbf{1}}+b_{2} \mathbf{e}_{2}$, the dot product is defined by

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2} .
$$

- For $\mathbf{a}=a_{1} \mathbf{e}_{1}+a_{2} \mathbf{e}_{2}$ and $\mathbf{b}=b_{1} \mathbf{e}_{1}+b_{2} \mathbf{e}_{2}$, the bivector is defined by

$$
\mathbf{a} \wedge \mathbf{b}=\left(a_{1} b_{2}+a_{2} b_{1}\right) e_{12}
$$

Bivectors on \mathbb{R}^{2}

Given a vector space \mathbb{R}^{2}, the addition and scalar multiplication of the vectors are well-defined. Then a natural question to ask is: can we define a vector multiplication on \mathbb{R}^{2} ? Let $\mathrm{a}, \mathrm{b} \in \mathbb{R}^{2}$, we want the multiplication preserves the norm, i.e.,

$$
|\mathbf{a b}|=|\mathbf{a}||\mathbf{b}|,
$$

and it is distributive and associative.
Let $\mathbf{e}_{1}, \mathbf{e}_{2}$ be the orthonormal unit vectors on \mathbb{R}^{2}. The norm of a vector

$$
\mathbf{r}=r_{1} \mathbf{e}_{\mathbf{1}}+r_{2} \mathbf{e}_{\mathbf{2}}
$$

is defined by

$$
|\mathbf{r}|=\sqrt{r_{1}^{2}+r_{2}^{2}}
$$

If \mathbf{r} is multiplied by itself, we require that $\mathbf{r}^{2}=|\mathbf{r}|^{2}$, that is, we want

$$
\begin{aligned}
\left(r_{1} \mathbf{e}_{\mathbf{1}}+r_{2} \mathbf{e}_{\mathbf{2}}\right)^{2} & =\left(r_{1} \mathbf{e}_{\mathbf{1}}+r_{2} \mathbf{e}_{\mathbf{2}}\right)\left(r_{1} \mathbf{e}_{\mathbf{1}}+r_{2} \mathbf{e}_{\mathbf{2}}\right) \\
& =r_{1}^{2} \mathbf{e}_{\mathbf{1}}^{2}+r_{1} r_{2}\left(\mathbf{e}_{1} \mathbf{e}_{\mathbf{2}}+\mathbf{e}_{\mathbf{2}} \mathbf{e}_{\mathbf{1}}\right)+r_{2}^{2} \mathbf{e}_{2}^{2} \\
& =r_{1}^{2}+r_{2}^{2} .
\end{aligned}
$$

This equality is satisfied if the orthonormal unit vectors e_{1} and e_{2} satisfy the following properties:

$$
\mathrm{e}_{1}^{2}=\mathrm{e}_{2}^{2}=1, \quad \mathrm{e}_{1} \mathrm{e}_{2}=-\mathrm{e}_{2} \mathrm{e}_{1} .
$$

Consequently, we have

$$
\left(\mathbf{e}_{1} \mathrm{e}_{2}\right)^{2}=\mathbf{e}_{1} \mathrm{e}_{2} \mathrm{e}_{1} \mathrm{e}_{2}=\mathbf{e}_{1}\left(-\mathbf{e}_{1} \mathrm{e}_{2}\right) \mathrm{e}_{2}=-1
$$

which follows that $\mathbf{e}_{1} \mathbf{e}_{2}$ is neither a scalar nor a vector of \mathbb{R}^{2}. This product is called a bivector, representing the oriented plane area of the square with sides e_{1} and e_{2}. Denote $\mathrm{e}_{1} \mathrm{e}_{2}=\mathrm{e}_{12}$, it is illustrated by the following figure from [1]

We defined the Clifford product of two vectors $\mathbf{a}=a_{1} \mathbf{e}_{\mathbf{1}}+a_{2} \mathbf{e}_{\mathbf{2}}$ and $\mathbf{b}=b_{1} \mathbf{e}_{\mathbf{1}}+$ $b_{2} \mathrm{e}_{2}$ to be

$$
\mathbf{a b}=a_{1} b_{2}+a_{2} b_{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{e}_{12}=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \wedge \mathbf{b}
$$

Reflections

Given two vectors a and r in \mathbb{R}^{2}, r has a parallel component to a denoted as $\mathbf{r}_{\|}$that is given by the dot product of r and a multiplied by the vector $\mathrm{a}^{-1}=\frac{\mathrm{a}}{|\mathrm{a}|}{ }^{2}$, that is

$$
\mathbf{r}_{\|}=(\mathbf{r} \cdot \mathbf{a}) \frac{\mathbf{a}}{|\mathbf{a}|^{2}}=(\mathbf{r} \cdot \mathbf{a}) \mathbf{a}^{-1}
$$

Also, r has a perpendicular component to a denoted as r_{\perp} that is given by

$$
\mathbf{r}_{\perp}=\mathbf{r}-\mathbf{r}_{\|}=\mathbf{r}-(\mathbf{r} \cdot \mathbf{a}) \mathbf{a}^{-1}=(\mathbf{r a}-\mathbf{r} \cdot \mathbf{a}) \mathbf{a}^{-1}=(\mathbf{r} \wedge \mathbf{a}) \mathbf{a}^{-}
$$

Thus the reflection of \mathbf{r} denoted as \mathbf{r}^{\prime} can be obtained by decomposing $\mathbf{r}=\mathbf{r}_{\|}+\mathbf{r}_{\perp}$ and sending it to $\mathbf{r}^{\prime}=\mathbf{r}_{\|}-\mathbf{r}_{\perp}$. Note that since \mathbf{r}_{\perp} is a bivector,

$$
\mathbf{r}_{\perp}=(\mathbf{r} \wedge \mathbf{a}) \mathbf{a}^{-1}=-\mathbf{a}^{-1}(\mathbf{r} \wedge \mathbf{a})=\mathbf{a}^{-1}(\mathbf{a} \wedge \mathbf{r})=-(\mathbf{a} \wedge \mathbf{r}) \mathbf{a}^{-1}
$$

Then we can find two direct formulas for r^{\prime} as

$$
\begin{aligned}
\mathbf{r}^{\prime} & =\mathbf{r}_{\|}+\mathbf{r}_{\perp} \\
& =(\mathbf{r} \cdot \mathbf{a}) \mathbf{a}^{-1}-(\mathbf{r} \wedge \mathbf{a}) \mathbf{a}^{-1} \\
& =(\mathbf{r} \cdot \mathbf{a}-\mathbf{r} \wedge \mathbf{a})^{-1} \\
& =(\mathbf{a} \cdot \mathbf{r}+\mathbf{a} \wedge \mathbf{r}) \mathbf{a}^{-1}
\end{aligned}
$$

$$
=\mathrm{ara}^{-1}
$$

$$
\mathbf{r}^{\prime}=(\mathbf{r} \cdot \mathbf{a}-\mathbf{r} \wedge \mathbf{a}) \mathbf{a}^{-1}
$$

$$
\begin{aligned}
& =(2 \mathbf{r} \cdot \mathbf{a}-\mathbf{r a}) \mathbf{a} \\
& =2 \frac{\mathbf{a} \cdot \mathbf{r}}{\mathbf{a}^{2}} \mathbf{a}-\mathbf{r}
\end{aligned}
$$

With the commutative properties of Clifford products,

$$
\mathbf{a r}_{\|} \mathbf{a}^{-1}=\mathbf{r}_{\|} \mathbf{a a}^{-1}=\mathbf{r}_{\mid}
$$

and

$$
\mathrm{ar}_{\perp} \mathrm{a}^{-1}=-\mathbf{r}_{\perp} \mathrm{aa}^{-1}=-\mathbf{r}_{\perp}
$$

which yields to formula $\mathrm{r}^{\prime}=$ ara $^{-}$

Reflections and Rotation in 3D

In the Euclidean space \mathbb{R}^{3} the vectors \mathbf{r} and $\mathrm{ar}^{-1}=2(\mathbf{a} \cdot \mathbf{r}) \mathbf{a}^{-1}-\mathbf{r}$ are symmetric with respect to the axis a . The opposite of ar^{-1}, the vector

$$
\mathbf{a r a}^{-1}=\mathbf{r}-2 \frac{\mathbf{a} \cdot \mathbf{r}}{\mathbf{a}^{2}} \mathbf{a}
$$

is obtained by reflecting r across the mirror perpendicular to a [reflection across the plan ar_{123}]
Consider a vector $\mathbf{a}=a_{1} \mathbf{e}_{1}+a_{2} \mathbf{e}_{2}+a_{3} \mathbf{e}_{3}$ and the bivector ae ${ }_{123}=a_{1} \mathbf{e}_{23}+a_{2} \mathbf{e}_{31}+a_{3} \mathbf{e}_{12}$ dual to a . The vector a has positive square

$$
\mathbf{a}^{2}=|\mathbf{a}|^{2}, \quad \text { where } \quad|\mathbf{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}},
$$

but the bivector ae_{123} has negative square

$$
\left(\mathbf{e}_{123}\right)^{2}=-|\mathbf{a}|^{2}
$$

It follows that

$$
\exp \left(\mathbf{a e}_{123}\right)=\cos \alpha+\mathbf{e}_{123} \frac{\mathbf{a}}{\alpha} \sin \alpha
$$

where $\alpha=|\mathbf{a}|$. A spatial rotation of the vector $\mathbf{r}=x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}$ around the axis a by the angle α is given by

$$
\mathbf{r} \rightarrow a \mathbf{r} a^{-1}, \quad a=\exp \left(\frac{1}{2} \mathbf{a e}_{123}\right) .
$$

The sense of the rotation is clockwise when regarded from the arrow-head of a. The axis of two consecutive rotations around the axes a and b is given by the Rodrigues formula

$$
\mathbf{c}^{\prime}=\frac{\mathbf{a}^{\prime}+\mathbf{b}^{\prime}+\mathbf{a}^{\prime} \times \mathbf{b}^{\prime}}{1-\mathbf{a}^{\prime} \cdot \mathbf{b}^{\prime}} \quad \text { where } \quad \mathbf{a}^{\prime}=\frac{\mathbf{a}}{\alpha} \tan \frac{\alpha}{2}
$$

This result is obtained by dividing both sides of the formula

$$
\exp \left(\frac{1}{2} \mathbf{c} \mathbf{e}_{123}\right)=\exp \left(\frac{1}{2} \mathbf{b \mathbf { e } _ { 1 2 3 }}\right) \exp \left(\frac{1}{2} \mathbf{a e}_{123}\right)
$$

by their scalar parts and then by inspecting the bivector parts.

Linear Space of Bivectors $\ln \mathbb{R}^{3}$
Let $\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3} \in \mathbb{R}^{3}$ be orthonormal unit vectors, so they form a basis of \mathbb{R}^{3}. The bivectors
$\mathrm{e}_{1} \wedge \mathrm{e}_{2}, \mathrm{e}_{1} \wedge \mathrm{e}_{3}, \mathrm{e}_{2} \wedge \mathrm{e}_{3}$
form a basis for the linear space of bivectors, denoted by $\Lambda^{2} \mathbb{R}^{3}$. The inner prod uct on Euclidean space \mathbb{R}^{3} can be extended to a symmetric bilinear product (an inner product) on $\Lambda^{2} \mathbb{R}^{3}$, given by

$$
\left\langle\mathrm{x}_{1} \wedge \mathrm{x}_{2}, \mathrm{y}_{1} \wedge \mathrm{y}_{2}\right\rangle=\left|\begin{array}{ll}
\mathrm{x}_{1} \cdot \mathrm{y}_{1} & \mathrm{x}_{1} \cdot \mathrm{y}_{2} \\
\mathrm{x}_{2} \cdot \mathrm{y}_{1} & \mathrm{x}_{2} \cdot \mathrm{y}_{2}
\end{array}\right| .
$$

In particular, we have

$$
\langle\mathbf{a} \cdot \mathbf{b}\rangle=|\mathbf{a}|^{2}|\mathbf{b}|^{2}-(\mathbf{a} \cdot \mathbf{b})^{2}
$$

The Hodge Dual

The Hodge dual sending a vector $\mathrm{a} \in \mathbb{R}^{3}$ to a bivector $\star \mathrm{a} \in \bigwedge^{2} \mathbb{R}^{3}$, defined by

$$
\mathbf{b} \wedge \star \mathbf{a}=(\mathbf{b} \cdot \mathbf{a}) \mathbf{e}_{1} \wedge \mathbf{e}_{2} \wedge \mathbf{e}_{3} \text { for all } \mathbf{b} \in \mathbb{R}^{3}
$$

The Hodge dual depends not only on the metric but also on the choice of orientation - it is customary to use a right-handed and orthonormal basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ Thus, we have assigned to each vector

$$
\mathbf{a}=a_{1} \mathbf{e}_{1}+a_{2} \mathbf{e}_{2}+a_{3} \mathbf{e}_{3} \in \mathbb{R}^{3}
$$

a bivector

$$
\mathbf{A}=\star \mathbf{a}=a_{1} \mathbf{e}_{2} \wedge \mathbf{e}_{3}+a_{2} \mathbf{e}_{3} \wedge \mathbf{e}_{1}+a_{3} \mathbf{e}_{1} \wedge \mathbf{e}_{2} \in \bigwedge^{2} \mathbb{R}^{3} .
$$

Using the induced metric on the bivector space $\Lambda^{2} \mathbb{R}^{3}$ we can extend the Hodge dual to a mapping sending a bivector $\mathbf{A} \in \Lambda^{2} \mathbb{R}^{3}$ to a vector $\star \mathbf{A} \in \mathbb{R}^{3}$, defined by

$$
\mathbf{B} \wedge \star A=\langle B, A\rangle e_{1} \wedge e_{2} \wedge e_{3} \text { for all } B \in \bigwedge^{2} \mathbb{R}^{3} .
$$

Using duality, the relation between the cross product and the exterior product can be written as
$\mathbf{a} \wedge \mathbf{b}=\star(\mathbf{a} \times \mathbf{b})$,
$\mathbf{a} \times \mathbf{b}=\star(\mathbf{a} \wedge \mathbf{b})$.

Acknowledgements

We would like to express my sincere gratitude to my mentor Alex for his guidance and support throughout this project. He has been very generous with his time and expertise, and has provided us with valuable feedback and insights. We are very fortunate to have such a dedicated and knowledgeable mentor.

References

[1] Pertti Lounesto. Clifford Algebras and Spinors, Second edition. The Press Syndicate of the

Siddharth Sabata

University of Califiornia Santa Barbara

Markov Chain Monte Carlo Methods

Markov Chain Monte Carlo methods are a type of algorithm that allow us to sample from a probability distribution without knowing what the distribution looks like, We'll begin by defining the individual parts that make up MCMC: Markov Chains and Monte Carlo methods.
Markov Chains A Markov Chain is a random process that undergoes state changes. The chain also has a property, called the Markov property, where the probability of moving to the next state is only dependent on the current state. Another way to say this is "in order to know the future, the knowledge of the past does not add anything to the knowledge of the present" ([1, p. 45]).
More formally, the discrete, or finite, case for a Markov Chain is defined as a discrete-time process $\left\{X_{n}\right\}_{n \geq 0}$, i.e. a collection of random variables with the index n usually representing time, with values in a countable space E is a Markov chain if for all $n \geq 0$ and all states $i_{0}, i_{1}, \ldots, i_{n-1}, i, j \in E$,
$\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right)=\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)$, where $\mathbb{P}(Y=j \mid X=i)$ means the conditional probability of the event $\{Y=j\}$ given $\{X=i\}$ ([1, p. 46 (Definition 2) $]$).
Monte Carlo Methods Monte Carlo methods are algorithms that estimate quantities that are too difficult to obtain analytically or by
discretization. This is done through repeated random sampling discretization. This is done through repeated random sampling and averaging ing π or integrals
proposed by Metropolis Carlo Algorithm MCMC methods were proposed by Metropolis and his colleagues in 1953. They wanted Chains.
The algorithm for the discrete, or finite, case is defined as the following:

- Choose a value for i_{0} for X_{0} (randomly or e.g $i_{0}=0$).
- Once values i_{0}, \ldots, i_{n} of X_{0}, \ldots, X_{n}, respectively, have been found:
- Generate a proposed value $i_{n+1}^{*} \in E$ from an auxiliary distribution $Y_{n+1} \mid Y_{n}=i_{n}$.
- If $\mu_{i_{n+1}^{*}} / \mu_{i_{n}}>u_{n}$ set $X_{n+1}=i_{n+1}^{*}$; in this case we say that the proposal is accepted. Else set $X_{n+1}=i_{n}$ and we say the proposal is rejected.
Here, E is a discrete state space, i.e., the set of all possible events, $\mu_{i_{n+1}^{*}}$ and $\mu_{i_{n}}$ are the value of the target distribution at i_{n+1}^{*} and i_{n} respectively, and u_{n} is drawn from the uniform distribution on $[0,1]$ to carry out acceptance/rejection step with probability $\min \left\{1, \mu_{i_{n+1}^{*}} / \mu_{i_{n}}\right\}$. ($[1$, p. 55$\left.]\right)$.
Typically, first few hundreds or thousands of samples will not be close to those drawn from the target distribution. Once the Markov Chain converges to what is called its stationary distribution, a point at which the probability distribution representing the movement from one state to the next does not change, the Markov Chain transition is just like "independent sampling" from our target distribution μ.

Visual Representation of MCMC Algorithm

Hamiltonian Dynamics

Visual Representation of the Phase Space [1, p. 74 (Figure 13)]

Hamiltonian Dynamics Hamiltonian dynamics is another way to look at classical mechan ics in physics. This framework describes how a system changes over time based on the Hamiltonian function H which represents the total mechanical energy of a system, which equals the sum of the kinetic and potential energy (represented by V) of the system of ν particles:

$$
H=\sum_{i} \frac{1}{2 m_{i}} \mathbf{p}_{i}^{T} \mathbf{p}_{i}+V\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{\nu}\right),
$$

where $\mathbf{r}_{\mathbf{i}}, \mathbf{p}_{\mathbf{i}}$ and m_{i} correspond to the position, momentum, and mass of i-th particle ($[1, \mathrm{p}$ 70]).
Hamiltonian Equations From now on, we discuss the case with only one particle for sim plicity of presentation. In the phase space space $\mathbb{R}^{D}, D=2 d,(\mathbf{p}, \mathbf{x}) \in \mathbb{R}^{D}$, to each smooth real-valued function $H=H(\mathbf{p}, \mathbf{x})$ (Hamiltonian), the corresponding system of first orde differential equations, called the canonical or Hamilton's equations describes the time evo lution of the system ([1, p. 71]):

$$
\frac{d}{d t} p_{j}=-\frac{\partial H}{\partial x_{j}}, \quad \frac{d}{d t} x_{j}=+\frac{\partial H}{\partial p_{j}}, \quad j=1, \ldots, d
$$

Flow The flow of a Hamiltonian system is denoted with $\left\{\Phi_{t}\right\}_{t \in \mathbb{R}}$. Φ_{t} is a map in the phase Flow The fow of a Hamitonian system is denoted win $\left\{\Phi_{t}\right\}_{t \in \mathbb{R}} \cdot \Phi_{t}$ is a map in the phase space, $\Phi_{t}: \mathbb{R}^{D} \rightarrow \mathbb{R}^{D}$, that is defined as ollows: $\Phi_{t}\left(\mathbf{p}_{0}, \mathbf{x}_{0}\right)$ is the solution $(\mathbf{p}(t), \mathbf{x}(t))$ at
time t of the canonical equation with the initial value ($\left.\mathbf{p}_{0}, \mathbf{x}_{0}\right)$ at $t=0$. Basically, Φ_{t} tells us how the system evolves over time ($[1, \mathrm{p} .71-72]$). Property 1: Conservation of Energy The func ton's equations. Along solutions, we have

$$
\frac{d}{d t} H(\mathbf{p}(t), \mathbf{x}(t))=\sum_{j}\left(\frac{\partial H}{\partial p_{j}} \frac{d}{d t} p_{j}+\frac{\partial H}{\partial x_{j}} \frac{d}{d t} x_{j}\right)=\sum_{j}\left(-\frac{\partial H}{\partial p_{j}} \frac{\partial H}{\partial x_{j}}+\frac{\partial H}{\partial x_{j}} \frac{\partial H}{\partial p_{j}}\right)=0 .
$$

Therefore,

$$
H(\mathbf{p}(t), \mathbf{x}(t))=H(\mathbf{p}(0), \mathbf{x}(0)) .
$$

In other words, when $d=1$, the dynamics follows a contour curve of H on the phase space [1, p. 72] (see the figure above).
Property 2: Conservation of Volume If we take the area of a specific region in the phas space and evolve it through time, the area remains the same even though the shape of the area might change ($[1, \mathrm{p} .72-73]$)
Property 3: Reversibility This property states that if we go backwards in the time evolution of our system, the system's motion will also go backwards. This means that if we knew the state of the system at any point in time, we could run it backwards and find the state of the system at a previous point in time (11, p. 73])
These properties lead to many desirable aspects, when combined with the MCMC, including the existence of a stationary distribution and high acceptance rate of proposed states.

Hamiltonian Monte Carlo

We can combine MCMC and Hamiltonian dynamics together to form Hamiltonian Monte Carlo methods. These methods use Hamiltonian dynamics for the Markov chain transition. We write the target density $\pi(\mathrm{x})$ in the state space \mathbb{R}^{D} as $\exp (-V(\mathbf{x}))$. We can think of $\mathrm{x} \in \mathbb{R}^{d}$ as the position of our mechanical sys tem, $V(\mathbf{x})$ as corresponding potential energy, and $\mathbf{p} \in \mathbb{R}^{d}$ as momentum. \mathbf{p} is corresponds to mass being 1 in the canonical equation. With this set up, we can construct a Markov Chain in $\mathbb{R}^{d}([1, \mathrm{p} .78])$. For the simplicity of presentation, we further assume $d=1$ below.
HMC Algorithm (analytic flow version) Define the transitions $x_{n} \mapsto x_{n+1}$ in the state space \mathbb{R}^{d} by the following procedure

- Draw p_{n} from a Gaussian density.
- Find $\left(p_{n+1}^{*}, x_{n+1}\right)=\Phi_{T}\left(p_{n}, x_{n}\right)$, where Φ_{T} is the T-flow of the canonical system (the Hamiltonian equations) with Hamiltonian function H.
Then $x_{n} \mapsto x_{n+1}$ defines a Markov chain in \mathbb{R}^{d} that has the target $\pi(x) \propto$ $\exp (-V(x))$ as an invariant probability distribution ([1, p. 78-79 (Theorem 8)]).
Visual Representation of Sampling from the Hamiltonian Phase Space

Why is this helpful? MCMC algorithms are typically inefficient due to low acceptance rates, resulting in the Markov Chain converging to its stationary distribution taking a long time. On top of this, MCMC algorithms usually suffer from high autocorrelation which comes from each sample being too close to the pre vious one. This also leads to the Markov Chain taking a longer time to converge to its stationary distribution.
Notice that the momentum p_{n+1}^{*} is refreshed every iteration. This makes it pos sible to explore different energy levels, which likely leads to wider range of state space. Also note that HMC does not even feature acceptance/rejection step be-
cause the acceptance rate is always 1: the ratio of the current and proposed energy levels. This dramatically reduces autocorrelation, which is high when the states are repeated as is the case when the proposed states are often reiected.

