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The Normal Distribution

The standard normal distribution, defined by parameters µ, the
mean of a population for some statistic and σ, the standard devi-
ation. Letting θ = (µ, σ) where µ ∈ R and σ ∈ R+ then the corre-
sponding probability density function (PDF)

pθ(x) =
1√
2πσ

exp

[
−(x− µ)2

σ2

]
(1)

and of course, the familiar graph,

From (1) we notice that there is a one to one correspondence be-
tween PDFs and ordered pairs, so if we take pθ(x) as a particular
PDF, we can identify S := {pθ(x) | θ ∈ H2} which leaves the relation
H2 ∼= S.

Information Geometry

Information Geometry looks to use differential geometry to garner
a deeper understanding of statistics. In particular, we can apply
various techniques to make optimal decisions given a set of param-
eters (Nielsen). Statistical Inference, or the problem of choosing a
model given sample data is one common application.

It turns out S naturally becomes a statistical manifold, a special case
of Riemannian manifolds. Generally, Riemannian manifolds pos-
sess a Riemannian metric which we can think of as the collection
of inner products on the tangent spaces of all points on the mani-
fold. We would like to define a special Riemannian metric g which
is called the Fisher Information Metric. We let ℓθ(x) = log(pθ(x))
(the so called log-likelihood), then

gij(θ) = E
[
∂ℓθ
∂θi

∂ℓθ
∂θj

]
(2)

which results in

gS =
1

σ2

[
1 0
0 1

]
(3)

The pair (S, g) is then a statistical manifold, that is, a Riemannian
manifold the set of which represents a statistical family. Further-
more, (S, g) is isometric to the Poincaré upper half plane H2.

The Upper Half Plane H2 (Hyperbolic Space)

H2 refers to the hyperbolic space, which is a two-dimensional manifold with
constant negative curvature. Defined as

H2 = {⟨x, y⟩|y > 0;x, y ∈ R} = {z ∈ C|Im(z) > 0}
• Since H2 is a manifold (locally Euclidean), there exists a mapping, com-
monly known as a patch. A patch provides a way to locally parametrize a
portion of the manifold using coordinates from Euclidean space.

• Given a smooth surface S, ∀p ∈ S, there exists a regular patch
σ : U(⊆ R2) → W (⊆ R3) such that σ(U) = S ∩ W,σ : U → S ∩ W is a
homeomorphism.

• Poincaré Metric of H2: gH2 = dx2+dy2

y2 = 1
y2

[
1 0
0 1

]
• The Poincaré metric and the Fisher Information metric coincide, sharing
the same mathematical form

H2 Isometric to Poincaré Disk D

• Poincaré Disc : D = {(x, y) ∈ R2|x2 + y2 < 1} = {z = x + iy ∈ C|zz < 1}
whose Poincaré metric is gD = ds2 = dx2+dy2

(1−x2−y2)2

• Given two smooth surfaces S1 and S2, a smooth map f : S1 → S2 is called
an isometry if it takes any curve in S1 to a curve of the same length in S2.
In other words, isometry preserves geometric structures of surfaces.

• The Cayley Transform

c : H2 → D defined as z 7−→ z − i

z + i
is an isometry from H2 to D.

Space of Normal Distributions Is Isometric to
Hyperbolic Space

Gauss’s Theorema Egregium states that the Gaussian curvautre of a sur-
face depends only on its Riemannian metric (The first fundamental form).

•H2 and D are isometric and their Gaussian curvatures are negative con-
stant.

• By Uniformization theorem, there is only one possible simply-connected
smooth surface whose Gaussian curvature are negative constant up to
isometries.

• Consequently, H2, D with the Poincaré metric, and the space of one-
dimensional normal distributions with the Fisher Information metric are all
regarded as a same smooth surface.

Implication of Differential Geometry in
Statistics

Cramér–Rao Inequality

• A fundamental result in mathematical statistics that provides a
lower bound for the variance of any unbiased estimator of a pa-
rameter.

• Let X be an observation taking values in measurable space (X,B)
whose distribution Pθ depends on an s-variate parameter θ ∈ Θ
and is given by density p(x; θ) = p(x; θ1, ..., θs) with respect to a
measure µ on (X,B)

Pθ(B) =

∫
B

p(x; θ)dµ(x), B ∈ B

Suppose that IX(θ) is positive definite so that I−1
X (θ) exists. The

Cramér-Rao inequality claims that the covariance matrix Vθ̃ of
any unbiased estimator θ(X) of θ is bound from below by I−1

X (θ):

Vθ̃(θ) ≥ I−1
X (θ),

Information Geometry Interpretation

• We can show that this inequality is a direct corollary of the follow-
ing two facts:
1. Monotonicity of I(θ. If S=S(X) is a statistic, then

IS(θ) ≤ IX(θ), (1)

2. In a linear model, if Y is an n-dimensional random vector with

Eθ(Y ) = Aθ, VY (θ) = Eθ(Y − Aθ)(Y − Aθ)′, (2)

Then we have
IY (θ) ≥ A′V −1

Y A, (3)

From (1) and (3), we can derive the Cramér-Rao Inequality.