References

[1] J. M. Sanz-Serna. "Markov chain Monte Carlo and numerical differential equations". In: Current challengeses in stability issues for numerical differential equations. Vol. 2082. Lecture
Notes in Math. Sppringer, Cham, 2014, pp. 39-88.

Acknowledgements

Thank you to Jea-Hyun Park for his mentorship and guidance and the UC Santa Barbara Directed Reading Program for this opportunity.

Introduction

Optimal transport (OT) originates from Gaspard Monge who considered the problem of redistributing (transporting and reshaping) a pile of sand to form a fortification with minimal effort

Assignment and Monge

Problem

Given an $n \times n$ cost matrix $C=\left[c_{i j}\right]$, the optimal assignment problem is to find a permutation σ of $\{1, \ldots, n\}$ that solve

$$
\min _{\sigma \in \operatorname{Perm}(n)} \frac{1}{n} \sum_{i=1}^{n} \mathbf{C}_{i, \sigma(i)}
$$

Note that this assignment is not unique.

Fig. 2: Non-unique assignment [2]. Fig. 3: Monge problem [2]. Extending the above definition to a slightly larger family of histograms, we obtain the Monger problem. It seeks a surjective map $T:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow$ $\left\{y_{1}, \ldots, y_{m}\right\}, T$ must verify:

$$
\mathbf{b}_{j}=\sum_{i: T\left(x_{i}\right)=y_{i}} \mathbf{a}_{i}, \quad \forall j \in\{1, \ldots, m\}
$$

where \mathbf{a} and \mathbf{b} are weights associated with \mathbf{x} and \mathbf{y}, respectively.
The Monge formulation does not allow for the splitting of mass.

Kantorovich Relaxation

The key idea of Kantorovich formulation is to relax the deterministic nature of transportation!
Replacing the permutation σ by a coupling matrix $\mathbf{P}=$ $\mathbf{P}_{i j} \in \mathbb{R}_{+}^{n \times m}$, where $\mathbf{P}_{i j}$ is the mass found at x_{i} toward y_{j}. Kantorovich's optimal transport problem is
$\mathbf{L}_{\mathbf{C}}(\mathbf{a}, \mathbf{b})=\min _{\mathbf{P} \in \mathbf{U}(\mathbf{a}, \mathbf{b})} \sum \mathbf{C}_{i j} \mathbf{P}_{i j}=\min _{\mathbf{P} \in \mathbf{U}(\mathbf{a}, \mathbf{b})}\langle\mathbf{C}, \mathbf{P}\rangle(\star)$ where

$$
\mathbf{U}(\mathbf{a}, \mathbf{b}) \equiv\left\{\mathbf{P} \in \mathbb{R}_{+}^{n \times m}: \mathbf{P} \mathbb{1}_{m}=\mathbf{a} \text { and } \mathbf{P}^{T} \mathbb{1}_{n}=\mathbf{b}\right\}
$$

- Bakery production: [51, 78, 102, 98, 112]
- Cafe sale: [82, 88, 92, 88, 91]
- Total croissants: 441

References

[1] Chad Atalla, Sai Aditya, and Xiao Sai. Lecture 2/28: Optimal Transport. 2019
[2] Gabriel Peyré and Marco Cuturi. Computational optimal transport. arXiv:1803.00567, 2018.
[3] Remi Flamary, Nicolas Courty, and Aurelie Boisbunon. Introduction to Optimal Transport with Python.
[4] Quentin Merigot and Boris Thibert. Optimal transport: discretization and algorithms. arXiv:2003.00855, 2020
[5] Filippo Santambrogio. Optimal transport for applied mathematicians. Springer, 2015.

North-West Corner Rule

The rule starts by setting $\mathbf{P}_{1,1}$ to $\min \left(\mathbf{a}_{1}, \mathbf{b}_{1}\right)$. At each step, the entry $\mathbf{P}_{i, j}$ is chosen to saturate either the row constraint at i, the column constraint at j, or both if possible. The rule proceeds until $\mathbf{P}_{n, m}$ has received a value.

Auction Algorithm

The auction algorithm maintains a partial matching (σ, S) and prices function p that together satisfy ε complementary slackness (ε-CS),

$$
c(x, \sigma(x))+p(\sigma(x)) \leq \min _{y \in Y}[c(x, y)+p(y)]+\varepsilon
$$

for all $x \in S \subset X$ and $\sigma: S \rightarrow Y$ is an injective map.
At the end of the execution, σ is a bijection, and (σ, \mathbf{p}) satisfy the ε-CS condition. The following algorithm is taken from [3]. Algorithm 1 Auction algorithm
Require: $c, \varepsilon, p=0$
Require:
$S \leftarrow \emptyset$
while $\exists x \in X \backslash S$ do
$y_{0} \leftarrow \arg \min _{y \in Y} c(x, y)+p(y)$
$y_{1} \leftarrow \arg \min _{y \in Y \backslash\left\{y_{0}\right.} c(x, y)+p(y)$
$p\left(y_{0}\right) \leftarrow p\left(y_{0}\right)+\left(c\left(x, y_{1}\right)+p\left(y_{1}\right)\right)-\left(c\left(x, y_{0}\right)+p\left(y_{0}\right)\right)+\varepsilon$
if $\exists x^{\prime} \in X$ s.t. $\sigma\left(x^{\prime}\right)=y_{0}$ then
$\begin{aligned} & \text { if } \\ & \\ & S x^{\prime} \in S \backslash\left\{x^{\prime}\right\}\end{aligned}$
end if
end while
return σ,

Entropy Regularization
The entropy of a coupling matrix \mathbf{P} is defined as
$\mathbf{H}(\mathbf{P})=-\sum \mathbf{P}_{i, j}\left(\log \left(\mathbf{P}_{i, j}\right)-1\right)$
Use $-\mathbf{H}$ as a regularizing function to approximate solutions to the original transport problem (\star):

$$
\mathbf{L}_{\mathbf{C}(\mathbf{a}, \mathbf{b})}^{\epsilon}=\min _{\mathbf{P} \in \mathbf{U}(\mathbf{a}, \mathbf{b})}\langle\mathbf{P}, \mathbf{C}\rangle-\varepsilon \mathbf{H}(\mathbf{P})
$$

The solution is unique and has the form

$$
\mathbf{P}_{i, j}=\mathbf{u}_{i} \mathbf{K}_{i, j} \mathbf{v}_{j}
$$

$\forall(i, j) \in\{1, \ldots, n\} \times\{1, \ldots, m\}$, where $\mathbf{K}_{i, j}=$ $e^{-\frac{\mathrm{C}_{i, j}}{\varepsilon}}, \mathbf{u}$ and \mathbf{v} are unknown scaling variables.

Sinkhorn's Algorithm

These two updates define Sinkhorn's algorithm:

$$
\mathbf{u}^{(\ell+1)}=\frac{\mathbf{a}}{\mathbf{K} \mathbf{v}^{\ell}} \quad \text { and } \quad \mathbf{v}^{(\ell+1)}=\frac{\mathbf{b}}{\mathbf{K}^{T} \mathbf{u}^{(\ell+1)}},
$$

initialized with an arbitrary positive vector $\mathbf{v}^{(0)}=$ $\mathbb{1}_{m}$.

Varying the regularization parameter in Sinkhorn,

Palindromic Parking Functions Polytope

Yanru Liu, Mentored by Sam Sehayek
2023 Mathematics Direct Reading Program. University of California, Santa Barbara

Palindromic Parking Functions

A parking function of length n is a function $f:\{1, \cdots, n\} \rightarrow\{1, \cdots, n\}$ which has the property that the list $(f(1), \cdots, f(n))$ can be rearranged into ascending $\mathcal{P F}_{n}$ denote the set of parking functions of length n.

Parking functions have applications in various areas of combinatorics, such as graph theory and algebraic combinatorics. They are used to study problems related to permutations, lattice paths, and Catalan numbers, among others.

The symmetric group Sym_{n} acts on $\mathcal{P F}_{n}$ by permutating coordinates. The set fixed by the permutation

$$
(1, n)(2, n-1) \cdots\left(\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil\right)
$$

is called the palindromic parking function (or symmetric parking function) That is, the palindromic parking functions are parking functions that read the same from both of the forward and backward directions. Let $\mathcal{P \mathcal { P } \mathcal { F } _ { n }}$ denote the set of palindromic parking functions of length n.

Based on the above definition, a conclusion follows immediately:
Theorem. The order of palindromic parking functions of length n is

$$
\left|\mathcal{P} \mathcal{P} \mathcal{F}_{n}\right|=(n+1)^{\left\lfloor\frac{n+1}{2}\right\rfloor} .
$$

Consider a $\sigma \in \operatorname{Sym}_{n}$ fixing $f \in \mathcal{P} \mathcal{F}_{n}$. Note that there are $\lfloor(n+1) / 2\rfloor$ cycles in σ. Therefore, the number of f fixed by σ is

$$
\frac{(n+1)^{\left\lfloor\frac{n+1}{2}\right\rfloor}}{n+1}=(n+1)^{\left\lfloor\frac{n+1}{2}\right\rfloor-1}=(n+1)^{\left\lfloor\frac{n-1}{2}\right\rfloor} .
$$

Parking Function Polytopes

In 2020, in the journal American Math Monthly, Richard Stanley proposed questions about parking function polytope \mathcal{P}_{n}, an n-dimensional polytope defined as the convex hull in \mathbb{R}^{n} of all parking functions of length n. The questions are:

1. the number of vertices of \mathcal{P}_{n};
2. the number of $(n-1)$ dimensional faces (facets) of \mathcal{P}_{n};
3. the number of integer points in \mathcal{P}_{n};
4. the n-dimensional volume of \mathcal{P}_{n}.

Fig. 1: Parking function polytope \mathcal{P}_{3} (left), where the hexagonal facet is the regular permutahedron and the three triangular facets are copies of \mathcal{P}_{2}; and the Schlegel diagram of \mathcal{P}_{4} (right)

In Aruzhan Amanbayeva and Danielle Wang's paper The Convex Hull of Parking Functions of Length n, they proved that \mathcal{P}_{n} is a simple polytope and found the f-vector of P_{n}

Palindromic Parking Function Polytope
Motivated by Richard Stanley, we are interested in the f-vectors of palindromic parking unction polytopes $\mathcal{P} \mathcal{P}_{n}$. The f-vector of $\mathcal{P} \mathcal{P}_{n}$ is the sequence

$$
\left(1, f_{0}, f_{1}, \cdots, f_{k}\right),
$$

where $k=\left\lfloor(n+1) / 2!\right.$!, and f_{i} denotes the number of i-dimensional faces. For example, the f-vector of $\mathcal{P} \mathcal{P}_{5}$ and $\mathcal{P P}_{6}$ is $(1,10,15,7,1)$.

$$
\begin{aligned}
& \text { Fig. 2: Visualizations of } \mathcal{P}_{55} \text { (left) and } \mathcal{P}_{6} \text { (right). } \\
& \operatorname{PP}_{5} \text { and } \mathcal{P P}_{6} \text { are combinatorically equivalent whose dimensions are both } 3 \text { and with } 10 \text { vericices. }
\end{aligned}
$$

Compare figure 1 and 2 , we noted that \mathcal{P}_{3} and $\mathcal{P P}_{5} \& \mathcal{P} \mathcal{P}_{6}$ share the same number of vertices $(\#=10)$. This pattern still holds if we increase the length of parking function. We conclude that

$$
\mathcal{P}_{\lceil n\rceil} \text { and } \mathcal{P} \mathcal{P}_{n}
$$

share the same number of vertices. Moreover, the number of vertices follows the recursion

$$
a(0)=0,
$$

$$
a(n)=n \cdot a(n-1)+1 .
$$

i.e., the sequence $(0,1,3,10,41,206, \cdots)$.

ig. J. The schlegel dignat

A New Theorem

From the previous example, we know that $\mathcal{P} \mathcal{P}_{5}$ has 10 vertices, while $\left|\mathcal{P} \mathcal{P} \mathcal{F}_{5}\right|=$ 36 , indicating that not all the palindromic parking functions are the vertices of $\mathcal{P} \mathcal{P}_{n}$. The theorem we discovered provides which vertices are desired ones
Theorem. The vertices coming from palindromic parking functions are:

$$
\begin{aligned}
& \text { - if } n \text { is even, the vertices of } \mathcal{P P} \mathcal{F}_{n} \text { are }(\vec{a}, \bar{a}) \text {, where } \vec{a} \text { is of length } n / 2 \text { and is } \\
& \text { a permutation of } \\
& \qquad \underbrace{(1, \cdots, 1}_{k \text { times }}, 2 k+1,2 k+3, \cdots)
\end{aligned}
$$

for $1 \leq k \leq n / 2$.

- if n is odd, the vertices are of the form $(\vec{a}, m, \stackrel{a}{a}$, where \vec{a} is of length $(n-1) / 2$ and is a permutation of

$$
(\underbrace{1, \cdots, 1}_{k \text { times }}, 2 k+2,2 k+4, \cdots)
$$

for $m=1$; and

$$
(\underbrace{(1, \cdots, 1}_{k \text { times }}, 2 k+1,2 k+3, \cdots, \hat{m}, m+1, \cdots)
$$

for $m \neq 1$. Where m is the middle term, an odd number smaller than n and $1 \leq k \leq(m-1) / 2$

To see how this theorem works, let us consider an example of length 5. $\mathcal{P} \mathcal{P}_{5}$ is an odd case. For $m=1$, we have vertices

$$
(1,1,1,1,1),(4,2,1,2,4),(4,1,1,1,4),(2,4,1,4,2),(1,4,1,4,1) ;
$$

and for $m \neq 1$, we have vertices

$$
(4,1,3,1,4),(1,1,5,1,1),(3,1,5,1,3),(1,4,3,4,1),(1,3,5,3,1) .
$$

Based on this new theorem we discovered, the number of vertices of $\mathcal{P} \mathcal{P}_{n}$ can be immediately counted:
Corollary. The number of vertices of $\mathcal{P} \mathcal{P}_{n}$ is given by

$$
\left|\mathcal{P} \mathcal{P}_{n}\right|=\left\lfloor\frac{n+1}{2}\right\rfloor!\left(\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{\left\lfloor\frac{n+1}{2}\right\rfloor!}\right)
$$

Future Direction

We understand how to find the vertices and compute the number f_{0}. Using this, we are confident that we can compute the entire f-vector for $\mathcal{P} \mathcal{P}_{n}$. Another future direction is to investigate the other polytopes that arise by considering different permutations.

Acknowledgements

am immensely grateful to my mentor Sam Sehayek, for his profound knowledge, tremendous passion, and guidance in understanding the essence of mathemat ical research, which greatly influenced and shaped my life choices in this field.

Reference

1] Aruzhan Amanbayeva and Danielle Wang. The Convex Hull of Parking Functions of Length n, 2021. DOI: 2212.06885 .
[2] Mitsuki Hanada, John Lentfer, and Andres R. Vindas-Melendez. Generalized Parking Function Polytope, 2022. DOI: 104.08454.

Parameters Estimation of Cox-Ingersoll-Ross Model

Jiayue Chen, advised by Jimmie Adriazola

University of California, Santa Barbara

Cox-Ingersoll-Ross Model

The Cox-Ingersoll-Ross model (CIR), introduced by John C. Cox, Jonathan E. IngerThe Cox-Ingersoll-Ross model (CIR), introduced by John C. Cox, Jonathan E. Ingersoll, and Stephen A. Ross in 1985, is a mathematical equation employed to simulate fluctuations in interest rates. CIR is a single-factor model as it describes interes movements as driven by a sole source of market risk. This model finds application
in predicting future interest rate levels, allowing for the calculation of bond prices in predicting future interest rate levels, allowing for the
and the valuation of interest-rate financial derivatives

The CIR model specifies that the instantaneous interest rate r_{t} evolves according to the stochastic differential equation:

$$
d r_{t}=a\left(b-r_{t}\right) d_{t}+\sigma \sqrt{r_{t}} d W_{t}
$$

- $r_{t}=$ Instantaneous interest rate at time t
- $W_{t}=$ Wiener Process (a Brownian motion random variable which models the random market risk factor)
- $a=$ Rate of mean reversion
- $b=$ Mean of the interest rate
- $\sigma=$ Standard deviation of the interest rate(measure of volatility)

The square root element does not allow for negative rates and the drift factor $a\left(b-r_{t}\right)$ ensures mean reversion of the interest rate towards the long-run value b, with the speed of adjustment governed by the strictly positive parameter a. Mean reversion in the CIR model suggests that when r is high, mean reversion tends to cause a negative drift; when r is low, mean reversion tends to cause it to have a positive drift, corresponding to real-life phenomenon.

Numerical Method to Solve Stochastic Differential Equations

The Euler-Maruyama method provides an approximate numerical solution for a stochastic differential equation (SDE). This method is the analog of the Euler method for ordinary differential equations. To develop an approximate solution on the interval $[c, d]$, assign a uniform grid of points:

$$
c=t_{0}<t_{1}<t_{2}<\ldots<t_{n}=d
$$

Approximate x values

$$
w_{0}<w_{1}<w_{2}<\ldots<w_{n}
$$

will be determined at the respective t points. Given the SDE initial value problem $\left\{d X(t)=a(t, X) d t+b(t, X) d W_{t}\right.$ $\left\{X(c)=X_{c}\right.$
Then we can compute the approximate solution as follows: Euler-Maruyama Method:
$w_{0}=X_{0}$
$w_{i+1}=w_{i}+a\left(t_{i}, w_{i}\right) \Delta t_{i+1}+b\left(t_{i}, w_{i}\right) \Delta W_{i+1}$

$$
\Delta t_{i+1}=t_{i+1}-t_{i}
$$

$\Delta W_{i+1}=W\left(t_{i}+1\right)-W\left(t_{i}\right)$
Each random number ΔW_{i} is computed as

$$
\Delta W_{i}=z_{i} \sqrt{\Delta t_{i}}
$$

where z_{i} is chosen from $N(0,1)$, normal distribution with mean 0 and standard deviation 1.

Numerical Solution to CIR model

Deterministic CIR: Without the Brownian motion term $d W_{t}$, we define the deterministic CIR model by the ODE

$$
\frac{d r}{d t}=a(b-r)+\sigma \sqrt{r}
$$

Given an initial value $r(0)$, we are able to numerically solve it using the forward Euler Method

$$
r_{n+1}=r_{n}+h f\left(t_{n}, r_{n}\right)
$$

$$
\text { where } f\left(t_{n}, r_{n}\right)=a\left(b-r_{n}\right)+\sigma \sqrt{r_{n}}
$$

Stochastic CIR Using the Euler-Maruyama Method, we update the solution for the stochastic CIR model:

$$
r_{i+1}=r_{i}+a\left(b-r_{i}\right) \Delta t_{i+1}+\sigma \sqrt{r_{i}} \Delta W_{i}
$$

since $\Delta W_{i}=z_{i} \sqrt{\Delta t}$ and we have discretized the time interval with equal length of step and denoted as h, we can rewrite the formula in the form:

$$
r_{i+1}=r_{i}+a\left(b-r_{i}\right) h+\sigma \sqrt{r_{i} h} z_{i}
$$

Visualization of Numerical Solution to CIR model By implementing these two methods in Python, we simulate the deterministic and stochastic CIR models by setting parameters $a=0.45, b=1$, initial value $r(0)=0.5$, step size $\delta t=$ 0.01 , ending time $T=2$

Figure 1. Simulation of stochastic CIR model with $\sigma=0.03,0.06,0.09$

Parameters Estimation of CIR Model

We shift our focus to estimating the coefficients of the CIR model using historical data on interest rates. By addressing this inverse problem within the CIR model, it brings forth several implications, including:

1. Forecasting: Estimating the coefficients enables us to generate forecasts of future interest rate movements. By understanding the behavior of interest rates, we can make informed predictions about their future trajectory, aiding in decision-making and risk management
Calibration and Model Comparison: Estimating the coefficients enables us to find optimal parameter values that minimize the disparity between the model's predictions and the actual data and allows for meaningful comparisons with alternative interest rate models, aiding in model selection and evaluation.

Figure 2. A real-life interest rate that can be modeled: FRED data of 30 -Year Fixed Rate Mortgage Average in the United States

Method to Solve the Inverse Problem

Suppose we are given $T, \sigma, r(0)$ and N realizations of the stochastic CIR model, and we are interested in estimating the parameters a, b. That is, how do we estimate the respective paramters a and b ? We propose to estimate a, b by using the following regression problem:

$$
\min _{\xi} J(\xi)=\frac{1}{2 N} \min _{\xi} \sum_{j=1}^{N} \int_{0}^{T}\left(r_{j}^{\text {data }}-r_{\xi}\right)^{2} d t
$$

- N - number of realizations of the stochastic CIR model that we have given - $r_{i}^{\text {data }}$ - the given realization of the stochastic CIR model
- r_{ξ} - solves the deterministic CIR model for parameter $\xi=(a, b)$
- \int_{0}^{T} - sum the difference between the given data and the deterministic CIR model at each infinitesimal steps
- min - find ξ that minimizes the difference between $r_{j}^{\text {data }}$ and r_{ξ}

Procedure

1. Write the functions to solve the stochastic and deterministic CIR model by using Euler-Maruyama and forward Euler method
2. Apply the trapezoidal rule to numerically integrate the cost function $J(\xi)$.
3. Create an anonymous cost function with respect to a, b and utilize the "scipy"
. Create an anonymous cost function with respect to a, b and utilize the "scipy package in Python to optimize and determine the values of a, b that minimize

Result

Following the aforementioned procedure above, we successfully implemented the optimization on the cost function $J(\xi)$. As a result, we present the following sraph, which illustrates our achieved outcome:

Figure 3. Performance of the Fitted Deterministic Models with Varying Number of Simulations
By setting our parameter σ to a fixed value of 0.1 , we proceeded to simulate 10,100 , and 1000 times respectively data from the CIR model. The resulting images below demonstrate the close fit between the deterministic CIR model and the average simulated data. The estimated \hat{a}, b are fairly close to the true a, b despite the number of each simulations in each case.
Considering that the model imposes a condition of $2 a b \geq \sigma^{2}$ to prevent negative values of r_{t}, we can establish an upper bound for the corresponding σ. Yet, It is important to note that a rigorous estimation for σ should be further developed, which holds the potential for enhancing our estimation of CIR model parameters. Reference:
[1] 30-year fixed rate mortgage average in the united states [MORTGAGE30US] Retrieved from FRED, Federal Reserve Bank of St. Louis, May 182023 Available at https://fred.stlouisfed.org/series/MORTGAGE3OUS.
2] Timothy Sauer
Numerical solution of stochastic differential equations in finance In Handbook of computational finance, pages 529-550. Springer, 2011

P-Colorability: Not Your Typical Knot Invariant

Miao Lei, Kriteen Shrestha, Cindy Zhao Mentor: Marcos Reyes

Department of Mathematics, University of California, Santa Barbara

Abstract

This poster explores the idea of distinguishing knots and studying their projections using Reidemeister moves. We will also discuss three interconnected knot invariants: Tricolorability, P-Colorability, and Knot Polynomials. More information can be found on our website, available after scanning the QR code on Figure 2.

Introduction

Loosely speaking, a knot is a tangled loop of string with connected ends. Mathematically, it is a closed curve embedded in 3D space. The most fundamental knot is the unknot, or a circle One knot can be drawn in different ways with different projections.

But how can we be sure that all knots are not just different proFigure 1: Three projec- jections of the unknot? Strategies tions of the same knot called invariants can help us distinguish two knots. The ongoing study of knot theory is a point of curiosity for other sciences like cryptography and DNA sequencing.
Let's now look at how we can transport one knot projection to another using Reidemeister moves

Reidemeister Moves

Ambient isotopy is the idea of rearranging a knot in space without tearing it or having it intersect itself. If we can get from one projection to another by ambient isotopy, then the projections are of the same knot.

Reidemeister moves are valid changes on a knot that give different projections of the same knot

Thus, two knots are equivalent if and only if one can be transformed into the other through a finite sequence of Reidemeister moves.

Invariants: An Overview

Invariants help us answer the following question, fundamental in knot theory:

COULD ALL KNOTS JUST
Figure 3: A wacky ,
We want to find an efficient way to tell whether two knots are distinct. Checking to see if no finite sequence of Reidemeister moves exists between two knot projections is a difficult task. Thus, we search for invariants - properties that hold true across all three Reidemeister movies - to distinguish knots.

Tricolorability

A knot is tricolorable if each strand of the knot diagram can be colored one of three colors, subject to the following rules:
1.At least two colors must be used.
2.At each crossing, the three incident strands are either exactly the same or completely different colors.

Note: In a knot diagram, a strand indicates a continuous piece that goes from one under-crossing to the next.

The rules of tricolorability hold true under each Reidemeister move, making it a valid knot invariant (see a proof on our website). As
 pictured on the right, the trefoil knot is tricolorable Figure 4: Trefoil knot is since it can be properly coltricolorable ored with three different colors.

Because the unknot can only be colored by one color, it is not equivalent to the trefoil knot and any tricolorable knot. However, if a knot is not tricolorable, we cannot conclude that it is a Figure 5: The unknot projection of the unknot

P-Colorability

Notice that with tricolorability, we were subject to just three "colors". P-Colorability is another knot invariant that generalizes the rules of tricolorability numerically so we can use more colors.

A knot, and any of its projections, will be p-colorable where p is a prime >2) if all strands of the knot can be labeled with variables such that c is the over-strand of a crossing, and a and b are the under strands, following the condition $a+b-2 c \equiv 0(\bmod p)$

We can use the determinant of the coloring invarian matrix of a knot to deduce which primes make a valid coloring system.

Theorem: A knot is p -colorable if and only if p divides the determinant

Based on our p-colorable equation, each element of the matrix represents whether the strand is an overstrand (i.e., coefficient is -2) or an under-strand (coefficient is 1). If the coefficient is 0 , that just means that the strand is not part of the three participating strands of that crossing.

Below is a coloring invariant matrix for the figure-8 knot
$\mathrm{A}=\left[\begin{array}{cccc}-2 & 0 & 1 & 1 \\ 1 & 1 & 0 & -2 \\ 0 & 1 & -2 & 1 \\ 1 & 1 & 1 & 0\end{array}\right] \Rightarrow A_{\text {Cofactor }}=\left[\begin{array}{ccc}-2 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & -2\end{array}\right]$

Then $\left|\operatorname{det}\left(A_{\text {Cofactor }}\right)\right|=5$, and thus, we can conclude that the figure- 8 knot is 5 -colorable. As shown on the left, we can now follow the coloring rules as we igure 6: Figure 8 knot defined earlier on the figure- 8 is 5 -colorable. knot with at most five colors.

Also, because the determinant of our matrix is invariant on the labeling of the knot and the projection of the knot, we can conclude that the determinant of a knot's coloring matrix is a knot invariant.

Knot Polynomials

Knot Polynomials are numerical representations of knots and can be used as a knot invariant. The first polynomial in this discussion is the bracket polynomial. Calculation of the bracket polynomial, denoted $<\mathrm{L}>$, follows three rules:

```
1. <O> = 1
2. <X> = A<) (> + A '1<`>
    <\lambda> = A<\bigwedge> + A A < ) (>
3. <L\cupO> = (-A ' - A -2})<L
```

It can be shown that the Type II or III move on the knot's projection will result in the same bracket polynomial. However, making a Type I move will change the final bracket polynomial, so the bracket polynomial cannot be a knot invariant. Hence, we define a new polynomial to work around this issue.

The \mathbf{X}-Polynomial is defined as follows:

$$
X(L)=\left(-A^{3}\right)^{-w(L)}<L>
$$

where $\mathrm{w}(\mathrm{L})$ is the writhe (pronounced like "faith") of the knot projection. Each strand in the projection has to be given a direction (we call this "oriented") to calculate the writhe. The trefoil knot has $X(L)=A^{-4}+A^{-12}-A^{-16}$.

Another polynomial, the Alexander Polynomial $\Delta(x)$, is found by labeling crossings. Interestingly enough, plugging $t=-1$ into $\Delta(x)$ gives the same value as the determinant of our coloring matrix!

While there are other knot invariants that give us more information, we focus on the most introductory ones to present knot theory in a palpable way.

Acknowledgements and References

We would like to thank our wonderful mentor Marcos for guiding us and inspiring our project, as well as the UCSB Math
Department for this fantastic opportunity. Department for this fantastic opportunity
[1] Adam, C.C, 1994. The Knot Book. Amer. Math. Soc
[2] Oesper, L., 2005. p-Colorings of Weaving Knots. Pomona College. Clare
mont, CA
[3] Price, C., (2003). Coloring Invariant and Determinants. California State University, Chico

Persistent Homology Over \mathbb{Q}

Daniel Badilla Jr - Mentored by Troy Kling
University of California, Santa Barbara

Importance of Persistent Homology

When working with multidimensional data, it can be challenging to understand its underlying geometric structure. By constructing a sequence of simplicial complexes and computing the homology groups at each stage, one may gain insights into the connectivity and presence of holes in a given dataset. Furthermore, the structural knowledge gained is relatively robust to noise and sampling error.

What is Homology?

Simplicial homology is a fundamental concept from algebraic topology which aims to quantify the number of n-dimensional holes in a simplicial complex. Given a simplicial complex K, one first establishes bases for the cycles (linear combinations of simplices which "close up") and boundaries (linear combinations of simplices which bound something higher-dimensional) of K. The homology groups are then obtained by taking a quotient - cycles mod boundries. This effectively removes all "trivial" cycles, ie those that bound a filled-in aries. This effectively the true holes in the space

Definitions

Let K be a simplicial complex and G an abelian group (for us, $G=\mathbb{Q}$).

- An n-simplex is the convex hull of $n+1$ affinely independent points.

Figure 1. Examples of n-simplices, for $n=0,1,2,3$

- A simplicial complex is a mathematical structure formed from a collection of simplices of various dimensions whose faces satisfy certain conditions.
- An n-chain of K is a formal G-linear combination of n-simplices of K.
- The $n^{\text {th }}$ chain group of K over G, denoted $C_{n}(K ; G)$, is the set of all n-chains of K, under the binary operation of (formal) addition.
- The $n^{\text {th }}$ boundary map is defined as

$$
\begin{aligned}
\partial_{n}: C_{n}(K ; G) & \rightarrow C_{n-1}(K ; G) \\
\quad\left[v_{0}, \ldots, v_{n}\right] & \mapsto \sum_{i=0}^{n}(-1)^{i}\left[v_{0}, \ldots, \widehat{v}_{i}, \ldots, v_{n}\right],
\end{aligned}
$$

where $\left[v_{0}, \ldots, \widehat{v}_{i}, \ldots, v_{n}\right]$ is the $(n-1)$-simplex obtained by deleting the $i^{\text {th }}$ vertex from $\left[v_{0}, \ldots, v_{n}\right]$.

- n-cycles are elements of $\operatorname{ker}\left(\partial_{n}\right) ; n$-boundaries are elements of $\operatorname{im}\left(\partial_{n+1}\right)$.
- $\partial_{n} \circ \partial_{n+1}=0$, so the boundary maps form a chain complex:

$$
\cdot \rightarrow C_{n+1}(K ; G) \xrightarrow{\partial_{n+1}} C_{n}(K ; G) \xrightarrow{\partial_{n}} \cdots \xrightarrow{\partial_{2}} C_{1}(K ; G) \xrightarrow{\partial_{1}} C_{0}(K ; G) \xrightarrow{\partial_{0}} 0 .
$$

- The $n^{\text {th }}$ homology group of K over G is defined to be

$$
H_{n}(K ; G)=\operatorname{ker}\left(\partial_{n}\right) / \operatorname{im}\left(\partial_{n+1}\right) .
$$

- Working over \mathbb{Q} (or any field of characteristic zero) eliminates torsion, so the rational homology groups are actually vector spaces over \mathbb{Q}, since

$$
H_{n}(K ; \mathbb{Q}) \cong H_{n}(K ; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Q} .
$$

The $n^{\text {th }}$ Betti number of K, denoted $\beta_{n}(K)$, is the rank of the $n^{\text {th }}$ homology group of K. It can be computed as follows, using the rank-nullity theorem:

$$
\begin{aligned}
\beta_{n}(K) & =\operatorname{dim}\left(H_{n}(K ; \mathbb{Q})\right) \\
& =\operatorname{dim}\left(\operatorname{ker}\left(\partial_{n}\right) / \operatorname{im}\left(\partial_{n+1}\right)\right) \\
& =\operatorname{dim}\left(C_{n}(K ; \mathbb{Q})\right)-\operatorname{rank}\left(\partial_{\mathrm{n}}\right)-\operatorname{rank}\left(\partial_{n+1}\right) .
\end{aligned}
$$

An Example

The boundary of the 2 -simplex $\left[v_{1}, v_{2}, v_{3}\right]$ is
$\partial_{2}\left(\left[v_{1}, v_{2}, v_{3}\right]\right)=\left[v_{2}, v_{3}\right]-\left[v_{1}, v_{3}\right]+\left[v_{1}, v_{2}\right] \in C_{1}(K ; G)$.
This can be seen geometrically in the simplicial complex, K, shown below.

Figure 2. A simplicial complex, K, composed of 6 vertices, 9 edges, and 3 faces,
Ordered bases for the chain groups of the simplicial complex above are given by

$$
\begin{aligned}
C_{0}(K ; \mathbb{Q})= & \left\langle\left[v_{1}\right],\left[v_{2}\right],\left[v_{3}\right],\left[v_{4}\right],\left[v_{5}\right],\left[v_{6}\right]\right\rangle \cong \mathbb{Q}^{6}, \\
C_{1}(K ; \mathbb{Q})= & \left\langle\left[v_{1}, v_{2}\right],\left[v_{1}, v_{3}\right],\left[v_{2}, v_{3}\right],\left[v_{2}, v_{4}\right],\right. \\
& {\left[v_{2}, v_{5}\right],\left[v_{4}, v_{5}\right],\left[v_{3}, v_{5} 5,\left[v_{3}, v_{6}\right],\left[v_{5}, v_{6}\right]\right\rangle \cong \mathbb{Q}^{9}, } \\
C_{2}(K ; \mathbb{Q})= & \left\langle\left[v_{1}, v_{2}, v_{3}\right],\left[v_{2}, v_{4}, v_{5}\right],\left[v_{3}, v_{5}, v_{6}\right]\right\rangle \cong \mathbb{Q}^{3} .
\end{aligned}
$$

Computing the boundaries of each basis element yields $\partial_{0}=\partial_{3}=0$, and

$$
\left.\partial_{1}=\left[\begin{array}{cccccccc}
-1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & -1 & -1 & -1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & -1 & -1 \\
0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline
\end{array}\right], \quad \begin{array}{c}
-1 \\
0
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

Bases for the null space of ∂_{1} and the column space of ∂_{2} can be computed as

$\operatorname{col}\left(\partial_{2}\right)=$

Continuing in this fashion, one can compute:

$$
\begin{array}{ll}
H_{0}(K ; \mathbb{Q})=\mathbb{Q}^{6} / \mathbb{Q}^{5} \cong \mathbb{Q}, & \beta_{0}(K)=1, \\
H_{1}(K ; \mathbb{Q})=\mathbb{Q}^{4} / \mathbb{Q}^{3} \cong \mathbb{Q}, & \beta_{1}(K)=1, \\
H_{2}(K ; \mathbb{Q})=\mathbb{Q} / \mathbb{Q} \cong 0 . & \beta_{2}(K)=0 .
\end{array}
$$

Homology of the Torus

$\beta_{0}\left(T^{2}\right)=1$,
$H_{0}\left(T^{2} ; \mathbb{Q}\right)=\mathbb{Q}$,
$H_{1}\left(T^{2} ; \mathbb{Q}\right)=\mathbb{Q} \oplus \mathbb{Q}$,
$H_{2}\left(T^{2} ; \mathbb{Q}\right)=\mathbb{Q}$.
$\beta_{1}\left(T^{2}\right)=1$.
$\beta_{2}\left(T^{2}\right)=1$.

Figure 3. Simplicial complex for the 2 -dimensional torus, and its rational homology groups.

Alpha Complexe

Let K be a simplicial complex with vertex set S. If $\overline{B_{r}(v)}$ denotes the closed ball of radius r centered on a point $v \in S$, and $V(v)$ denotes the Voronoi region associated to v, then the alpha complex of radius r is the simplicial complex defined by

$$
\alpha_{r}(K)=\left\{\sigma \subseteq S: \bigcap_{v \in \sigma}\left(B_{r}(v) \cap V(v)\right) \neq \varnothing\right\}
$$

Figure 4. Example of an alpha complex, along with the associated union of closed balls.
The alpha complex has the following nice properties:

- The Nerve Theorem states that $\alpha_{r}(K)$ is homotopy equivalent to $\bigcup B_{r}(v)$. This implies that the two spaces have isomorphic homology groups.
- The dimension of the alpha complex can be no larger than the dimension of the ambient space to which the given data points belong
- Computing the associated homology groups is computationally inexpensive

Persistence \& Topological Data Analysis

Given a point cloud of data, one may construct a filtration of alpha complexes by increasing the radius, r, of the closed balls surrounding the vertices. In doing so, persistent holes may be detected in the alpha complexes, thereby providing valuable insights into the structure of the underlying data.

$\beta_{0}\left(\alpha_{0.75}(K)\right)=7, \quad \beta_{0}\left(\alpha_{1.5}(K)\right)=2, \quad \beta_{0}\left(\alpha_{2}(K)\right)=1, \quad \beta_{0}\left(\alpha_{2.5}(K)\right)=1$, $\beta_{1}\left(\alpha_{0.75}(K)\right)=0 . \quad \beta_{1}\left(\alpha_{1.5}(K)\right)=0 . \quad \beta_{1}\left(\alpha_{2}(K)\right)=1 . \quad \beta_{1}\left(\alpha_{2.5}(K)\right)=0$.

Figure 5. A filtration created by increasing r, along with the associated Betti numbers

Acknowledgements

would like to acknowledge Troy, my mentor, for his invaluable guidance, expertise, and unwavering support throughout this research project. Without his assistance, I would not have been able to accomplish this project successfully. Thank you, Troy, for your dedication and for being an exceptional mentor.

References

Zomorodian, Afra J. Topology for Computing. Cambridge University Press, 2005, Hatcher, Allen. Algebraic Topology. Cambridge University Press, 2001. Otter, Nina, et al. "A roadmap for the computation of persistent homology." EPJ Data Science 6 (2017)

Popular Concepts in Functional Analysis

Neha Banerjee, Elizabeth Thomson, Xuanyi Zhou
 University of California - Santa Barbara

The Normed Space CL(X,Y)

$C L(X, Y)$ denotes the set of all continuous linear transformations from a normed space X to a normed space Y
A continuous linear transformation is characterized by
Theorem 1
Let X and Y be normed spaces, and $T: X \rightarrow Y$ be a linear transformation. Then the following properties of T are equivalent
(1) T is continuous.
(2) T is continuous at \boldsymbol{O}.
(3) There exists an $M>0$ such that for all $x \in X,\|T x\|_{\gamma}<M\|x\|_{x}$.
$C L(X, Y)$ is a normed space, with pointwise operations and the "operator norm" ||.|| : $C L(X, Y) \rightarrow \mathbb{R}$ given by:
$\| T| |:=\sup \{| | T x\|: x \in X\|, x \| \leq 1\}, T \in C L(X, Y)$
A subspace Y of a normed space X is said to be an invariant sub space with respect to a linear transformation $T: X \rightarrow X$ if $T Y \subset Y$. Invariant subspaces are useful since they are helpful in studying complicated operators by breaking them down into smaller operators acting on invariant subspaces. This is similar to the diagonalization process in linear algebra where one decomposes the vector space into eigenspaces, where the linear transformation acts trivially. This also contributes to one of the open problems in functional analysis known as the invariant subspace problem:
Does every $T \in C L(H)$ on a separable complex Hilbert space H have a non-trivial invariant subspace?

Topology in Normed Spaces

There are three key topologies in the normed space, categorized into uniform operator topology, strong operator topology, and weak operator topology on $\mathrm{CL}(\mathrm{X}, \mathrm{Y})$

Banach Spaces

Definition

A normed space in which the set of Cauchy sequences is equal to the set of convergent sequences is called a Banach space. Sometimes, we also call it a complete normed space
Some common examples of Banach spaces include: $(\mathbb{R},||),.(\mathbb{C},||$.$) ,$ $\left(l^{p},\|\mid \cdot\|_{p}\right),\left(C[a, b],\|\mid \cdot\|_{\infty}\right),\left(L^{2}[a, b],\|\mid\| \|_{2}\right)$.

A Property of Banach Space

Theorem 2

In a Banach space, absolutely convergent series converge, that is:
If $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a sequence in a Banach space $(X,\|\|$.$) such that \sum_{n=1}^{\infty}\left\|x_{n}\right\|<$ ∞, then $\sum_{n=1}^{\infty} x_{n}$ converges in X. Moreover, $\left\|\sum_{n=1}^{\infty} x_{n}\right\| \leq \sum_{n=1}^{\infty}\left\|x_{n}\right\|$.

Example: $\sum_{n=1}^{\infty} \frac{\sin (n)}{n^{2}}$ converges in $C[0,2 \pi],\|\cdot\| \infty$). (Here $\sin (n \cdot)$ means the function $\mathrm{t} \rightarrow \sin (n t):([0,2 \pi] \rightarrow \mathbb{R})$ Indeed, we have $\left\|\frac{\sin (n) .}{n^{2}}\right\|_{\infty}=\frac{1}{n^{2}}$, and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty$ So $x:=\sum_{n=1}^{\infty} \frac{\sin (n .)}{n^{2}}$ defines a continuous function on $[0,2 \pi]$. We can approximate the limit by computing the first N terms and plotting the resulting function. The error can then be bounded as follows

$$
\left\|\sum_{n=N+1}^{\infty} \frac{\sin (n .)}{n^{2}}\right\|_{\infty} \leq \sum_{n=N+1}^{\infty}\left\|\frac{\sin (n t)}{n^{2}}\right\|_{\infty} \leq \sum_{n=N+1}^{\infty} \frac{1}{n^{2}}
$$

For example, if $N=100$, then the error is bounded above by

$$
\sum_{n=101}^{\infty} \frac{1}{n^{2}} \leq \int_{100}^{\infty} \frac{1}{x^{2}} d x=\frac{1}{100}=0.01
$$

Using Maple, one can plot the partial sum of x with $N=100$ and get:

Thus the sum converges to a continuous function that lies in the strip of width 0.01 around the graph shown in the figure. We can also use Theorem 2 to show that e^{A} converges (A belongs to $C L(X)$). $C L(X)$ denotes a certain Banach space, namely the space of all "continuous linear transformations" from X to itself, equipped with the "operator norm". For example, when $X=\mathbb{R}^{d}, C L(X)$ turns out to be the space of all $d \times d$ real matrices. Why is there a focus on e^{A} ? The answer is that it plays a crucial role in differentia equations. The initial value problem,

$$
\frac{d x}{d t}=A(t) x(t), t \in \mathbb{R}, \quad x(0)=x_{0} \in X,
$$

has a unique solution given by $x(t)=e^{t A} x_{0}$, where $t \in \mathbb{R}$.

Spectral Theory

Spectrum and Resolven

- For a linear transformation $T \in L(X)$ on a finite dimensiona vector space X over \mathbb{C}, the set of eigenvalues is known as its spectrum $\sigma(T)$ with cardinality at most dimX. In infinite dimen sional complex vector spaces, linear transformations may have no eigenvalues, finitely many eigenvalues, or infinite eigenvalues.
Let X be a normed space and $T \in C L(X)$. We say that $\lambda \in \mathbb{C}$ belongs to the spectrum $\sigma(T)$ of T if $\lambda I-T$ is not invertible in $C L(X)$. Thus

$$
\rho(T):=\mathbb{C} \backslash \sigma(T)=\{\lambda \in \mathbb{C}: \lambda \text { is invertible in } C L(X)\}
$$

- The set $\rho(T)$ is the resolvent set
- The set $\sigma_{p}(T)$ of all eigenvalues of \mathbf{T} is called the point spectrum of T.
- We have that $\sigma_{p}(T) \subset \sigma(T)$, since if $\lambda \in \sigma_{p}(T)$ then there exists a nonzero vector x such that $T x=\lambda x$, that is $(\lambda I-T) x=$ 0 , showing that $\lambda I-T$ is not injective, and hence cannot be invertible either.

Theorem 3.

- Let X be a Banach space and $T \in C L(X)$. Then
(1) $\sigma(T) \subset\{\in \mathbb{C}:|\lambda| \leq\|T\|\}$
(2) $\rho(T)$ is an open subset of \mathbb{C}
(3) $\sigma(T)$ is a compact subset of \mathbb{C}
(4) $\sigma(T)$ is nonempty

Acknowledgements

Reference Material: "A Friendly Approach to Functional Analysis" by Amol Sasane
Thank you to the UCSB Directed Reading Program and to our men tor Melody Molander for making this project possible.

80 Knots... 100 Knots...V1...Rotate! Prandtl's Method of Computing Lift

Daric Zhou, Lishan Shi, and Rodrick Zhu

Introduction Our project aims to calculate the lift and drag of an airfoil in two and three dimensions. To achieve this goal, we need to obtain the equation of motion of the fluid passing over the airfoil. Two approaches can be taken to address this problem: the microscopic approach utilizing Boltzmann's equation or the continuum approach that treats the fluid as a group of parcels occupying each point of space with well-defined thermodynamics properties. We will be utilizing the continuum approach, which relies on calculus to solve problems. This approach utilizes several fundamental equations to comprehend fluid motion, namely Euler's equation and Navier-Stokes equations. Specifically, Euler's equation applies to ideal fluids, while Navier-Stokes equations are applied to viscous fluids. These equations are derived from Newton's second law, which states that an object's acceleration is proportional to the net force applied and inversely proportional to its mass.

Preliminaries

Euler's and Navier-Stokes equations are fundamental for understanding fluid motion. In our case, we need to apply these equations to fluid flow
around an obstacle, such as an airfoil. A stationary, ideal, and homogeneous fluid setting is a suitable context for studying an airfoil in two dimensions, as it allows us to simplify Euler's equation to Cauchy-Riemann equations in complex analysis. More specifically, consider the following setting:

$$
\begin{aligned}
& \text { Our velocity field } U=(u(x, y), v(x, y)) \\
&
\end{aligned}
$$

Incompressible fluid $\Rightarrow \nabla \cdot U=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$, that is $\frac{\partial u}{\partial x}=-\frac{\partial v}{\partial y}$ Irrotational fluid $\Rightarrow \nabla \times U=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}=0$, that is $\frac{\partial v}{\partial x}=\frac{\partial u}{\partial y}$
These two conditions imply that our force $F=u-i v$ is complex differentiable. Now assume that $F=\frac{\partial W}{\partial z}$ where $W=\phi+i \psi$, then by Cauchy-Riemann equations, the force can be expressed as $F=\frac{\partial \phi}{\partial x}+i \frac{\partial u}{\partial x}=\frac{\partial \phi}{\partial x}-i \frac{\partial u}{\partial y}=u-i v$ where $u=\frac{\partial d}{\partial x}$ and $v=\frac{\partial \psi}{\partial w}$. In other words, $U=(u, v)=$
We would also like to provide the following comments.

1. In a stationary, ideal, and homogeneous fluid, the original Euler's equation $\rho \frac{d u}{d t}=-\nabla P+\rho b$ can be simply expressed as $P=-\rho \frac{\left.|l| l\right|^{2}}{2}$. Furthermore, the Cauchy-Riemann equations further simplify the incom-
pressible condition as $\nabla \cdot U=\nabla \cdot \nabla \phi=\Delta \phi=0$. Lastly, we consider the pressibie condition as. $\nabla \cdot V=\nabla \cdot \nabla \phi=\Delta \phi=0$. Lastly, we consider the
boundary condition. Theoretically, the ideal flow would be tangential to he boundary and not penetrate the boundary of the domain, which w ay express as $U \cdot \hat{n}=\nabla \phi \cdot \hat{n}=V \cdot \hat{n}$ on ∂D, where D refers to the domain.
Our assumption of ideal and incompressible flow implies that the density field ρ is constant by the continuity equation. This result allows us ion changes throughout time Specifem, and understand how circula$d_{c t}=0$ where $\Gamma_{c(t)}$ denotes the circulation around contour $c(t)$. If the
drivinal original circulation is zero, then the theorem tells us that the circulation
around $c(t)$ will remain to be zero throughout the flow. See the following graph.

- $\Gamma_{(10)}=0$

when $t=t_{0}, P_{\text {(ut) }}=0$ because $\Gamma_{\text {coo }}=0$ and $\frac{d P(t)}{d t}=0$

circalation \bar{p}.

Lift of 2-dim Airfoil
To determine the lift and drag of a 2 -dimensional airfoil, we follow a system-
atic approach that involves analyzing the force and potential of the flow. These steps outline the process.

1. We begin by examining the force and potential of the flow in the absence of an airfoil. We express the initial velocity field as $U=(u, v)=$ $(Q \cos \alpha, Q \sin \alpha)$. Because we proved in the previous section that the
force is $F=u-i v$, we rewrite it as $F=Q \cos \alpha-i Q \sin \alpha=Q e^{-i \alpha}$ force is $F=u-i v$, we rewrite it as $F=Q \cos \alpha-i Q \sin \alpha=Q e^{-i \alpha}$
by Euler's formula. Then the complex potential is $W=Q z e^{-i \alpha}$, since by Euler
$F:=\frac{\partial r}{\partial z}$
2. Next, we investigate the force and potential of the flow after introducing a 2 -dimensional disk-shaped airfoil. To calculate these values, we can utilize the Milne-Thomson circle theorem, which allows us to insert a circle into a 2 -dimensional flow and understand how the complex po-
tential changes. Applying this theorem, the new complex potential is given by

$$
\hat{W}=Q z e^{-i \alpha}+\overline{Q z e-i \alpha}=Q z e^{-i \alpha}+Q e^{i \alpha} a^{2} / z^{2}-i \Gamma \ln z / 2 \pi
$$

where Γ refers to the circulation and a denotes the radius of a disk.
3. We then apply conformal mapping techniques to transform the airfoil of the flow properties around the airfoil. See the below for two examples of airfoils provided in [5].

Let us discuss the computation for the exterior of the disk of radius a. Mathematically, we denote the exterior of the disk as z, and z will map
to the exterior of the plate $\left(|x| \leq 2 a\right.$ in $\left.\mathcal{R}^{2}\right), z=z+a^{2} \mid z$. Then we to the exterior of the plate ($|x| \leq$
$\frac{d \hat{W}}{d \hat{z}}=\frac{d \hat{W}}{d z} \frac{d z}{d \hat{z}}=\left(Q e^{-i \alpha}+\frac{Q e^{i a} a^{2}}{\hat{z}^{2}}-\frac{i \Gamma}{2 \pi \hat{z}}\right) \frac{\sqrt{\hat{z}^{2}-4 a^{2}}+\hat{z}}{2 \sqrt{\hat{z}^{2}-4 a^{2}}}$
We can obtain $\frac{\alpha z}{d z}$ by rewrite $\hat{z}=z+a^{2} / z$ in terms of z, which is $z=\frac{z+\sqrt{\varepsilon^{2}-4 a}}{2}$. However, only the solution with plus sign will be taken
as we assume $z \approx z$ at infinity. as we assume $z \approx \hat{z}$ at infinity.
Note that $d \hat{W}$ is not defined
Note that $\frac{d V}{d V}$ is not defined precisely at $\hat{z}= \pm 2 a$. The Kutta-
Joukowski condition allows us to elimimate one of the singularities at Joukowski condition allows us to eliminate one of the singularities at
$\hat{z}=2 a$. We pick Γ such that $\left(Q e^{-i o}+\frac{Q e^{\circ} a^{\circ} a^{2}}{z^{2}}-\frac{i \Gamma}{2 \pi z}\right)=0$ and it turns out that this condition is satisfied when $\Gamma_{\Gamma}^{s^{2}}=-4 \pi a \sin \alpha$. Applying Kutta-Joukowski theorem, we can calculate the force exerted on D.
We obtain $\bar{F}=\rho \Gamma(V-I W)=-4 \rho T Q \sin \alpha+4 i o t Q \sin \alpha \cos \alpha=$ We obtain $\hat{F}=\rho \Gamma(V-i U)=-4 \rho \pi Q a \sin \alpha+4 i \rho \pi Q a \sin \alpha \cos \alpha=$
$\rho \Gamma(Q \sin \alpha-i Q \cos \alpha)=x+i y$, where $\hat{F}=(x, y)$ denotes the force $\rho \Gamma$ e $(Q \sin \alpha-i Q \cos \alpha)=x+i y$, where $\hat{F}=(x, y)$ denotes the force
field, and $(U, V)=(Q \cos \alpha, Q \sin \alpha)$ is obtained from $(u, v) \rightarrow(U, V)$ at infinity by our assumption.
4. The lift, therefore, is the magnitude of the complex number \hat{F}, which is $4 \pi \rho \alpha Q^{2} \sin \alpha$
Whereas the flat plate had a singularity at the left endpoint, a general K-J airfoil can have a smoother leading edge and a sharp trailing edge to which we apply the K-J condition. For our analysis of the three-dimensional wing, we consider each cross
system shown below:

Lift of 3-dim Wing

When studying 3 -dimensional wings, we can slice the wing by a plane
$y=$ const. to obtain a 2 -dimensional airfoil section We Wensider Joukowski $y=$ const. to obtain a 2 -dimensional airfoil section. We consider Joukowski airfoils - characterized by a smooth leading edge and a sharp trailing edge

- for the crosssections of our wing. We use Prandtl's model of a 3 -- for the cross-sections of our wing. We use Prandtl's model of a 3dimensional wing to calculate the lift. In this model, the wing is regarded as
long and thin; the aspect ratio of a wing is defined as wingspan ${ }^{2} /$ wing 2 area, or $4 b^{2} / A$ where b is the half-span. This model is an asymptotic approximation as the aspect ratio of the wing tends to ∞.
We start by determining $\Gamma(y)$, assuming each cross section is a Joukowski
airfoil and that angles formed by the flow and the airfoil, α, β are small:

$$
\begin{gathered}
l(y)=4 \pi \rho c(y) Q^{2} \sin (\alpha+\beta) \\
\Rightarrow \Gamma(y)=4 \pi c(y) U(\alpha(y)+\beta(y))
\end{gathered}
$$

We denote the effective angle of attack as
$\alpha_{\text {eff }}=\alpha+\frac{w(y)}{U}$
where α is the fixed angle of attack and $w(y)$ is the downwash due to shed where α is the fixed angle of attack and $w(y)$ is the d
vorticity. A visualization of this downwash is below.

$w(y)$
One computes the shed vorticity by an application of the Kutta-Joukowski theorem to an infinitesimal section of the wing.

We now have

$$
\Gamma(y)=4 \pi c(y) U\left(\alpha+\frac{w(y)}{U}+\beta(y)\right)
$$

Note that a doubly infinite vortex creates a velocity given by the 2 dimensional point vortex flow: namely, a line that carries unit circulation and is paralle to the x-axis at a position $y=\eta$ in the $z=0$ plane introuces the velocity

$$
\overline{2 \pi(y-\eta)}
$$

Since the shed vortex is semi-infinite, this vorticity is reduced by a factor
of $\frac{1}{2}$. We can now determine $w(y)$ from $\Gamma(y)$:

$$
w(y)=-\frac{1}{4 \pi} \int_{-b}^{b} b \frac{d}{d y}(\eta) d \eta
$$

We can also deduce an integral equation for $\Gamma(y)$:

$$
\Gamma(y)=4 \pi c(y) U\left(\alpha+\beta(y)-\frac{1}{4 \pi U} \int_{-b}^{b} \frac{\frac{d \Gamma}{d y}(\eta)}{\frac{d y}{y}-\eta} d \eta\right.
$$

Solving this equation results in the lift on the wing:

$$
L=\rho U \int_{-b}^{b} \Gamma(y) d y
$$

It is important to note that this method is quite basic and assumes an ideal fluid flow, which is unrealistic. In the real world, one major concept is that
of the boundary laver: a thin layer adjacent to the sufface of the object where the effect of viscosity is the most prominent. The boundary layer acts as another source of viscosity, and in the case of airfoils, it causes the fluid flow to 'separate' or "detach' from the trailing edge into a wake.

Blasius' Formula and the Kutta-Joukowski
asius' Formula) Consider arem incompressible potential foo (Blasius' 'rormula) Consider an ideal, incompressible, potential fow
(with flow velocity $U=(u, v)$) around a rigid obstacle B, and suppos $F=u-i v$ is the complex velocity. Then the force \mathcal{F} exerted on B is given by

$$
\mathcal{F}=-{l_{\partial B} p \mathbf{n} d s=\frac{-i \rho}{2}\left[\sqrt{\partial_{\partial B} F^{2} d z}\right]}_{\text {and }}
$$

In short, Blasius' formula relates the force exerted by the pressure of the In short, Blasius' formula relates the force exerted by the pressure of the
flow to the force exerted by the density of the flow, and the diagram belo illustrates the infinitesimal normal displacement of along the boundary of B, which can be used to derive Blasius' formula from the expression of the force involving pressure

$\rightarrow \frac{1}{i}=e^{\text {Where }}$
(Kutta-Joukowski Theorem) Consider an incompressible, potential flow exterior to an obstacle B, and suppose the velocity field (u, goes to some constant value (U, V) at infinity. Then the force $\mathcal{F} e$ erted on D is given by

$$
\mathcal{F}=-\rho \Gamma_{\partial B}\|(U-i V)\| \mathbf{n}
$$

where $\Gamma_{\partial B}$ is the circulation about the obstacle and \mathbf{n} is a unit vecto orthogonal to (U, V).
Proof. Recall that in tit
Proof. Recall that in the statement of Blasius' formula, we defined F to be the complex velocity outside of B, so it is by definition analytic, and can therefore be written in a Laurent series like so:
$F=\cdots+\frac{a_{2}}{z^{2}}+\frac{a_{-1}}{z}+a_{0}+a_{1} z+a_{2} z^{2}+$
But because of the limiting value at $z \rightarrow \infty$, there are no positive powers (otherwise F diverges) and so

$$
F=a_{0}+\frac{a_{-1}}{z}+\frac{a_{-2}}{z^{2}}+.
$$

Recall that $F=u \quad i v$ as in Blasius' formula, so we have

$$
\begin{aligned}
\int_{\partial B} F d z & =\int_{\partial B}(u-i v)(d x+i d y) \\
& =\int_{0} u d x+u d u=C_{n}
\end{aligned}
$$

and by the Cauchy Residue theorem, we have that $a_{-1}=\frac{\mathrm{T} a s}{2 a}$. Finally, using our derivation from (1) and Blasius' formula, we get

$$
\begin{aligned}
\mathcal{F} & =\frac{-i \rho}{2}\left[/_{\partial B} F^{2} d z\right]=\frac{-i \rho}{2}\left[l _ { \partial B } \left(a_{0}^{2}+2 a_{0} a_{1}\right.\right. \\
& +\ldots) d z] \\
& =\frac{-i \rho}{2} 2 a_{0} a_{-1} 2 \pi i=\frac{-i \rho}{2} \cdot 2 a_{0} \cdot \frac{\Gamma_{\partial B}}{2 \pi i} \cdot 2 \pi i \\
& =\frac{-i \rho}{2} 2 \Gamma_{\partial B}(U-i V)=-\rho \Gamma_{\partial B}(V-i U) \\
& =-\rho \Gamma_{\partial B}\|(U-i V)\| \mathbf{n}
\end{aligned}
$$

as desired.
Acknowledgements

We would like to thank the DRP team for organizing the program this year and we would like to thank our mentor Pranav for his unyiedding patien and mentorship.

References

[1] Bak, Joseph, and Donald J. Newman. Complex Aubsi U1e graduate Texts in Mathematics. New York, NY: Springer New York
2) Childress Stephen An Introduction to Theoretical Fluid Mechanics. Vol. 19. Courant Lecture Notes. American Mathematical Society 2009.
[3] Chorin, Alexandre J., and Jerrold E. Marsden. A Mathematical In troduction to Fluid Mechanics. Vol. 4. Texts in Applied Mathematic I Springer New York, 1993
[4] Schoeffel, Laurent. Lecture Notes in Fluid Mechanics. arXiv, July
[5] Nakayama, Yasuki. Introduction to Fluid Mechanics. 2018. Aceessed though <https://www.sciencedirect.com/

Projective Geometry and Camera Geometry

Minxi Lin, Joy Luo, Mentor: Danning Lu University of California - Santa Barbara

Geometry of Projective Transformations

A projective transformation is a geometric transformation that preserves certain properties such as collinearity (a straight line is imaged as a straight line). It models the distortion caused by perspective camera and is commonly used in computer vision and computer graphics. Homogeneous representation: it is a vector with an additional coordinate which allows the representation of points at infinity and further transformations.
Points
2D: An arbitrary homogeneous representation of a point is
$\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)^{\mathbf{T}}$, which means $\mathbf{x}=\left(x_{1} / x_{3}, x_{2} / x_{3}\right)$ in \mathbb{R}^{2}
3D: Similarly, for a point \mathbf{x} in 3-space, $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{\mathrm{T}}$ with $x_{4} \neq 0$ represents $\left(x_{1} / x_{4}, x_{2} / x_{4}, x_{3} / x_{4}\right)^{\mathrm{T}}$ in \mathbb{R}^{3}.
Lines: In a plane, a line is represented by the equation $a x+b y+c=0$, and therefore can be represented by the vector $(a, b, c)^{\mathbf{T}}$
Planes: A plane in 3 -space is shown as $\pi_{1} \mathbf{x}+\pi_{2} \mathbf{y}+\pi_{3} \mathbf{z}+\pi_{4}=0$, so its homogeneous representation can be written as $\pi=\left(\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}\right)^{\mathrm{T}}$. Since only the three independent ratio $\left\{\pi_{1}: \pi_{2}: \pi_{3}: \pi_{4}\right\}$ are significant, the dof of a plane in 3 -space is 3 .
Ideal points: For two parallel lines $\mathbf{l}=(a, b, c)^{\mathbf{T}}$ and $\mathbf{l}^{\prime}=\left(a, b, c^{\prime}\right)^{\mathbf{T}}$, the intersection is $\mathbf{l} \times \mathbf{l}^{\prime}=\left(c-c^{\prime}\right)(b,-a, 0)^{\mathbf{T}}$. Ignoring $\left(c-c^{\prime}\right)$, the scale factor, the inhomogeneous representation of the point $(b / 0,-a / 0)^{\mathrm{T}}$ does not make sense, except to indicate that the corresponding intersection point has coordinates that approach infinity. Hence, points with the homogeneous notation $\left(x_{1}, x_{2}, 0\right)^{\mathbf{T}}$ are called ideal points, also known as points at infinity.
Line at infinity: It is a set of all ideal points which the ratio of $x_{1}: x_{2}$ is constant. It is denoted as the vector $\mathbf{l}_{\infty}=(0,0,1)^{\mathrm{T}}$ such that $(0,0,1)\left(x_{1}, x_{2}, 0\right)^{\mathbf{T}}=0$
2D Projective transformation: A projective transformation is a general non-singular linear transformation of homogeneous coordinates. It generalizes an affine transformation, which encompasses a nonsingular linear transformation of inhomogeneous coordinates combined with a translation. It can be decomposed as
$\mathbf{H}=\mathbf{H}_{\mathbf{S}} \mathbf{H}_{\mathbf{A}} \mathbf{H}_{\mathbf{P}}=\left[\begin{array}{ll}s \mathbf{R} & t \\ 0^{T} & 1\end{array}\right]\left[\begin{array}{cc}\mathbf{K} & 0 \\ 0^{T} & 1\end{array}\right]\left[\begin{array}{cc}\mathbf{I} & 0 \\ \mathbf{v}^{T} & v\end{array}\right]=\left[\begin{array}{cc}\mathbf{A} & t \\ \mathbf{v}^{T} & v\end{array}\right]$
where \mathbf{A} is a non-singular matrix given by $\mathbf{A}=s \mathbf{R K}+\mathbf{t v}^{T}$, and \mathbf{K} is a upper-triangular matrix normalized as $\operatorname{det} \mathbf{K}=1$. The decomposition is valid if $v \neq 0$, and is unique if $s>0$.
$\mathbf{H}_{\mathbf{P}}$ (2 dof) is an elation that moves line at infinity. $\mathbf{H}_{\mathbf{A}}$ (2 dof) affects the affine properties but not move the line at infinity. \mathbf{H}_{S} (4 dof) is the general similarity transformation that does not affect the affine or projective properties.

The Direct Linear Transformation (DLT) Algorithm

The Direct Linear Transformation Algorithm is used for estimating the camera projection matrix from corresponding 2D and 3D points. The transformation for the 2D to 2D point correspondence $x_{i} \leftrightarrow x_{i}^{\prime}$ is given by the equation $\mathrm{x}_{i}^{\prime}=\mathrm{Hx}_{i}^{\prime}$. The equation is then expressed using the vector cross product $\mathrm{x}_{i}^{\prime} \times \mathbf{H x}_{i}=0$. Let the j-th row of the matrix \mathbf{H} be denoted as $\mathbf{h}^{j^{T}}$ and $\mathbf{x}_{i}^{\prime}=\left(x_{i}^{\prime}, y_{i}^{\prime}, w_{i}^{\prime}\right)^{\mathbf{T}}$, then:
$\mathbf{H} x_{i}=\left(\begin{array}{l}\mathbf{h}^{1 T} \mathbf{x}_{i} \\ \mathbf{h}^{2 T} \mathbf{x}_{i} \\ \mathbf{h}^{3 T} \mathbf{x}_{i}\end{array}\right)$ and $\mathbf{x}_{i}^{\prime} \times \mathbf{H x}_{i}=\left(\begin{array}{l}y_{i}^{\prime} \mathbf{h}^{3 T} \mathbf{x}_{i}-w_{i}^{\prime} \mathbf{h}^{2 T} \mathbf{x}_{i} \\ w_{i}^{\prime} \mathbf{h}^{1 T} \mathbf{x}_{i}-x_{i}^{\prime} \mathbf{h}^{3 T} \mathbf{x}_{i} \\ x_{i}^{\prime} \mathbf{h}^{2 T} \mathbf{x}_{i}-y_{i}^{\prime} \mathbf{h}^{1 \mathbf{T}_{i}} \mathbf{x}_{i}\end{array}\right)$
Since $\mathbf{h}^{\mathbf{3}} x_{i}=x_{i}^{\mathrm{T}} \mathbf{h}^{j}$ for $j=1,2,3, \ldots$, then the equations can be written as: $\left[\begin{array}{ccc}w_{i}^{\prime} \mathbf{x}_{i}^{T} & u_{i} \mathbf{x}^{\mathbf{T}} & y_{i}^{\mathrm{T}} \mathbf{x}_{i}^{T} \\ -y_{i}^{\prime} \mathbf{x}_{i}^{\mathrm{T}} & x_{i}^{\prime} \mathbf{x}_{i}^{\mathrm{T}} & -x_{i}^{\prime} \mathbf{x}_{i}^{\mathrm{T}} \\ 0^{\mathrm{T}}\end{array}\right]\left(\begin{array}{l}\mathbf{h}^{\mathrm{T}} \\ \mathbf{h}^{2} \\ \mathbf{h}^{3}\end{array}\right)=0$
These equations have the form of $A_{i} \mathbf{h}=0$ where A_{i} is a 3×9 matrix and h is a 9 -vector made up of the entries in matrix H .

The Gold Standard Algorithm

Estimation of the projection matrix P from 3D to 2D when 3D points are accurately known:
Objective:
Given $n \geq 6$ world to image point correspondence $\mathbf{X}_{\mathbf{i}} \leftrightarrow \mathbf{x}_{\mathbf{i}}$, determine the Maximum Likelihood estimate of the camera projec tion matrix P, i.e. the P which minimized the geometric error $\sum_{i} d\left(x_{i}, P X_{i}\right)^{2}$
Algorithm:
(i) Compute an initial estimate of P using linear methods such as: (a) Normalization: Using a similarity transformation T to normalize the image points ($\hat{x}=T x_{i}$), and a second similarity transformation to normalize the space points ($\hat{X}=U X_{i}$).
(b) DLT: Form the $2 n \times 12$ matrix A by stacking equations generated by each correspondence $\mathbf{X}_{\mathbf{i}} \leftrightarrow \mathrm{X}_{\mathbf{i}}$ (similar to 2D but with vector P instead of vector h).
(ii) Use the linear estimate as a starting point to minimize the geometric error over $\tilde{P}: \min _{P} \sum d\left(\mathbf{x}_{i}, P \mathbf{X}_{i}\right)^{2}$
(iii) Obtain the camera matrix for the original coordinates $P=T^{-1} \tilde{P} U$

Camera Model and Computation

Camera centre: The camera centre \mathbf{C} is the point for which $\mathbf{P C}=0$. The algebraic expression is $\mathbf{C}=(\mathbf{X}, \mathbf{Y}, \mathbf{Z}, \mathbf{T})$, where

$$
\begin{aligned}
& \mathbf{X}=\operatorname{det}\left(\left[p_{2}, p_{3}, p_{4}\right]\right), \mathbf{Y}=-\operatorname{det}\left(\left[p_{1},, p_{3}, p_{4}\right]\right) \\
& \mathbf{Z}=\operatorname{det}\left(\left[p_{1}, p_{2}, p_{4}\right]\right), \mathbf{T}=-\operatorname{det}\left(\left[p_{1},, p_{2}, p_{3}\right]\right)
\end{aligned}
$$

Camera orientation and internal parameters: The camera matrix can be decomposed into $\mathbf{P}=[\mathbf{M} \mid-\mathbf{M} \tilde{\mathbf{C}}]=\mathbf{K}[\mathbf{R} \mid-\mathbf{R} \tilde{\mathbf{C}}]$
The matrix \mathbf{R} represents the orientation of the camera, and the matrix \mathbf{K} is the calibration matrix. As the diagonal entries in \mathbf{K} are positive, the ambiguity in the decomposition is removed. The matrix representation of K is

$$
\mathbf{K}=\left[\begin{array}{ccc}
\alpha_{x} & s & x_{0} \\
0 & \alpha_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right]
$$

α_{x} and α_{y} are the scale factors in the x - and y -coordinate directions respectively. s is the skew factor, and $\left(x_{0}, y_{0}\right)^{T}$ are the coordinates of the principal point, which is the point of intersection between the camera's image plane and the axis.

Acknowledgements

Reference Material: "Multiple View Geometry in Computer Vision" by Richard Hartley and Andrew Zisserman
Thank you to the UCSB Directed Reading Program and to my mentor Danning Lu for making this project possible.

A quantity such as x represents a measured point
 Estimated quantities are represented with a hat True values are represented by a bar

True values are represented by a bar
Quantities of the transformed version are represented with the tidle symbol.

Quantum Advantages Over Classical Cryptography

Ponokela DeMarzo and Natalya Rodriguez
University of California, Santa Barbara

Classical Cryptography

Cryptosystems are cryptographic protocols that allow for secure communication between two parties across the internet (or any medium where eavesdroppers are a concern). AES is one such protocol and is widely considered to be the most secure classical cryptosystem available today The premise behind AES is as folows. both parties are in possession of a secret private key of - 2 , 12, or hower, is en elic to shar

Public Key Cryptosystems

Public key cryptosystems allow parties to generate and distribute a public key, which others may use to encrypt and send them messages, as well as a private key which they keep secret and use to decrypt messages received. The most popular of these protocols is RSA which utilizes the difficulty of finding prime factors of large numbers.

RSA Key Creation

```
1. Choose two large prime numbers \(p\) and \(q\)
2. Find \(n=p q\) and \(\varphi(n)=(p-1)(q-1)\).
3. Choose a relatively small number \(e\) such that \(e\) and \(\varphi(n)\) are coprime.
4. Find \(d \equiv e^{-1} \bmod \varphi(n)\)
5. The RSA public key is \(P=(e, n)\) and RSA private key is \(S=(d, n)\).
```


Security Considerations

Although RSA is a secure cryptosystem, it is not unbreakable. In cryptography, a break refers to method of determining the secret key faster than using brute force. The protocol relies on the inability of classical computers to factor large products of primes fast enough to be considered a security concern.
However, when quantum computers become large and powerful enough, they will be able to solve problems which are difficult for classical computers. Shor's algorithm, for example, is a quantum factoring algorithm which runs in polylogarithmic time. This is much faster than the fastest known classical algorithms. If a large enough quantum computer were to be built, RSA would no longer be secure

1: Classical vs Quantum factoring algorithm runtimes [2]

References
Guided by
\qquad
Shor's Agorithm - - BM Quantum Computing Composer
D.
DBumentation.
BMM (Intermational Business Machines Corporation)
2021.
(33) Michael Niessen and lsaac Chuang.

Quantum Computation and Quantum Information
Cambridge University Pess, New York, 2010.

Quantum Key Distributio

A classical bit can be prepared in one of two states: 0 or 1. A quantum bit, or qubit for short, can be prepared in any superposition of those two states. If we define the 0 state as the vector $|\mathbf{0}\rangle=[\mathbf{1}, \mathbf{0}]$ and the 1 state as $|\mathbf{1}\rangle=[\mathbf{0}, \mathbf{1}]$, a superposition of these two states is a linear combination of the two vectors. We call $|0\rangle$ and $|1\rangle$ basis vectors, and these particular vectors form the computational basis, also referred to as the \mathbf{Z}-basis.

Another common basis is the \mathbf{X}-basis, with basis vectors $|+\rangle=\left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$ for the 0 state, and
 see what happens when it is measured in either basis,
$|\varphi\rangle=\frac{1}{\sqrt{2}}[1,1]=\nearrow$

$\sum_{i=1}^{\infty}$
x-Basis

In the Z-basis, $|\varphi\rangle$ can be expressed as $\frac{(0+11\rangle}{\sqrt{2}}$, so it collapses to either state with equal probability. However, in the X-basis, $|\varphi\rangle=|+\rangle+0|-\rangle$, so it collapses to the 0 state every time.

Non-Orthogonal Advantages

With classical bits, the two states they can be prepared in are orthogonal to each other, meaning there is no interaction between the 0 state and 1 state. If a classical bit is measured as a 0 , there is no possibility it was prepared as a 1
Two vectors, \vec{U} and \vec{V}, are orthogonal if the following condition is true.

$$
\vec{U} \cdot \vec{V}=0
$$

Non-orthogonality allows for the creation of qubits that can only be read in a specific way. In the example above, $|\varphi\rangle$ was prepared in a state not orthogonal to the Z-basis.

$$
|\varphi\rangle \cdot|0\rangle=\frac{1}{\sqrt{2}}
$$

When $|\varphi\rangle$ gets measured in the Z-basis, it collapses to 0 or 1 with equal probability. This does not tell you if $|\varphi\rangle$ was intended to be a 0 or 1 to begin with, illustrating the main advantage of non-orthogonal states. Measuring a qubit as a 0 (or 1) does not mean it was prepared as a 0 (or 1) unless you know in which basis it was prepared in and measure it accordingly.

The No-Cloning Theorem

The no-cloning theorem states that it is impossible to create a perfect copy of an unknown quantum state without altering the original state in some way.
Suppose a perfect cloning machine exists.
" Apply it on two quantum states $|\psi\rangle \neq|\phi\rangle$ which are non-orthogonal.
The action of the cloning machine is represented by a unitary operation U.
U copies the input state on some auxiliary system initially in a normalized state $|s\rangle$:
$U(|\psi\rangle \otimes|s\rangle)=|\psi\rangle \otimes|\psi\rangle$
$U(|\phi\rangle \otimes|s\rangle)=|\phi\rangle \otimes|\phi\rangle$

- Taking the inner product of the equations, we obtain:
$\langle\psi \mid \phi\rangle=(\langle\psi \mid \phi\rangle)^{2}$
- This is only true when $|\psi\rangle$ and $|\phi\rangle$ are either equivalent or orthogona

Thus, by contradiction, such a cloning machine does not exist.

Quantum key distribution (QKD) takes advantage of the no-cloning theorem and nonorthogonality principle to distribute cryptographic keys securely. By starting with a sequence of 0 s and 1 s , a qubit string can be prepared which encodes the classical states allowing for secure transmission.

The use of non-orthogonal states in QKD protocols ensure even if someone were to measure a qubit, without knowing which basis to use, the measurement will be useless. The no-cloning theorem prevents a malicious party from copying the key without leaving fingerprints.
A common QKD protocol is BB84, which, in contrast to classical protocols, is not simply difficult o crack, but impossible.

BB84 Protocol

1. Alice (the sender) chooses $4 n$ random data bits.

Alice randomly encodes each bit in the Z or X basis, keeping track of which one she uses
3. Alice sends the resulting product of qubits to Bob (the receiver)
4. Bob receives the $4 n$ qubits, announces this fact, and measures each qubit in the X or Z basis at random.
Alice and Bob compare the bases they used for each qubit, and discard
any bits for which their bases don't match With high probail thy any bits for which their bases don't match. With high probability, ther
are at least $2 n$ bits left, which they keep. If there are less than $2 n$ bits, they abort the protocol.
6. Alice selects n of these bits to check for interference and tells Bob which bits she selected.
Alice and Bob compare the values of the check bits. If more than an acceptable number disagree, they abort the protocol. Otherwise, the n
non-check bits are kept and are the private key.

Even if there is an eavesdropper, Eve, she will not be able to successfully intercept the private key. If she attempts to measure an intercepted qubit, since she won't know which basis it was prepared in, the non-orthogonality principle ensures that Eve will not be able to determine if it is a 0 or 1 .
Additionally, the no-cloning theorem prevents Eve from cloning an intercepted qubit and waiting until Alice announces the basis she used to prepare it. If she attempts to, she will change the state the qubit is in when Bob receives it and Alice and Bob might not have matching bits even if their bases match. In step 7, Alice and Bob check for this type of interference, and if they find enough, they will abandon this attempt.

BB84 Protocol Example

Alice				Bob		
Key Bit	Basis	Qubit		Qubit	Basis	Key Bit
\varnothing	X	+			+	Z
eor						
1	Z	$1\rangle$			$1\rangle$	Z

Key: 10
figure 2: Here, Alice and Bob will discard the first bit since they used different bases. Alice has chosen the third bit as the interference test bit, which happens to be the a qubit Eve tried to clone. Alice and Bob will compare their third bits, possibly realizing they don't match If this exceeds their tolerance for interference, they will bandon the protocol. Otherwise the key will be 10

Quivers

Sogol Cyrusian and Amy Somers

Quivers

- A quiver $Q=\left(Q_{0}, Q_{1}, s, t\right)$ consists of the data associated with a directed graph where loops, as well as multiple edges between vertices, are allowed. Q_{0} is the set of vertices of Q, and Q_{1} is the set of arrows, $s, t: Q_{1} \rightarrow Q_{0}$ are maps associating to each arrow $\alpha \in Q_{1}$ its source, $s(\alpha) \in Q_{0}$, and its target, $t(\alpha) \in Q_{0}$.
- A path with source a and target b is a sequence

$$
\left(a\left|\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell}\right| b\right)
$$

where $\alpha_{i} \in Q_{1}$ for all $1 \leq i \leq \ell$ and ℓ is the length of the path. The path $\left(a\left|\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell}\right| b\right)$ can be visualized as follows:

$$
a=a_{0} \xrightarrow{\alpha_{1}} a_{1} \xrightarrow{\alpha_{2}} a_{2} \longrightarrow \cdots \xrightarrow{\alpha_{\ell}} a_{\ell}=b
$$

Each vertex $a \in Q_{0}$ has a trivial path $\varepsilon_{a}=(a \| a)$ of length $\ell=0$ associated with it.

- The path algebra $K Q$ of a quiver Q is a vector space over the field K with a basis consisting of the set of all paths $\left(a\left|\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell}\right| b\right)$ in Q where the product of two basis vectors
$\gamma=\left(a\left|\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell}\right| b\right), \varphi=\left(c\left|\beta_{1}, \beta_{2}, \ldots, \beta_{k}\right| d\right)$ is
$\varphi \gamma=\left(a\left|\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell}, \beta_{1}, \beta_{2}, \ldots, \beta_{k}\right| d\right)$ if $t\left(\alpha_{\ell}\right)=s\left(\beta_{1}\right)$ and 0 otherwise.
We give the following examples of quivers and path algebras
(a) Let Q be the quiver

Then the basis of the path algebra $K Q$ is
$\left\{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}, \varepsilon_{5}, \alpha, \delta, \phi, \beta, \gamma, \delta \alpha, \phi \alpha, \gamma \beta\right\}$.
b) Let Q be the quiver

Then the basis of the path algebra $K Q$ is $\left\{\varepsilon_{1}, \alpha, \alpha^{2}, \alpha^{3}, \ldots,\right\}$ Note: if we consider the mapping defined by $\varepsilon_{1} \mapsto 1, \alpha \mapsto t$, we get that $K Q \cong K[t]$!

Quiver Representations

A representation M of a quiver Q is defined by the following data:
(i) To each vertex $a \in Q_{0}$ is associated a K-vector space V_{a}
(ii) To each arrow $\alpha \in Q_{1}$ is associated a linear transformation $V_{s(\alpha)} \rightarrow V_{t(\alpha)}$ between the vector spaces associated to the source and target of α.

Examples of quiver representations:

- One representation of any quiver Q is the zero representation given by associating each vertex to the zero vector space and each arrow to the zero map.
- The Kronecker Quiver is $10 \longleftarrow$ ○2

An example of a representation of this quiver is:

$$
K^{2} \underset{(0,1)^{T}}{{(1,0)^{T}}^{\leftrightarrows}} K
$$

Another representation is:

$$
K^{2} \underset{B}{\leftrightarrows} K^{2}
$$

Where $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), B=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$
If $M=\left(V_{a}, f_{\alpha}\right), \tilde{M}=\left(\tilde{V}_{a}, \tilde{f}_{\alpha}\right)$ are representations of Q, then $\phi: M \rightarrow \tilde{M}$ is a morphism if it consists of the data of a collection of linear maps $\left\{\phi_{a}: V_{a} \rightarrow \tilde{V}_{a}\right\}$ such that the following diagram commutes:

$$
\begin{array}{cc}
V_{a} \xrightarrow{f_{\alpha}} V_{b} \\
\phi_{a} \downarrow & \\
\widetilde{V}_{a} \xrightarrow{\widetilde{f}_{\alpha}} & \widetilde{V}_{b} \\
\widetilde{V}_{b}
\end{array}
$$

For example there is a morphism ϕ between the two representations of the Kronecker Quiver given above given by $\phi_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \phi_{2}=\binom{1}{0}$

Modules Correspond to Representations

- For any representation of a quiver Q we have a collection of vector spaces $\left\{V_{a}\right\}$ and a collection of maps $\left\{V_{a} \rightarrow V_{b}\right\}$. Consider the vector space

$$
V=\bigoplus_{a \in Q_{0}} V_{o}
$$

with the action of a path $a_{0} \rightarrow \cdots \rightarrow a_{\ell}$ given by the composition of the corresponding linear maps

$$
V \rightarrow V_{a_{0}} \rightarrow \cdots \rightarrow V_{a_{\ell}} \hookrightarrow V
$$

Then V is a module over $K Q$, or $K Q$-module, corresponding to the given representation.

- If V is any $K Q$-module, then we may define a representation of Q by,
$V_{a}=\varepsilon_{a} V$ and for all basis elements α of $K Q$ corresponding to the arrow $a \rightarrow b, \alpha$ is a map $V_{a} \rightarrow V_{b}$ because $\alpha \varepsilon_{a}=\alpha$ and $\varepsilon_{b} \alpha=\alpha$.

Arrow Ideals \& Quotients of the Path Algebra

Let Q be a quiver. The arrow ideal R_{Q} of the path path algebra $K Q$ is the subspace of $K Q$ generated by paths of length $\ell \geq 1$. And so, R_{Q} is closed under multiplication by any elements in $K Q$.
Notice that there is a direct sum decomposition

$$
R_{Q}=K Q_{1} \oplus K Q_{2} \oplus \cdots \oplus K Q_{\ell} \oplus
$$

where Q_{ℓ} is the set of all paths in Q of length ℓ.
For all $\ell \geq 1$,

$$
R_{Q}^{\ell}=\bigoplus_{m \geq \ell} K Q_{m}
$$

s the ideal where all paths are of length greater than or equal to ℓ, as it is a subspace of $K Q$ and is closed under multiplication from elements of $K Q$.
Note: it follows that $R_{Q}^{\ell} / R_{Q}^{\ell+1}$ is a vector space over K with basis Q_{ℓ}, and so is isomorphic to $K Q_{\ell}$
$K Q / I$ is said to be a bound quiver algebra if I is an ideal such that $R_{Q}^{m} \subseteq$ $I \subseteq R_{Q}^{2}$.

Proposition

Let Q be a finite quiver, and $K Q / I$ be a bound quiver algebra. Then, $K Q / I$ is finite dimensional.

Proof:
Since $K Q / I$ is a bound quiver algebra, there exists $m \geq 2$ such that $R^{m} \subseteq I$, where R is the arrow ideal R_{Q} of $K Q$. But then there exists a natural surjective homomorphism $K Q / R^{m} \rightarrow K Q / I$. And so, it suffices to show that $K Q / R^{m}$ is finite-dimensional. Now the equivalence classes of paths of length less than m form a basis of $K Q / R^{m}$ as a K vector space. Since there are finitely many such paths, we are done.

References \& Acknowledgments

Thanks to our DRP mentor Mychelle Parker and the DRP Organizing Committee.

具] Ibrahim Assem and Daniel Simson and Andrzej Skowroński. Elements of the Representation Theory of Associative Algebras Volume I: Techniques of Representation Theory. Cambridge University Press, 2006.
[©] D. J. Benson. Representations and Cohomology I. Cambridge University Press, 1995.
[. Karin Erdmann and Mark J. Wildon. Introduction to Lie Algebras Springer Science \& Business Media, 2006.

Abstract

An algebra A is a vector space over a field together with a bilinear map from $A \times A \rightarrow A$. A Lie algebra is a non-associative algebra and can be visualized as the tangent plane to a Lie group. Two key properties of a Lie algebra are as the tangent plane to a Lie group. Two key properties of a Lie algebra are
solvability and semisimplicity. Understanding when a Lie algebra is solvable or solvability and semisimplicity. Understanding when a Lie algebra is solvable or
semisimple is helpful in determining its structure and characteristics. It also helps semisimple is helpful in determining its structure and characteristics. It also heips
classify finite-dimensional Lie algebras. This poster lays out the different ways in which solvability and semisimplicity can be classified.

Preliminary Information

DEFINITION 1. A Lie algebra, L, over a field F is an F-vector space together with a bilinear map called the Lie bracket:

$$
L \times L \rightarrow L
$$

$$
(x, y) \longmapsto[x, y]
$$

such that: \quad i) $\forall x \in L,[x, x]=0$
ii) $\forall x, y, z \in L,[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0$

We can visualize our Lie algebra as a tangent plane of a Lie group:

[2]

DEFINITION 2. Let L_{1} and L_{2} be Lie algebras over a field F. Then, a map ϕ $L_{1} \rightarrow L_{2}$ is a Lie algebra homomorphism if and only if ϕ is a linear map where

$$
\phi([x, y])=[\phi(x), \phi(y)] \quad \forall x, y \in L_{1}
$$

Example 1. Let V be a finite dimensional vector space over F. We call the vector space $\mathrm{gl}(V)$ the set of all all linear maps from $V \rightarrow V$, and together with the Lie bracket operation

$$
[x, y]=x \circ y-y \circ x \quad \text { for } x, y \in \operatorname{gl}(V) \text {, makes } g \mathbf{g}(V) \text { into a Lie algebra. }
$$

A particularly important Lie algebra homomorphism is the adjoint homomorphism. DEFINITION 3. For a Lie algebra, L, define the adjoint homomorphism as follows:

$$
\begin{aligned}
\text { ad: } L & \rightarrow \mathrm{gl}(V) \quad \text { where for } x, y \in L \\
(\operatorname{ad} x)(y) & :=[x, y]
\end{aligned}
$$

Analogs to Groups and Rings

An interesting tangent is that Lie algebras are structurally similar to two wellknown algebraic objects: groups and rings.
DEFINITION 4. An ideal of a Lie algebra L is a subspace, $I \subseteq L$, such that for all $x \in L$, and for all $y \in I,[x, y] \in I$.
DEFINITION 5. A Lie algebra is abelian if for all $x, y \in L,[x, y]=0$
DEFINITION 6. A non-abelian Lie algebra L is simple if it has no ideals other than 0 and itself.

DEFINITION 7. A Lie algebra is said to be solvable if for some $m \in \mathbb{N}, m \geq 1$, we have $L^{(m)}=0$ where $L^{(m)}=\left[L^{(m-1)}, L^{(m-1)}\right]$ for $m \geq 2$ and $L^{(1)}=L^{\prime}=[L, L]$.

Solvable Lie Algebras

Another condition which gives solvability of a Lie algebra, in terms of ideals, is: If L is a Lie algebra with ideals I_{j} such that for some $m \in \mathbb{Z} \geq 0$

$$
L=I_{0} \supseteq I_{1} \supseteq \cdots \supseteq I_{m-1} \supseteq I_{m}=0
$$

where I_{k-1} / I_{k} is abelian for all $1 \leq k \leq m$, then L is solvable. An interesting characteristic of solvable ideals is that there is a unique solvable ideal of L which contains every other solvable ideal of L.

DEFINITION 8. The largest such solvable ideal is called the radical of L, rad L.
A third way to test for solvability, which becomes more useful when working with complex problems, is defined below:
DEFINITION 9. The Killing form on a complex Lie algebra L is a symmetric, bilinear form $\kappa: L \times L \rightarrow \mathbb{C}$ defined as:

$$
\kappa(x, y)=\operatorname{tr}(\mathrm{ad} x \circ \mathrm{ad} y) \text {, for } x, y \in L .
$$

THEOREM 1 (Cartan's First Criteria). The complex Lie algebra L is solvable if and only if $\kappa(x, y)=0$ for all $x \in L$ and $y \in L^{\prime}$.

Example 2. Any 2-dimensional non-abelian Lie algebra, L, has basis $\{x, y\}$ where $[x, y]=$ $[x, x]=0$, (ad $x)(y)=[x y]=x$, complex non-abelian Lie algebra. Cond $($ ad $y)(y)=[y, y]=0$ Notice that this also gives us a basis of L^{\prime}, namely $\{x\}$. With respect to our basis for L, ad x and ad y are:

$$
\text { ad } x=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \text { ad } y=\left(\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right)
$$

Since $\{x\}$ is a basis for $L^{\prime},\{x\}$ spans L^{\prime}, that is, all elements of L^{\prime} are scalar multiplies of x By Cartan's First Criteria, to prove solvability, it is sufficient to prove that $\kappa(y, x)=0=\kappa(x, x)$,

$$
\begin{gathered}
\kappa(y, x)=\operatorname{tr}\left(\left(\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right) \circ\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right)=\operatorname{tr}\left(\left(\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right)\right)=0 \\
\kappa(x, x)=\operatorname{tr}\left(\left(\begin{array}{ll}
(1 & 1 \\
0 & 0
\end{array}\right) \circ\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right)=\operatorname{tr}\left(\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\right)=0
\end{gathered}
$$

Thus, any two dimensional non-abelian complex Lie algebra is solvable

Semisimple Lie Algebras

Besides its usefulness in terms of solvability, the ideals of a Lie algebra help determine whether a Lie algebra is semisimple.
DEFINITION 10. Let L be a nonzero Lie algebra. L is semisimple if it has no nonzero solvable ideals. Alternatively, L is semisimple if rad $L=0$.

DEFINITION 11. For $S \subseteq V$ and a bilinear, symmetric form $\beta: V \times V \rightarrow V$, we define:

$$
S^{\perp}=\{x \in V \mid \beta(x, y)=0, \forall y \in V,\}
$$

If $V^{\perp}=0, \beta$ is said to be non-degenerate.
DEFINITION 12. The Lie algebra L is nilpotent if for some $m \geq 1$, we have $L^{m}=0$, where $L^{m}=\left[L, L^{m-1}\right]$.
THEOREM 2 (Cartan's Second Criteria). The complex Lie algebra, L, is semisimple if and only if the Killing form κ of L is non-degenerate.
Proof Sketch:
$\Rightarrow: L^{\perp} \subseteq L$ is an ideal of L. By definition of an ideal, $\left(L^{\perp}\right)^{\prime} \subseteq L^{\perp}$. By Cartan's First Criterion L^{\perp} is solvable since $\kappa(x, y)=0$ for all $x \in L^{\perp}$ and for all $y \in\left(L^{\perp}\right)^{\prime}$. Since L is semisimple, $L^{\perp}=0$ and thus κ is non-degenerate.

Semisimple Lie Algebras: Continued

: Suppose L is not semisimple, then rad $L \neq 0 . L$ has a nonzero abelian ideal 4. For nonzero $a \in A$ and $x \in L, \operatorname{im}(\operatorname{ad} x \circ \operatorname{ad} a) \subseteq A$, thus $(\operatorname{ad} a \circ \operatorname{ad} x)^{2}=0$ wich means ad a ad x is a nilpotent map. Nilpotent maps ad $x(a, x)=0$. This holds true for all $x \in L$ and so $a \in L$, which implies κ is degenerate. Thus, L is semisimple

Further Ideas

Another perspective to Lie algebras is in the form of representations. Informally, a representation is a function which compresses the information of a Lie algebra L into a matrix representation.
DEFINITION 13. A representation of L is a Lie algebra homomorphism

$$
\phi: L \rightarrow g l(V)
$$

where V is a finite-dimensional vector space over F
We note that the image of ϕ is a Lie subalgebra of $\operatorname{gl}(V)$ and $\operatorname{ker}(\phi) \subseteq L$ is an ideal. This leads to the question: Can we discover conditions for solvability based solely off a representation, ϕ, for the Lie algebra.

Lie groups are groups that are also smooth manifolds. To begin under standing the Lie algebra of a Lie group we can start with studying the tangent spaces of the manifold and a defined Lie bracket. The unit circle is an example of a smooth manifold.

The relationship between Lie groups and Lie algebras is something worth ex ploring and allows for overlapping subject matter.

Acknowledgements

We thank Melody Molander for all her hard work, kindness, patience, and exper guidance while working on this project. We would also like to thank the Directed Reading Program and all its administrative personnel for the opportunity to participate in this program.

References

[1] Karin Erdmann and Mark J. Wildon. Introduction to Lie Algebras. London, UK: Spring
[2] HashPi. "Lie Groups: Intuition and Geometrical Interpretation". In: HashPi (2023).
[3] Joan Solà, Jeremie Deray, and Dinesh Atchuthan. A Micro Lie Theory for State Estimation

Tangent Vectors as Derivations

Christian Reynaldo Mentor: Daniel Halmrast

University of California, Santa Barbara

Introduction

In elementary calculus, the tangent space is typically introduced as the vector space orthogonal to the gradient of a function at a point. Intuitively, one can visualize any tangent vector as an arrow emanating from the given point, typically satisfying an equation of tangency. This approach works well when considering surfaces given by a single smooth function because we can imagine how a surface might sit in \mathbb{R}^{3}. However, on the more abstract subject of mani folds we aim for a more intrinsic definition of the tangent space.

Definitions

Germ: A germ at $p \in \mathbb{R}^{n}$ is an equivalence class of C^{∞} realvalued functions wherein two functions are equivalent if they agree on some neighborhood of p. In this way any directional derivative can be thought to operate on the set of germs at p. This set is an algebra over \mathbb{R} denoted by C_{p}^{∞}.

Derivation: A derivation is a linear map $D: C_{p}^{\infty} \rightarrow \mathbb{R}$ satisfying the Leibniz rule $D(f g)=(D f) g(p)+f(p) D g$. The set of all derivations of this kind is the real vector space $\mathcal{D}_{p} \mathbb{R}^{n}$.

Coordinate Chart: A topological space M is locally Euclidean of dimension n if every point $p \in M$ has a neighborhood U such that there is a homeomorphism ϕ from U into an open subset of \mathbb{R}^{n}. The pair (U, ϕ) is called a coordinate chart.
Smooth Manifold: A topological space M is said to be a smooth manifold if it is Hausdorff, second countable, and has a C^{∞} atlas. An atlas is a collection of coordinate charts that cover M, and we call it
 C^{∞} if the transition functions are smooth. Some classical ex amples include the n-sphere, the torus, and perhaps the mos elementary is \mathbb{R}^{n} itself
Smooth Map: A map of manifolds $F: M \rightarrow N$ is said to be smooth at $p \in M$ if, for coordinate charts (U, ϕ) containing p and (V, ψ) containing $F(p)$, we have $\psi \circ F \circ \phi^{-1}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ being smooth at $\phi(p) \in \mathbb{R}^{m}$.

Tangent Vectors as Derivations in \mathbb{R}^{n}

In an intuitive sense tangent vectors might best be thought of as directions of travel For this reason a tangent vector to $p \in \mathbb{R}^{n}$ is any n-dimensional vector $v=\left\langle v_{1}, \ldots, v_{n}\right\rangle$. The set of tangent vectors forms a vector space $T_{p} \mathbb{R}^{n}$. For any tangent vector v at p the directional derivative $D_{v}: C_{p}^{\infty} \rightarrow \mathbb{R}$ is linear and satisfies the Leibniz rule. Hence, it is in fact a derivation.

Theorem
The map $\varphi: T_{p} \mathbb{R}^{n} \rightarrow \mathcal{D}_{p} \mathbb{R}^{n}$ given by $v \mapsto D_{v}$ is an isomorphism of vector spaces.

Injectivity: Suppose $D_{v}=0$ for some $v \in T_{p} \mathbb{R}^{n}$. If we apply D_{v} to the coordinate function r^{j} then we have

$$
0=D_{v}\left(r^{j}\right)=\left.\sum_{i} v^{i} \frac{\partial}{\partial r^{i}}\right|_{p} r^{j}=v^{j}
$$

Since this is true for $1 \leq j \leq n$ we have $v=0$, and $\operatorname{so} \varphi$ is injective.
Surjectivity: Let D be an arbitrary derivation at p, and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the representation of some germ in C_{p}^{∞}. By Taylor's theorem with remainder there exists smooth functions $g_{i}(x)$ in a neighborhood of p such that

$$
f(x)=f(p)+\sum\left(r^{i}(x)-p^{i}\right) g_{i}(x), \quad g_{i}(p)=\frac{\partial f}{\partial r^{i}}(p)
$$

Now, applying D to both sides we get by the Leibniz rule,

$$
\begin{gathered}
D f=\sum\left(D r^{i} g_{i}(p)+\left(p^{i}-p^{i}\right) D g_{i}\right)=\sum\left(D r^{i}\right) \frac{\partial f}{\partial r^{i}}(p) \\
D=\left.\sum\left(D r^{i}\right) \frac{\partial}{\partial r^{i}}\right|_{p}
\end{gathered}
$$

Thus $D=D_{v}$ where $v=\left\langle D r^{1}, \ldots, D r^{n}\right\rangle$. This shows that every derivation is the directional derivative with respect to some vector, and so φ is a bijection.

With this in mind, we will redefine a tangent vector at p in \mathbb{R}^{n} to be a derivation at p and the tangent space $T_{p} \mathbb{R}^{n}$ is the vector space of derivations with basis $\left\{\partial /\left.\partial r^{i}\right|_{p}\right\}_{i=1}^{n}$

Generalizing to Manifolds

It is rather straightforward now to extend our idea of a tangent space to manifolds. We simply tweak our derivation definition to be a map $D: C_{p}^{\infty}(M) \rightarrow \mathbb{R}$, where $C_{p}^{\infty}(M)$ denotes the set of germs at any $p \in M$. These derivations form the tangent space $T_{p} M$, and the above becomes the particular case $M=\mathbb{R}^{n}$
Our goal has thus been reached, as the tangent space has been defined in a way that does not depend on any coordinate chart. However, each coordinate chart (U, ϕ) containing p can yield a basis for $T_{p} M$ as follows. We define the derivation $\partial / \partial x^{i}{ }_{p}$ such that for any $f \in C_{p}^{\infty}(M)$ we have

$$
\left.\frac{\partial}{\partial x^{i}}\right|_{p} f=\left.\frac{\partial}{\partial r^{i}}\right|_{\phi(p)}\left(f \circ \phi^{-1}\right)
$$

The collection of these derivations are linearly independent, and hence form a basis.
References
[1] Loring W. Tu. Manifolds. An Introduction to Manifolds. Springer, 2nd edition, 2011

The Pushforward

Given a smooth map $F: M \rightarrow N$, the pushforward of F at $p \in M$ is a linear map $F_{*}: T_{p} M \rightarrow T_{F(p)} N$ such that for any $v \in T_{p} M$ and $f \in C_{F(p)}^{\infty}(N)$ we have $F_{*}(v) f=v(f \circ F)$. Any coordinate chart inverse ϕ^{-1} provides a smooth map of manifolds between an open subset of \mathbb{R}^{n} and a manifold M. For a point $p \in M$ we can then consider the pushforward $\left(\phi^{-1}\right)_{*}: T_{\phi(p)} \mathbb{R}^{n} \rightarrow T_{p} M$ If we attempt to apply this
map to our basis vectors $\partial /\left.\partial r^{i}\right|_{p}$ we get the following result.

$$
\left(\phi^{-1}\right)_{*}\left(\left.\frac{\partial}{\partial r^{i}}\right|_{\phi(p)}\right) f=\left.\frac{\partial}{\partial r^{i}}\right|_{\phi(p)}\left(f \circ \phi^{-1}\right)=\left.\frac{\partial}{\partial x^{i}}\right|_{p} f
$$

Properties
Matrix Representation: Being linear, the pushforward can be represented by a matrix. This matrix is the Jacobian $\left[\partial F^{i} / \partial x^{j}(p)\right]$.
The Chain Rule: One final property of the pushforward that will be used in the next section is its chain rule. Some elementary linear algebra gives us the following powerful re sult: If $F: M \rightarrow N$ and $G: N \rightarrow P$ are both smooth maps of manifolds, then we have $(G \circ F)_{*}=G_{*} \circ F_{*}$.

Applications to Calculus

The usual chain rule taught in calculus can be proven as a particular case for when we consider smooth maps from \mathbb{R}^{m} to \mathbb{R}^{n}.
As an example, let $F: \mathbb{R} \rightarrow \mathbb{R}^{3}$ and $G: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be smooth functions and let w be such that

$$
w=(G \circ F)(t)=G\left(F^{1}(t), F^{2}(t), F^{3}(t)\right)
$$

The pushforwards F_{*}, G_{*}, and $(G \circ F)_{*}$ are given by the following matrices

$$
F_{*}=\left[\begin{array}{l}
d F^{1} / d t \\
d F^{2} / d t \\
d F^{3} / d t
\end{array}\right] \quad G_{*}=\left[\frac{\partial w}{\partial F^{1}} \frac{\partial w}{\partial F^{2}} \frac{\partial w}{\partial F^{3}}\right] \quad(G \circ F)_{*}=\frac{d w}{d t}
$$

The chain rule for the pushforward gives us $(G \circ F)_{*}=G_{*} \circ F_{*}$ or equivalently through multiplication of the matrices above,

$$
\frac{d w}{d t}=\frac{\partial w}{\partial F^{1}} \frac{d F^{1}}{d t}+\frac{\partial w}{\partial F^{2}} \frac{d F^{2}}{d t}+\frac{\partial w}{\partial F^{3}} \frac{d F^{3}}{d t}
$$

The Earth is (Locally) Flat

An Introduction to Riemannian Geometry
Jeremy Lauro and Fabio Ricci

What is a Manifold?

The backbone of differential geometry is the idea of a manifold. Intuitively, a manifold can be thought of as a arbitrary 3D shape. However, in reality, manifolds can be any dimension.

More rigorously, A differential manifold of dimension n is a set \mathbf{M} and collection of smooth mappings $\mathbf{x}_{\alpha}: U_{\alpha} \subset \mathbf{R}^{n} \rightarrow M$ of open set such that:

1. $\mathrm{U}_{\alpha} \mathrm{x}_{\alpha}\left(U_{\alpha}\right)=\mathrm{M}$
. if $\mathbf{x}_{\alpha}\left(U_{\alpha}\right) \cap \mathbf{x}_{\beta}\left(U_{\beta}\right)=W \neq \emptyset$, then $\mathbf{x}^{-1}(W)$ are open in \mathbb{R}^{n} and $\mathbf{x}_{\beta}^{-1} \otimes \mathbf{x}_{\alpha}^{-1}$ and differentiable.

Tangent Vectors \& Tangent Spaces

Now, we would like to extend the idea of tangent vectorc in the manifold setting. Intuitively a tangent vector is an infinitesimal displacement at a specific point on a manifold.
We think of a tangent vector at a point $\mathrm{p} \in \mathrm{M}$ as the directional derivative of some curve $\alpha:(-\epsilon, \epsilon) \rightarrow \mathbf{M}$ with $\alpha(0)=p$. The set of all tangent vectors to \mathbf{M} at \mathbf{p} is know as the tangent space to \mathbf{M} at $\mathrm{p}\left(T_{p} \mathbf{M}\right)$

It can be shown that the set $\left(T_{p} \mathbf{M}\right)$ with the usual operations of functions, forms a vector space of equal dimension to the manifold. This vector space is isomorphic to \mathbb{R}^{n}. Finally, the choice of parameterization $\mathbf{x}: U \rightarrow \mathbf{M}$ determines an associated basis
$\left\{\left(\frac{\partial}{\partial x^{1}}\right)_{0}, \ldots,\left(\frac{\partial}{\partial x^{n}}\right)_{0}\right\}$

Riemannian Manifolds

After constructing a differential manifold, one can introduce riemannian structure by defining a metric. A Riemannian metric on \mathbf{M} is a correspondence that associates each $p \in \mathbf{M}$ to an inner product , \rangle_{p} (i.e., a symmetric, bilinear, positive-define 2 -from) on $\boldsymbol{T}_{\boldsymbol{p}} \boldsymbol{M}$ that varies smoothly in any coordinate neighborhood.

Example: The Euclidean Metric

If our manifold $\mathbf{M}=\mathbb{R}^{n}$, the the elements of the tangent space of \mathbf{M} are given by $\left\{\frac{\partial}{\partial x^{\prime}}\right\} \equiv\left\{\mathbf{e}_{i}\right\}$ and our metric is

The geometry induced by this metric on \mathbb{R}^{n} is called euclidean geometry.

Connections \& Covariant Derivative

To generalize the notion of "directional derivatives" to vector fields, and by extension, tensor fields, we define a new notation for directional derivatives (∇) and consider the properties we wish the operator to have.
$\nabla_{X}(f)=X f$.
$\nabla_{X}(T+S)=\nabla_{X}(T)+\nabla_{X}(S)$.
$\nabla_{X}(T \otimes S)=\nabla_{X} T \otimes S+T \otimes \nabla_{X} S$.
$\nabla_{f X+Z} T=f \nabla_{X} T+\nabla_{Z} T$.
With these definitions, it turns out the connection of tensor fields depend on connection coeff cients $\Gamma_{i j}^{k}$ in the following way: Let $X, Y \in \mathcal{X}(M)$.

$$
\nabla_{X} Y=\left(X^{i} \frac{\partial Y^{k}}{\partial x^{i}}+X^{i} Y^{j} \Gamma_{i j}^{k}\right) \frac{\partial}{\partial x^{k}}
$$

$$
\Gamma_{i j}^{k}=\nabla_{\frac{\partial}{\partial x^{\prime}}} \frac{\partial}{\partial x^{j}} .
$$

As it turns out, a Riemannian metric \mathbf{g} uniquely specifies the connection coefficients such that

$$
\Gamma_{i j}^{k}=\frac{1}{2} g^{k l}\left(\partial_{i} g_{j i}+\partial_{j} g_{i l}-\partial_{l} g_{i j}\right)
$$

In this case, we refer to the connection coefficients as the Christoffel symbols and the connection as a covarient derivative.

Geodesics \& Distance

and culate the length of be restricted to a closed interval $[a, b] \subset I$. The length of this curve from $t=a$ to $t=b$ is de fined as

$$
\ell_{b}^{a}(c)=\int_{a}^{b}\left\langle\frac{d c}{d t}, \frac{d c}{d t}\right\rangle^{1 / 2} d t .
$$

With this, we define a geodesic to be a curve between two points $a, b \in \mathrm{M}$ that minimizes $\ell_{\text {. }}^{a}$. However, this definition of a geodesic is im
practical to use. Instead, we favor an alternative definition: a geodesic is a curve of zero acceler ation with respect the covariant derivative
$0=\nabla_{v_{\gamma}} v_{\gamma} \Longleftrightarrow 0=\dot{\gamma}^{m}+\dot{\gamma}^{n} \dot{\gamma}^{m} \Gamma_{m n}^{q}$
As it turns out, these two definitions are equivalent.

The Many Types of Curvature

The Riemannian Curvature Tenso

The Riemannian curvature tensor R is a multi-linear mapping that associates every $X, Y \in \mathcal{X}(M)$ a mapping $R(X, Y): \mathcal{X}(M) \rightarrow \mathcal{X}(M)$ given by

$$
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z+\nabla_{[X, Y]} Z
$$

Algebraically, the curvature tensor measures the failure of the covariant derivative to commute.

Example: The Curvature of Flat Spac

In flat space, two vector fields will always commute as the basis vector fields commute. As
such, for all $X, Y, Z \in \mathcal{X}(M)$
$R(X, Y) Z=0$

Sectional Curvature
Given any two $X, Y \in T_{p} \mathbf{M}$ that form a subspace $\sigma \subset T_{p} \mathbf{M}$, the section curvature is defined as

$$
K(X, Y)=\frac{\langle R(X, Y) X, Y\rangle}{\sqrt{|X|^{2}|Y|^{2}-\langle X, Y\rangle}}
$$

Ricci Curvature
Let $\left\{z_{1}, \ldots, z_{j}, \ldots, z_{n}\right\}$ be an orthonormal basis for $T_{p} \mathbf{M}$, then the Ricci curvature is

$$
\operatorname{Ric}_{p}\left(z_{j}\right)=\frac{1}{n-1} \sum_{i \neq j}\left\langle R\left(z_{j}, z_{i}\right) z_{j}, z_{i}\right\rangle
$$

Scalar Curvature

Taking the average of the Ricci curvature for each Z_{j} in the orthonormal basis of $T_{p} \mathbf{M}$ gives the scalar curvature

$$
S c(p)=\frac{1}{n} \sum_{j} R i c_{p}\left(z_{j}\right)=R i c_{p}\left(z_{j}\right)=\frac{1}{n(n-1)} \sum_{j} \sum_{i}\left\langle R\left(z_{j}, z_{i}\right) z_{j}, z_{i}\right\rangle
$$

The Bonnet-Meyers Theorem
The Bonnet-Meyers theorem is a classic theorem in Riemanian seometry conecting the Ricci curvature of manifold to its diameter. Suppose \mathbf{M} is a complete Riemannian manifold whose Ricci curvature satisfies $\quad R i c_{p}(v) \geq \frac{1}{2}>0$
for any $p \in \mathbf{M}$ and all $v \in T_{p} \mathbf{M}$. Then \mathbf{M} is compact and $\operatorname{diam}(\mathbf{M}) \leq \pi r$, where

$$
\operatorname{diam}(\mathbf{M})=\sup _{a, b}\left(\ell a^{b}(c)\right)
$$

and the curve $C(t)$ is a geodesic nd the curve $C(t)$ is a geodesic with $C(0)=a$ and $C(1)$

References \& Acknowledgements

- Do Carmo, Manfredo Perdigaõ. Riemannian Geometry. Birkhäuser, 1993.
- Lee, John M. Introduction to Riemannian Manifolds. 2nd ed., Springer, 2018 .
- Lee, John M. Introduction to Smooth Manifolds. Springer, 2013.
- Lauro Jeremy, Ricci Fabio, our own Overaleaf notes.

Special thanks to the Directed Reading Program at UCSB and for my mentor Fabio Ricci for his dedication and patience (beyond all reasonable limits).

Introduction

The Gauss－Bonnet Theorem says that for a compact，orientable surface S ，its total curvature depends only on the surface＇s Euler characteristic，a topological concept which relates a surface＇s faces，vertices，and edges． The theorem itself takes form as

$$
\iint_{S} K d \sigma=2 \pi \chi(S)
$$

In all，Gauss－Bonnet presents the surprising and extremely beautiful connection between the worlds of differential geometry and topology．

Curvature

Normal and Principal Curvatures

The shape operator of a surface at a point p with tangent vector v

$$
S_{p}(v)=-D N_{p}(v)
$$

measures how fast the normal vectors on a surface change．The second fundamental form is defined as

$$
I I_{p}(v)=\left\langle S_{p}(v), v\right\rangle .
$$

If C is a curve on a surface S ，the normal curvature relates the normal vector n of C to the normal vector N of S

$$
k_{n}=k \cos (\theta)
$$

such that $\cos \theta=\langle n, N\rangle$ ．The maximum and minimum normal curvatures are the principal curvatures with principal directions e_{1}, e_{2} ．

Gaussian Curvature

The product of the principal curvatures is the Gaussian curvature：

$$
K=k_{1} k_{2}
$$

and is also the determinant of the shape operator with respect to the orthonormal basis．The sign of the Gaussian curvature can be used to chracterize the surface．At an elliptic point，shown on the left below，the Gaussian curvature is positive．At a hyperbolic point，on the right，the Gaussian curvature is negative．

Euler Characteristic

A regular region R is compact with boundary made up of a finite union of simple，closed，piecewise，regular curves that don＇t cross．Every regular region of a regular surface admits a triangulation，which is a finite family of triangles whose union covers R with empty intersection，i．e．is simply a way of splitting up a surface：

The Euler Characteristic of a surface，given by the formula

$$
F-E+V=\chi(S),
$$

is a number that describes a topological space＇s shape or structure re－ gardless of the way it is bent or deformed，where F represents its faces， E its edges，and V its vertices．
For the sphere above，notice that $F=8, E=12$ ，and $V=6$ ，giving $\chi(S)=2$ ．For the torus，$\chi(S)=0$ ．
There is actually a direct relation between the Euler characterstic of a sur－ face and its holes，or genus g ：

$$
\chi(S)=2-2 g
$$

The Global Theorem

Theorem and Outline of Proof

If R is a regular region of S ，then

$$
\sum_{i=1}^{n} \int_{c_{i}} k_{g}(s) d s+\iint_{R} K d \sigma+\sum_{l=1}^{P} \theta_{l}=2 \pi \chi(R)
$$

where the geodesic curvature is the covariant derivative of a parametriza－ tion $\alpha(s)$ of C on S

$$
k_{g}=\left[D \alpha^{\prime}(s) / d s\right]
$$

and θ_{i} are the external angles of the curves that make up the boundary of R ．
Proof．Since every regular region has a triangulation［1］，we can use the local Gauss－Bonnet Theorem on each triangle：

$$
\sum_{i=0}^{k} \int_{s_{i}}^{s_{i+1}} k_{g}(S) d s+\iint_{R} K d \sigma+\sum_{i=0}^{k} \theta_{i}=2 \pi
$$

When summing over every triangle，the interior angles of these triangles can be related to the external and internal edges and vertices of the trian－ gulation，producing $\chi(S)$ ．

Compact and Orientable Surfaces

When a surface is compact，it has empty boundary，sending the terms of geodesic curvature and external angles in the global the－ orem to zero，meaning a compact surface＇s total curvature only depends on its Euler characteristic．

For example，though extreme positive and negative curvatures are evident after deforming the sphere above［2］，the theorem tells us that the total curvature of these two surfaces are the same：

$$
\iint_{S} K d \sigma=2 \pi \chi(S)=2 \pi(2)=4 \pi
$$

Since a torus and a coffee mug have only one genus and thus are the same from a topological perspective，and because the Euler characteristic of the torus is zero，the total curvature of both objects must also be zero．

Acknowledgements

I would like to thank the UCSB Directed Reading Program for the opportunity to work on this project．None of this would have been possible without the substantial guidance of my mentor Malik Tuerkoen，whose continued help I am extremely grateful for．

References and More Information

［1］Manfredo P．Do Carmo．Differential Geom－ etry of Curves Surfaces．Mineola，New York： Dover Publications，Inc．， 2016.
［2］Theodore Shifrin．A First Course in Curves and Surfaces．Theodore Shifrin，Summer 2016.

Visit this website for more information．\nearrow
The Mathematics of the Standard Model
Logan Joseph, Keryn Jung, and Billy Wang University of California, Santa Barbara

Vector and Principle Bundles

A principle bundle, denoted

$G \longrightarrow P \xrightarrow{\pi} M$
is a fibre bundle with a Lie group G as its fibre and a smooth right action $P \times G \rightarrow P$. The action is transitive and preserves the fibres of P. For every principle bundle, there exists a principle bundle atlas with bundle charts, $\phi_{i}: P_{U_{i}} \rightarrow U_{i} \times G$. These charts satisfy

$$
\phi_{i}(p \cdot g)=\phi_{i}(p) \cdot g \quad \forall p \in P_{U_{i}}, g \in G
$$

where G acts on $(x, a) \in U_{i} \times G$ by
$(x, a) \cdot g=(x, a g)$
Physically, this is "attaching" a Lie group to every point in spacetime Given a representation (ρ, V) of the structure group G, we can build a vector bundle out of a principle bundle P which takes the form

$$
E=P \times{ }_{\rho} V=(P \times V) / G
$$

A connection on a principle bundle is a \mathfrak{g}-valued 1 -form while curvature is a \mathfrak{g}-valued 2 form given by

$$
A \in \Omega^{1}(P, \mathfrak{g}) \quad F=d A+\frac{1}{2}[A, A] \in \Omega^{2}(P, \mathfrak{g})
$$

respectively. Both are required to be ad-invariant. A must act as the identity on fundamental vector fields associated to the action of G on P. Connection 1-forms correspond to gauge fields in the SM. Curvature 2 -forms physically represent the field strength, an example being the EM field strength tensor: $F_{\mu \nu}$. We can realize these sections as physical fields by specifying a local section (choice of gauge) and pulling back the forms under the section. We will also need a specific vector bundle called the spinor bundle. These are defined using spin structures, denoted $\operatorname{Spin}^{+}(M)$, which are a special class of principle bundle. The spinor bundle is then defined by

$$
S=\operatorname{Spin}^{+}(M) \times_{\kappa} \Delta
$$

Here (κ, Δ) is the appropriate spinor representation. By definition, sections of these spinor bundles are spinor fields, which describe fermions. In 4 dimensions, the spinor bundle also decomposes into chiral spinor bundles. The Dirac operator D acts on spinors via

$$
D=\Sigma \mathrm{Cl}_{e_{a}} \circ \nabla_{e_{a}}
$$

Mass Generation and Charged Matter

The SM Lagrangian is expressed as

$$
\mathscr{L}_{S M}=\mathscr{L}_{Y M}+\mathscr{L}_{D}+\mathscr{L}_{H}+\mathscr{L}_{Y}
$$

where $\mathscr{L}_{Y M}$ are Yang-Mills terms, \mathscr{L}_{D} are Dirac terms, \mathscr{L}_{H} are Higgs terms and \mathscr{L}_{Y} are Yukawa terms
The Yang-Mills Lagrangian for a principal bundle $P \rightarrow M$ is given by

$$
\mathscr{L}_{Y M}=\frac{1}{2}\left\langle F_{M}^{A}, F_{M}^{A}\right\rangle_{A d(P)}
$$

Here, the twisted two-form $F_{M}^{A} \in \Omega^{1}(M, \operatorname{Ad}(P))$ is induced from the curvature of the principle bundle connection. The Higgs action for a scalar field Φ coupled to a gauge field A is defined by

$$
\mathscr{L}_{H}[\Phi]=\left\langle d_{A} \Phi, d_{A} \Phi\right\rangle_{E}-V\left(\langle\Phi, \Phi\rangle_{E}\right)
$$

 Yang-Mills principle bundle defined using an appropriate representation Likewise, the Dirac Lagrangian for a twisted spinor field Ψ of mass m coupled to gauge field A on principal bundle P is defined by

$$
\mathscr{L}_{D}[\Psi]=\operatorname{Re}\left\langle\Psi, D_{A} \Psi\right\rangle_{S \otimes E}-m\langle\Psi, \Psi\rangle_{S \otimes E}
$$

Here, the spinors are sections of $S \otimes E$, where E is also an associated vector bundle of the Yang-Mills principle bundle.
Spontaneous symmetry breaking occurs when the vacuum (lowest energy field configuration) has a proper subgroup of symmetries of the Lagrangian In such a context, expanding the Yang-Mills-Higgs action about the vacuum and keeping low-order terms implies that gauge Bosons may "acquire" mass This is called the Higgs Mechanism. This mechanism provides a way to give mass to gauge Bosons by introducing massive scalar fields, which are called Higgs fields. These are the scalars which appear in the SM.
We also need to be able to give masses to twisted chiral fermions. This is done using scalar fields and quantities called Yukawa forms, which are maps from unitary representations V_{L}, W, and V_{R} of G.

$$
\tau: V_{L} \times W \times V_{R} \longrightarrow \mathbb{C}
$$

This form is invariant under the action of G, complex antilinear in V_{L}, real linear in W, and complex linear in V_{R}. Given a Yukawa form τ, the Yukawa coupling g_{Y} defines a gauge invariant Lagrangian
$\mathscr{L}_{Y}\left[\Psi_{L}, \Phi, \Psi_{R}\right]=-g_{Y}\left(\bar{\Psi}_{L} \Phi \Psi_{R}\right)-g_{Y}\left(\bar{\Psi}_{L} \Phi \Psi_{R}\right)^{*}$

Standard Model Particle Content

The gauge group for the SM is $S U(3) \times S U(2) \times U(1)$. The gauge Boson content follows from the adjoint representation of the Lie algebra \mathfrak{g} of this group, which splits into three subrepresentations.

$$
\mathfrak{g}=\mathfrak{s u}(3)_{C} \oplus \mathfrak{s u}(2)_{L} \oplus \mathfrak{u}(1)_{Y}
$$

These are the gluon sector, the weak sector, and the hypercharge sector, respectively. The 8 generators of $S U(3)$ corresponds to 8 gluons, the $3+1$ generators of $S U(2)$ and $U(1)$ corresponds to the $W^{ \pm} / Z$ Bosons and the photon γ
However, without the Higgs field, the gauge Bosons would all be massless. The SM then features multiplets of charged scalar fields called Higgs fields to address this issue. The specific choice of Higgs potential used in the action is depicted below!
The shifted Higgs Potential (due to spontaneous symmetry break ing) leads to Higgs Mechanism. Some of the gauge Bosons, including Z and $W^{ \pm}$, acquire mass through this mechanism.
Building the twisted chiral spinor bundle to model spinors requires a choice of representation of the SM gauge group, which is ultimately determined by experiment. The correct choice of representation results in 3 generations of so-called quarks and leptons. Of these, there are 6 charged quarks, 3 charged leptons, and 3 neutral leptons (neutrinos). The Yukawa couplings present in the SM then feature terms for both these quarks and leptons.

Acknowledgements
Reference Material: Mathematical Gauge Theory by Mark J.D. Hamilton
We would like to thank our mentor Aaron Kennon and Professor David Morrison for their assistance with this reading course.

Abstract

Tilings are characterized by covering Euclidean space with a set of tiles, traditionally polygons, in which two adjacent tiles meet full edge to edge. Given a tiling T, we can generate a complete met ric space, and we can study such a space using the tools of co homology. We will discuss a famous example, the chair tiling

This tiling is an example of a substitution tiling, as one can cover the entire plane by it erating the substitution shown on the left

Fig. 1

The Tiling Metric

Consider two tilings T, T^{\prime} of \mathbb{R}^{m}. We can assess their "closeness" us ing the tiling metric. Heuristically, two tilings are close if, after a small translation, their patterns overlap on a large ball around the origin.
 As seen in figure 2, because the blue patch centered at x is the same as the blue patch centered at y, the tilings centered at these points are $\frac{1}{2}$-close but not $\frac{1}{3}$-close because the corresponding red patches differ on their lower left corners. Equipped with this metric, we can construct a
complete metric space Ω_{T} around complete metric space Ω_{T} around
T, called the hull of T, by taking the orbit of T under translation and completing this space by taking lim its of Cauchy sequences with respect to the tiling metric.
Fig. 2
$\Omega_{T}:=\operatorname{closure}\left\{T-x \mid x \in \mathbb{R}^{m}\right\}$
Acknowledgments and References
We thank Kyle Hansen for his time and guidance as well as the UCSB Directed Reading Program for the opportunity to study this subject.
[1] Chair tiling - Wikipedia - en.wikipedia.org. https ://en . wikipedia . org/wiki/
Chair_tiling. Accessed 20-May-2023].
Chair_tiling. Accessed 20-May-2023].
[2] Jeong-Yup Lee and Robert Moody. "Latice Substitution Systems and Model Sets". In
Discrete \& Computational Geometry 25 (Mar. 2000). Dol: $10.1007 /$ s004540010083. [3] Lorenzo Adlai Sadun. Topology of tiling spaces. Vol. 46. American Mathematical Soc.,

A Tale of Two Cohomologies

To simplify our study, we will consider another substitution called the arrow substitution. As it turns out, we can group these arrow tiles in threes to achieve the chair tiling, so these tilings are equivalent. We will use C to denote the arrow tiling and Ω_{C} to denote its hull. In contrast to the complete construction of the space Ω_{C}, we can construct the hull as an inverse limit, as follows: Let Γ_{0} be the set of instructions for laying down a tile over the origin. Inductively, let Γ_{n+1} be the set of instructions for laying down a border of tiles around those patches in Γ_{n}. Linking these are the morphisms, $f_{n}: \Gamma_{n+1} \rightarrow \Gamma_{n}$, a sequence of forgeffu functions which forgets the outermost layer of tiles. In the case of C we can think of these functions as forgetting the last iteration of the substitution, and is in some sense dual to the substitution. For example, in figure 3 , the 4×4 square is sent to the 2×2 square. To summarize, we can represent the hull as the inverse limit
$\Omega_{C} \cong \lim _{\leftarrow}\left(\Gamma_{n}, f_{n}\right)=\left\{\left(x_{0}, x_{1}, \ldots\right) \in \prod_{n \in \mathbb{N}} \Gamma_{n} \mid x_{n}=f_{n}\left(x_{n+1}\right)\right\}$,
which can be thought of as the set of sequences in which each component has "forgotten" the structure of the component after it. To study the structure of this space, we can use two types of cohomologies: the Cech cohomology and the PE variant of the De Rham cohomology. A special form of De Rham's theorem allows us to relate these two cohomologies:
$H_{\mathrm{PE}}^{*}(T) \cong \frac{\text { Closed PE forms on } \mathrm{T}}{\mathrm{d}(\mathrm{PE} \text { forms on } \mathrm{T})} \cong \frac{\lim _{\rightarrow} \text { Closed forms on } \Gamma_{n}}{\lim _{\rightarrow \text { Exact forms on } \Gamma_{n}} \xlongequal[\rightarrow]{\lim _{\rightarrow}} H_{\text {deRham }}^{*}\left(\Gamma_{n}\right) \cong \lim _{\rightarrow} \check{H}^{*}\left(\Gamma_{n}, \mathbb{R}\right) \cong \check{H}^{*}\left(\Omega_{T}, \mathbb{R}\right), ~(1)}$

C̈ech Cohomology

The nerve $\mathcal{N}(\mathcal{U})$ of a cover $\mathcal{U}=\left\{U_{\alpha}\right\}$ of a general space X is a simplicial complex consisting of an n-simplex for each nonempty intersection of n elements of \mathcal{U}. In general, $\check{H}^{*}(X):=\lim _{\rightarrow} H_{\Delta}^{*}(\mathcal{N}(\mathcal{U}))$ is the direct limit of the simplicial cohomology of $\mathcal{N}(\mathcal{U})$ over all open covers \mathcal{U} o CW complex, there is a nice property:

$$
\check{H}^{*}\left(\Omega_{C}\right) \cong \lim _{\longrightarrow} \check{H}^{*}\left(\Gamma_{n}\right)
$$

This works because for any open cover of a CW complex we can create a "good" refinement such that finite intersections of open sets are contractible. Sketch of proo ment of $f_{n-1}^{-1}\left(U_{n-1}\right)$. Let $\pi_{n}: \Omega_{C} \rightarrow \Gamma_{n}$ be the projection. Then each U_{n} induces a cover $V_{n}=\pi_{n}^{-1}\left(U_{n}\right)$ of Ω_{C} with $\mathcal{N}\left(V_{n}\right)=\mathcal{N}\left(U_{n}\right)$. We can pick U_{n} to make the sequence V_{n} cofinal on covers of Ω_{C}. So $\tilde{H}^{*}\left(\Omega_{C}\right) \cong \lim _{\rightarrow} \tilde{H}^{*}\left(V_{n}\right) \cong \lim _{\rightarrow} \tilde{H}^{*}\left(U_{n}\right) \cong \lim _{\rightarrow} \tilde{H}^{*}\left(\Gamma_{n}\right)$.

Calculating $\check{H}^{1}\left(\Omega_{C}\right)$

Down to Earth, view Ω_{C} as $\lim _{\leftarrow}\left(\Gamma_{n}, f_{n}\right)$ where each f_{n} is the map induced by substitution. As each Γ_{n} is a finite Δ-complex, $H^{*}\left(\Omega_{C}\right) \cong \lim _{\rightarrow H_{\Delta}}\left(\Gamma_{n}\right)$. We will compute $\hat{H}^{1}\left(\Omega_{C}\right)$ using the chain complex of Γ_{n} and the homomorphism from $H_{\Delta}^{1}\left(\Gamma_{n}\right)$ to $H_{\Delta}^{1}\left(\Gamma_{n+1}\right)$ induced by the substitution. Up to rotation r by $\frac{\pi}{2}$ and the ways we identify tiles, there is one tile A, one edge α, and two vertices a, b in each Γ_{n} (see Fig.5), with the relations: $A=r^{4} A, \alpha=r^{4} \alpha$, and $a=r a, b=r b$ The boundary map $\partial_{i}: C_{i} \rightarrow C_{i-1}$ is $\partial_{2} A=\left(1-r+r^{2}-r^{3}\right) \alpha$, and $\partial_{1} \alpha=b-a$. Now we compute $\lim _{\rightarrow} H_{\Delta}^{1}\left(\Gamma_{n}\right)$ by decomposing is
 The cases $r=1$ and $r=-1$ contribute no cohomology in degree 1. The case $r^{2}=-1$ is 2 -dimensional, so we have $C^{0}=0$ and because $\partial_{2}(A)=\mathbb{Z}$. We have $\operatorname{lm}\left(\partial_{1}\right)=$ ance for each Γ_{n} we have $H_{\Delta}^{1}\left(\Gamma_{n}\right) \cong \frac{\operatorname{ker}\left(\partial_{2}^{T}\right)}{\operatorname{Im}\left(\partial_{1}^{T}\right)} \cong \mathbb{Z} \oplus \mathbb{Z}$. Moreover, substitution induces multiplication by 2 in the direct limit, since $\sigma(\alpha)=\left(1-r^{2}\right) \alpha=2 \alpha$. Therefore, as direct limits commute with direct sums, we have
$\check{H}^{1}\left(\Omega_{C}\right) \cong \lim _{\rightarrow} H_{\Delta}^{1}\left(\Gamma_{n}\right) \cong \mathbb{Z}[1 / 2] \oplus \mathbb{Z}[1 / 2]$.

Pattern Equivariant De Rham Cohomology

To understand the PE variant of the De Rham cohomology, we must understand its namesake, pattern equivariant functions. Let T be a tiling on \mathbb{R}^{m}. A smooth function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is called pattern equivariant on T if, for some radius R, whenever two balls $B_{R}(x), B_{R}(y)$ of radius R share the same pattern in $T, f(x)=f(y)$. In figure 2, we can see that a PE function f on a chair ting win blue radius must have $f(x)=f(y)$, however a function PE on the red radius need not have $f(x)=f(y)$, because the red balls differ on the bottom left corner. In the arrow tiling case, these will be functions of the form γ (0 -forms), $\alpha_{1} d x_{1}+\alpha_{2} d x_{2}$ (1-forms), and $\zeta d x_{1} d x_{2}$ (2 -forms), where $\alpha_{1}, \alpha_{2}, \gamma, \zeta$ are pattern equivariant on the arrow tiling. We will denote by $\Lambda_{k}(T)$ the set of k-forms pattern equivariant on a tiling T. The pattern equivariant cohomology is constructed as the quotient

$$
H_{\mathrm{PE}}^{k}(T) \cong \frac{\left\{\alpha \in \Lambda_{k}(T) \mid d \alpha=0\right\}}{\left\{\alpha \in \Lambda_{k}(T) \mid \alpha=d \gamma, \gamma \in \Lambda_{k-1}(T)\right\}}
$$

We will make sense of this in the section below.
Understanding $\check{H}^{1}\left(\Omega_{C}\right)$ Using $H_{\mathrm{PE}}^{1}(C)$

PE cohomology helps us interpret the result calculated for $\check{H}^{1}\left(\Omega_{C}\right)$. To do this, we will find pattern equivariant 1 -forms on the chair tiling C which represent the cohomology classes we computed previously. These will be functions on the horizontal and ver fical edges of figure 3. By symmetry, we can focus on the horizontal con the set of PE functions on the horizontal edges of an order n supertile such that $\alpha_{n} \sim \beta_{n}$ iff there exists some 0 -form γ_{n} (a PE function on vertices) such that $d \gamma_{n}=\alpha_{n}-\beta_{n}$. The representatives ν_{n} of each of these classes ${ }^{\circ} .0 .0 .0 .0 .1 .0$ will form the basis for the horizontal component
 order 0 supertile is simply one tile, so ν_{0} is a nat ural representative for 1 in the horizontal compo nent of $H_{P E}(C)$ and thus of $I\left(\Omega_{C}\right)$. Inductively $\nu_{n} \sim \nu_{0}$, and so ν_{n} is a natural representative for $\frac{1}{2^{n}}$ in the horizontal component of $H_{P E}^{1}(C)$ These representatives of $\left(1,1 / 2, \ldots, 1 / 2^{n}, \ldots\right)$ form a basis for the horizontal componen of $\check{H}^{1}\left(\Omega_{C}\right)$ and by the above symmetry, the vertical component will be the same. So we now have a greater understanding of the original result
$\check{H}^{1}\left(\Omega_{C}\right) \cong \mathbb{Z}[1 / 2] \oplus \mathbb{Z}[1 / 2]$.

The Zeta Function and Prime Number Theorem

Jianing Zhang | Directed by Christian Hong
University of California - Santa Barbara

Abstract

After Euler found that $\Sigma_{p} \frac{1}{p}$ diverges, Legendre and Gauss found that approximately,

$$
\pi(x) \sim \frac{x}{\log x},
$$

where $\pi(x)=$ number of primes less than or equal to x.

Background

The zeta function is related to some of the facts of numbers, like $\Sigma_{p} 1 / p$ diverges, Dirichlet Theorem (for any a, q that are coprime, there exists infinitely many primes with the form $p=a n+q$), and so on. [1]

Some theorems and definitions that are related to the proof of prime number theorem are:

The initial definition for zeta function when $s>1$ is real is

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}},
$$

by using analytic continuation, we could define $\zeta(s)$ on \mathbb{C}.
An alternative form for zeta function is

$$
\zeta(s)=\Pi_{p}\left(1-p^{-s}\right)^{-1}
$$

Theorem. The function ζ is holomorphic for $\operatorname{Re}(s)>1$ and has an analytic continuation to all of \mathbb{C} as a meromorphic function with simple poles at $s=0$ and $s=1$. Moreover,

$$
\zeta(s)=\zeta(1-s)
$$

Theorem. The zeta function has no zeros on the line $\operatorname{Re}(s)=1$. After Riemann introduced the analytic continuation of ζ, he begun to believe: The zeros of $\zeta(s)$ in the critical strip lie on the line $\operatorname{Re}(s)=1 / 2$, which is called Riemann Hypothesis.

During the studies, Tchebychev found another approximation for $\pi(x)$ that is easier to compute
Definition. Tchebychev's ψ-function is defined by

$$
\psi(x)=\Sigma_{p \leq x} \log p
$$

Definition. Define function ψ_{1} by

$$
\psi_{1}(x)=\int_{1}^{x} \psi(x) d u
$$

Proposition. For all $c>1$,

$$
\psi_{1}(x)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{x^{s+1}}{s(s+1)}\left(-\frac{\zeta^{\prime}(s)}{\zeta(s)}\right) d s .
$$

Relation between ψ, ψ_{1}, and π

Theorem. If $\psi(x) \sim x$ as $x \rightarrow \infty$, then $\pi(x) \sim \frac{x}{\log x}$ as $x \rightarrow \infty$.
Proof. It suffices to show:

$$
\begin{equation*}
1 \leq \lim \inf _{x \rightarrow \infty} \pi(x) \frac{\log x}{x} \quad \text { and } \quad \lim \sup _{x \rightarrow \infty} \pi(x) \frac{\log x}{x} \leq 1 . \tag{1}
\end{equation*}
$$

Using the trick that

$$
\psi(x)=\Sigma_{p \leq x}\left[\frac{\log x}{\log p}\right] \log p \leq \Sigma_{p \leq x} \frac{\log x}{\log p} \log p=\pi(x) \log x .
$$

the first inequality in (1) holds
Fix $0<\epsilon<1$, note that

$$
\psi(x) \geq \Sigma_{p \leq x} \geq \Sigma_{x^{\epsilon}<p \leq x} \geq\left(\pi(x)-\pi\left(x^{\epsilon}\right)\right) \log x^{\epsilon}
$$

thus

$$
\psi(x)+\epsilon \pi\left(x^{\epsilon}\right) \log x \geq \epsilon \pi(x) \log x .
$$

Dividing both side by x, and noting that $\pi\left(x^{\epsilon}\right) \leq x^{\epsilon}, \epsilon<1, \psi(x) \sim x$, we have

$$
\frac{\epsilon \pi\left(x^{\epsilon}\right) \log x}{x} \leq \frac{\epsilon \log x}{x^{1-\epsilon}} \rightarrow 0 \quad \text { as } \mathrm{x} \rightarrow \infty,
$$

thus

$$
1 \geq \epsilon \lim \sup _{x \rightarrow \infty} \frac{\pi(x) \log x}{x}
$$

Since ϵ is arbitrary, the proof is complete.
Proposition. If $\psi_{1}(x) \sim \frac{x^{2}}{2}$, then $\psi(x) \sim x$ as $x \rightarrow \infty$
Sketch. Let $\alpha<1<\beta$, the proof follows from the inequality

$$
\frac{1}{(1-\alpha) x} \int_{\alpha x}^{x} \psi(u) d u \leq \psi(x) \leq \frac{1}{(\beta-1) x} \int_{x}^{\beta x} \psi(u) d u,
$$

since ψ is increasing. we get $\limsup _{x \rightarrow \infty} \frac{\psi(x)}{x} \leq 1$. By a similar argument, $\liminf _{x \rightarrow \infty} \frac{\psi(x)}{x} \geq 1$.

The Asymptotics for ψ_{1}
Proposition. $\psi_{1}(x) \sim \frac{x^{2}}{2}$ as $x \rightarrow \infty$ Proof.

Proof Continued

Let $F(x)=\frac{x^{s+1}}{s(s+1)}\left(-\frac{\zeta^{\prime}(s)}{\zeta(s)}\right)$. Let $\gamma(T)=\gamma(T, \delta)$. We have

$$
\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} F(s) d s=\frac{1}{2 \pi i} \int_{\gamma(T)} F(s) d s
$$

Next, we pass from $\gamma(T)$ to $\gamma(T, \delta)$. For fixed T, we choose $\delta>0$ small enough such that ζ has no zeros in the box

$$
\{s=\sigma+i t, 1-\delta \leq \sigma \leq 1,|t| \leq T\}
$$

Thus ζ does not vanish on the line $\sigma=1$. Note that $F(s)$ has a simple pole at $s=1$ with residue is $\frac{x^{2}}{2}$. Thus

$$
\frac{1}{2 \pi i} \int_{\gamma(T)} F(s) d s=\frac{x^{2}}{2}+\frac{1}{2 \pi i} \int_{\gamma(T, \delta)} \frac{x^{s+1}}{s(s+1)} F(s) d s .
$$

Decompose the contour $\gamma(T, \delta)$ as $\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}, \gamma_{5}$. Note that for T large,

$$
\left|\int_{\gamma_{1}} F(s) d s\right| \leq \frac{\epsilon}{2} x^{2} \quad \text { and } \quad\left|\int_{\gamma_{5}} F(s) d s\right| \leq \frac{\epsilon}{2} x^{2}
$$

Fix T, let δ be small. On γ_{3}, there exists a constant C_{T} such that

$$
\left|\int_{\gamma_{3}} F(s) d s\right| \leq C_{T} x^{2-\delta}
$$

Finally, on γ_{2} (similarly on γ_{4}), estimates the integrals as:

$$
\left|\int_{\gamma_{2}} F(s) d s\right| \leq C_{T}^{\prime} \int_{1-\delta}^{1} x^{1+\delta} d \sigma \leq C_{T}^{\prime} \frac{x^{2}}{\log x}
$$

Thus there exists C_{T}, C_{T}^{\prime} (possibly different from the ones above) such that

$$
\left|\psi_{1}(x)-\frac{x^{2}}{2}\right| \leq \epsilon x^{2}+C_{T} x^{2-\delta}+C_{T}^{\prime} \frac{x^{2}}{\log x} .
$$

Thus, dividing $\frac{x^{2}}{2}$, and for x large,

$$
\left|\frac{2 \psi_{1}(x)}{x^{2}}-1\right| \leq 2 \epsilon+2 C_{T} x^{-\delta}+2 C_{T}^{\prime} \frac{1}{\log x} \leq 4 \epsilon,
$$

which leads that

$$
\psi_{1}(x) \sim x^{2} / 2 \quad \text { as } x \rightarrow \infty
$$

Thus, we finished sketching the proof of the prime number theorem.

References

[1]: "Pricenton Lecture Notes, Volume 1, Fourier Analysis An Introduction" by Elias M. Stein and Rami Shakarchi
[2]: "Pricenton Lecture Notes, Volume 2, Complex Analysis" by Elias M. Stein and Rami Shakarchi.

UnRaveling the Enigma of Topological Structures

Genevieve Yao and Taylor Mayton, Mentored by Katherine Merkl
University of California Santa Barbara

Introduction

Topology provides the framework needed to describe continuous deformations and to characterize the differences between spaces that appear the same locally, but have a fundamentally different global structure. A topology on a space is a structure he rof of quient topologes and how to understand them. the role of quotient topologies and how to understand them.

Quotient Topology

It turns out that we can construct new spaces from old ones via some sort of a "gluing" operation. For example, consider taking a rectangle and "gluing" two opposing edges together to form a Cylinder, or adding a half-twist to get a Möbius Strip. This act of "gluing" (identification) is formally defined using the language of quotient topologies.

Möbius Strip

Torus

$\xrightarrow[\text { Klein Bottle }]{ }$

$\mathbb{R P}^{2}$

Definition 1. Suppose that (X, \mathcal{T}) is a topological space and that \sim is an equivalence relation on X. Denote the set of equivalence classes by X / \sim, and let $p: X \rightarrow X / \sim$ be the function that assigns to each point of X the equivalence Then $\tilde{\mathcal{T}}$ is a topology for X / \sim, called the quotient topology, $(X / \sim, \tilde{\mathcal{T}})$ is called a quotient space (of X), and $p: X \rightarrow X / \sim$ is called the quotient map. [2]
Above are four examples of quotient spaces, each given by defining different equivalence relations on the square. Geometrically, the quotient map p sends points on Torus and Klein Bottle, the image of p is shown below.

Figure 1. Torus(left) and Klein Bottle(right)
The Real Projective Plane, $\mathbb{R P P}^{2}$, can be difficult to visualize, so we outline equivalent forms of the space to help build intuition.
Proposition 2. Let S^{2} denote the unit 2-Sphere in \mathbb{R}^{3} and let D be the unit disc in \mathbb{R}^{2}. The following quotient spaces are all homeomorphic:
(a) $\left(\mathbb{R}^{3} \backslash\{0\}\right) / \sim$ where $x \sim y$ iff $y=\lambda x$ for some non-zero $\lambda \in \mathbb{R}$;
(b) S^{2} / \sim where \sim identifies each pair of antipodal points of S^{2};
(c) D / \sim where \sim identifies each pair of antipodal points on the boundary of D; (d) The square with given identifications seen above

Proof. We provide the intuition for each homeomorphism. (a) describes the space of lines in \mathbb{R}^{3} passing through the origin. Each such line intersects S^{2} exactly twice, at antipodal points. For (b), each point in the upper hemisphere of S^{2} has its antipodal point in the lower hemisphere, so we can discard the lower hemisphere and then project our points down to the unit disk in \mathbb{R}^{2}. For (c) and (d), center D and the square at the same point and project the square radially onto D. (Detailed proof, p. 162 [2])

Path Homotopy and Fundamental Groups

Definition 3. Let $f, g: X \rightarrow Y$ be maps. Then f is homotopic to g if there exists a map $F: X \times I \rightarrow Y$ such that $F(x, 0)=f(x)$ and $F(x, 1)=g(x)$ for all points $x \in X$, where I is the unit interval. The map F is called a homotopy from f to g. [1]
Intuitively, the homotopy F is a continuous deformation of f into g
Lemma 4. The relation of 'homotopy relative to a subset A of X ' is an equivalence relation on the set of all maps from X to Y which agree with some given map on A. (For proof see p. 90 [1])
Since it is an equivalence relation, naturally, we want to discuss its equivalence class: Theorem 5. Let $\langle\alpha\rangle$ denote the homotopy class of a loop α (Where homotopy classe are equivalence classes from the relation of homotopy relative to I). The set of homo topy classes of loops in X based at p forms a group under the multiplication
$\langle\alpha\rangle \cdot\langle\beta\rangle=\langle\alpha \cdot \beta\rangle$
(For proof see p. 92 [1])
Intuitively, if there's a hole inside a loop, then it is not in the same equivalence clas with the point, if two loops are around different holes, they're not in the same class. Definition 6. The group constructed in Theorem 5 is called the fundamental group of X (based at point p) and denoted $\pi_{1}(X, p)$. [1]
It turns out that for any path-connected space X, the fundamental group is indepen dent of base point, and so we simply write the fundamental group of X as $\pi_{1}(X)$ (instead of $\pi_{1}(X, p)$.) Furthermore, it happens to be a topological invariant which makes it very important. Intuitively, the fundamental group of a space describes all the different kinds of loops you can have on a space which can't be continuously deformed into each other. In figure 2 we see an example of the fundamental group of S^{1}. We can see how the fundamental group here comes from winding number with orientation.

Figure 2. $\pi_{1}\left(S^{1}\right)=\mathbb{Z}$
It is not difficult to see that $\pi_{1}\left(S^{2}\right)$ is trivial. We also know $\pi_{1}\left(\mathbb{R P}^{2}\right)=\mathbb{Z} / 2 \mathbb{Z}$. This makes sense if you think about $\mathbb{R P}^{2}$ as in (b) from Proposition 2. We can go around the sphere and end up at either our base point p or $-p$. These correspond to the 2 different homotopy classes.

Manifolds and Embedding in Euclidean Space

Since in topology the shape and distance of objects (usually) don't preserve, so the hing called manifolds are more usual. But since manifolds vary a lot, it's hard for us directly study on then. Therefore, by embedding the manifolds to \mathbb{R}^{n}, we can use tools in \mathbb{R}^{n} on manifolds, which is very helpful (and so important) in our study to manifolds. Definition 7. A Manifold of dimension n (n -manifold for short) is a second-countable Hausdorff space, each point of which has a neighbourhood homeomorphic to \mathbb{R}^{n} (n dimensional Euclidean space). [1]
One can accept it roughly as a locally Euclidean smooth space
Definition 8. If $f: X \rightarrow Y$ is a one-one map, and if $f: X \rightarrow f(X)$ is a homeomor phism when we given $f(X)$ the induced topology from Y, we call f an embedding of X in Y. [1]

Embedding the $\mathbb{R P P}^{2}$ and Klein Bottle in \mathbb{R}^{4} [2]

Embedding a manifold M to \mathbb{R}^{n} means the same as "a subset of \mathbb{R}^{n} is homeo morphic to $M^{\prime \prime}$. So one way to prove embedding is to explicitly construct a smooth unction in \mathbb{R}^{n} and prove that it has the same identification as M, and we'll do this otwo examples in the next section.
Embedding Real Projective Plane in \mathbb{R}^{4}
Proposition 9. There's a homeomorphism from real projective plane $\mathbb{R P}^{2}$ to a subspace of \mathbb{R}^{4}.
Proof. Let $S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$, and construct the function $f: S^{2} \rightarrow \mathbb{R}^{4}$ as

$$
f(x, y, z)=\left(x^{2}-y^{2}, x y, y z, z x\right)
$$

detailed proof in omitted here, but one can check that f is an identification map results in the same identification space to $\mathbb{R P}^{2}$ we discussed on the left! (refer to he detail proof in page 164 of [2])

Embedding Klein Bottle in \mathbb{R}^{4}

We've seen the picture of Klein Bottle in the part of quotient topology, and there's some fancy models of Klein bottles. However, all of these are just Klein Bottle "immersed" in \mathbb{R}^{3}, which means it is roughly embedded but has self-intersections.[2] In fact, it cannot be embedded in \mathbb{R}^{3} :
Proposition 10. Klein Bottle can't be embedded in \mathbb{R}^{3}.
Proof. We prove this not rigorously here by argue about the orientability of Klein bottle. There is a theorem states that all smooth hypersurface(it means a $n-1$ manifold in a \mathbb{R}^{n}, one can perceive it as a similar thing to a surface as in \mathbb{R}^{3} ut in a higher dimension perspective) with no boundary in \mathbb{R}^{n} is orientable, and ein bottle, however, as a non-orientable 2-manifolds, which means it cannot be mbedded in \mathbb{R}
And on the other hand, it can be embedded in \mathbb{R}^{4}.
Proposition 11. The Klein Bottle can be embedded in \mathbb{R}^{4}.
Proof. We write $X=[0,2 \pi] \times[0, \pi]$, then let $f: X \rightarrow \mathbb{R}^{4}$ defined as
$(x, y) \mapsto((2+\cos x) \cos y,(1+\cos x) \sin y, \sin x \cos y, \sin x \sin y)$
Detailed proof is also omitted here, but one can check that f is an identification map esults in the same identification space to Klein Bottle as we discussed on the left. Refer to the detail proof in page 165 of [2]).
Now, one might want to ask: wait, but more generally, what would happen for othe 2 -manifolds? Can they also be embedded in \mathbb{R}^{4} ? The answers is: yes!
Theorem 12. All 2 -manifolds can be embedded in \mathbb{R}^{4}
And if keep asking, this road will leads us to the final theorem
Theorem 13. (Strong Whitney Embedding Theorem) Any smooth real mmanifolds can be smoothly embedded in $\mathbb{R}^{2 m}$

Acknowledgements

We thank Katherine Merkl for her guidance as well as the UCSB Directed Reading Program for the opportunity to work on this project

References

[^2]
Visualizations in Number Theory

Gaussian and Eisenstein Integers

The Gaussian integers, denoted $\mathbb{Z}[i]$, is the collection of complex numbers $x+y i$ where x and y are integers. For example, $1+2 i$ and $5 i$ are Gaussian integers, but $2+\pi i$ is not. The Gaussian units are ± 1 and $\pm i$
The Eisenstein integers is the collection of complex numbers $x+y \omega$ where x and y are integers, and $\omega=e^{2 \pi i / 3}$ For example $-1+\omega$ and $\omega^{2}=-1-\omega$ are Fisenstein integers, but $1 / 2+\omega$ is not. The Eisenstein units are $\pm 1, \pm \omega$, and $\pm \omega^{2}$.
We abbreviate the collection of Gaussian/Eisenstein integers as G/E integers. A nonunit G / E integer q is prime if the only divisors of q in the G / E integers are units.
For example, 2 is an Eisenstein prime, but not a Gaussian prime since $2=(1+i)(1-i)$.

Categorizing G/E Primes

The primagon of a Gaussian integer z is the 4 -gon with vertices $\pm z, \pm i z$. Likewise, the primagon of an Eisenstein integer z is the 6 -gon with vertices $\pm z, \pm \omega z, \pm \omega^{2} z$. All vertices
of a primagon have the same absolute value.
Using the primagon, one can classify the G / E integers into three types:

- Type I: The primagon has integer vertices and coincides with its complex conjugate - Type R: The primagon coincides with its complex conjugate, but does not have integer vertices.
- Type S: The primagon does not coincide with its complex conjugate

Automatically Classifying G/E integers

Given any G/E integer, we automatically classify the integer and plot the primagon as follows:
Input G/E integer Specify whether the input is a Gaussian or Eisenstein integer by typing 'G' or ' E '. The user is then prompted to input integers a and b to form the Gaussian integer $a+b i$ or the Eisenstein integer $a+b w$.

Find the primagon Let $z=a+b i$ or $z=a+b \omega$ be the inputted integer. Find thre (five) new vertices by rotating z by $\frac{\pi}{2} \frac{\pi}{3}$) about the origin. Connect the four (six) vertices to obtain the primagon of z. Compute the primagon's conjugate (blue) by conjugating each vertex individually and connecting the new vertices.

Classify If the primagon (plotted in red) doesn't coincide with its conjugate (plotted in blue), then z is type S . Otherwise, determine whether the primagon has integer vertices by computing $|z|^{2}=z \cdot z$. If $z \cdot z$ is a perfect square, then z is type I. If not then z is type R.

Visualizing Gaussian and Eisenstein integers

Some examples of G / E primes of type $\mathrm{I} / \mathrm{R} / \mathrm{S}$:

Computing Kissing Fractions

Suppose $\frac{a}{b}$ be a fraction and consider the matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then, $\frac{c}{d}$ is kissing $\frac{a}{b}$ if $d a-b c= \pm 1$. That is, by setting a value for c, we obtain two values of d that guarantee $\frac{c}{d}$ is kissing $\frac{a}{b}$. Now consider the fraction $\frac{1}{2}$. For each $c \in\{ \pm 1, \pm 2, \pm 3, \pm 4, \pm 5\}$ we obtain two possible values for d. After eliminating any $\frac{c}{d}$ that are not fractions, we obtain a list of fractions that are kissing $\frac{1}{2}$

$$
\left\{\begin{array}{c}
(-5,11),(-5,9),(-4,9),(-4,7),(-3,7),(-3,5), \\
(-2,5)(-2,3),(-1,3),(-1,1),(1,-1),(1,-3), \\
(2,-3),(2,-5),(3,-5),(3,-7),(4,-7),(4,-9)
\end{array}\right.
$$

Kissing Fraction Results

Proposition: Let $\frac{a}{b}$ be a fraction. Then $\frac{a}{b}$ kisses infinitely many fractions.
Proposition: If $b>1$, then there are exactly two fractions kissing $\frac{a}{b}$ with denominator smaller than b. These two fractions kiss each other and have mediant $\frac{a}{b}$.

Visualizing Kissing Fraction

def kiss(a,b,n):
 for c in range(-n,n):

```
\(d=\left(1-b^{*} c\right) / a\)
\(e=\left(-1-b^{*} c\right) / a\)
d is integer
add ( \(c\) d) to the greatest common divisor of \(c\) and \(d=1\) and \(c \neq 0\) :
add (c,d) to the kissing fractions list
號
teturn the kissing kissing fractions list
```


References

Weissman, Martin H. An Illustrated Theory of Numbers. American Mathematical Society, 2017

Let \mathbb{Q} be the collection of rational numbers. An element $\frac{a}{b} \in \mathbb{Q}$ is a fraction if $\operatorname{gcd}(a, b)=$ 1. Two fractions $\frac{a}{b}$ and $\frac{d}{d}$ are kissing if

$$
\begin{aligned}
& a d-b c= \pm 1 . \\
& a_{\infty} c
\end{aligned}
$$

$$
\frac{a}{b} \bigcirc \frac{c}{d}
$$

The mediant of $\frac{a}{b}$ and $\frac{c}{d}$ is

$$
\frac{a}{b} \vee \frac{c}{d}=\frac{a+c}{b+d} .
$$

Note that $\frac{a}{b} \vee \frac{c}{d}$ kisses both $\frac{a}{b}$ and $\frac{c}{d}$.
If $\frac{a}{b}$ is a fraction, its Ford circle is the circle centered at $\left(\frac{a}{b}, 0\right)$ of diameter $\frac{1}{b^{2}}$. Then, the fractions $\frac{a}{b}$ and $\frac{c}{d}$ are kissing if the Ford circle of $\frac{a}{b}$ is tangent to the Ford circle of $\frac{c}{d}$.

[^0]: 1] Emily Rieh.
 Category Theory In Context.
 Dover Publications Inc... 2017.

[^1]: 1. Dary Cooper, Craig D. Hodgson, and Steven P. Kerckhoff Three-dimensional orbifolds and cone-manifolds.
[^2]: [1] Mark Anthony Armstrong. Basic Topology. Springer Science \& Business Media, 2013.
 [2] Wilson A Sutherland. Introduction to Metric and Topological Spaces. Oxford University Press,