• The above theorem indicates that the Cramér-Rao Inequality can
be interpreted from a differential geometry perspective as the
comparison between two Fisher Information Metric.
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Basic terminology and notation of surfaces

A surface, at its most general, is a two-dimensional manifold
possibly with boundary, and an orientable surface is one where
the property of chirality is preserved for figures embedded in the
surface. The following fundamental theorem, as often attributed
to Möbius, gives a classification of all compact, orientable, and
connected surfaces:

Theorem: Any closed, connected, orientable surface is home-
omorphic to the connect sum of a 2-dimensional sphere with g ≥ 0
tori. Any compact, connected, orientable surface is obtained from a
closed surface by removing b ≥ 0 open disks with disjoint closures.
The set of homeomorphism types of compact surfaces is in bijective
correspondence with the set {(g, b) : g, b ≥ 0}

g is known as the genus of our surface, and b gives us the
number of boundary components of the surface. Furthermore,
we can create noncompact, orientable surfaces by introducing
"punctures" into these surfaces by removing points from the interior
of the surface. If we were to remove n > 0 points from the interior
of one such surface, we would say the resulting surface had n
punctures.
We then denote a surface of genus g with 0 boundary components
and n punctures as Sb

g,n. For a surface with no boundary compo-
nents, we may simply write Sg,n.

Definition of a Mapping Class Group

Let S be a surface of the form Sb
g,n as defined above. Let

Homeo+(S, ∂S) be the group of all homeomorphisms of S to itself
that restrict to the identity on ∂S, the boundary of S. We define the
mapping class group of S, Mod(S), to be

Mod(S) = π0(Homeo+(S, ∂S)).

In other words, the mapping class group is the group of homeomor-
phisms of S to itself, up to isotopies, or continuous deformations,
between homeomorphisms, that fix the boundary pointwise.
We notice that by the above definitions, punctures in a surface must
be sent to punctures by both the defined homeomorphisms and iso-
topies, but are allowed to be permuted with each other. This is
distinct from the behavior of boundary components, which must be
fixed pointwise. However, like boundary components, we can see
that the requirement of isotopy must leave punctures fixed, as well.

Alexander’s Lemma

Let us begin by computing one particularly easy, yet useful, example of a
mapping class group. Consider the surface D2 ≃ S1

0, which is just the closed
disk, and let ϕ : D2 → D2 be a homeomorphism such that the restriction
ϕ|∂D2 is the identity.
Let us identify D2 with the closed unit disk centered at the origin in R2. Now,
define the following function F : D2 × [0, 1] → D2 for x ∈ D2 and 0 ≤ t ≤ 1:

F (x, t) =

{
(1− t)ϕ( x

1−t) 0 ≤ |x| < 1− t

x 1− t ≤ |x| ≤ 1

We can verify that F (x, 0) = ϕ(x), and that F (x, 1) = x is the identity. Finally,
we show that F (x, t) is an isotopy between the two given homeomorphisms.
To see why, we can consider F to itself be a map of the cylinder D2 × [0, 1]
to itself, as seen below:

Every lateral slice represents a different value of t, going downwards from 0
to 1, and the section of the cone in each slice represents the (1 − t)ϕ( x

1−t)
term, which we can think of as "shrinking" the homomorphism ϕ down to the
origin. Since ϕ is fixed on the boundary ∂D2, we can see that every point on
the boundary of the cone agrees with both the identity map and the scaled
copy of ϕ, and so every lateral slice, corresponding to some value of t, is
itself a homeomorphism. Since the slices continuously vary from t = 0 to
t = 1, we have that F must therefore be a homotopy from ϕ to the identity
on D2.
In particular, we have shown that every member of Homeo+(D2, ∂D2) is iso-
topic to the identity map, and therefore the group Mod(D2) is trivial.
In fact, we can do a similar calculation with a once punctured-disk; by iden-
tifying the punctured disk with the closed unit disk in R⊭ punctured at the
origin, we are able to use the same function F (x, t), and a similar argument,
to show that the mapping class group of the punctured disk is also trivial.

This proof is known as Alexander’s lemma, and it ends up being an invalu-
able tool in the computation of many mapping class groups, as we shall soon
see.

Mapping Class Group of S0,3

We can use Alexander’s Lemma to compute the mapping class
group of the thrice-punctured sphere, S0,3.

Theorem: The natural map Mod(S0,3) → Σ3 given by the ac-
tion of elements of the mapping class group on the surface is an
isomorphism, where Σ3 is the symmetric group on 3 elements.

Proof: We can clearly see that this map is well-defined and
surjective, and that the kernel of this map is the elements of the
mapping class group which fix all 3 punctures individually.
Now, take any homeomorphism ϕ ∈ Homeo+(S0,3, ∂S0,3), such that
ϕ fixes all 3 punctures. Treating the punctures, which we label
p, q, r, as marked points, we let α be a simple arc connecting p
and q. We can see that ϕ(α) is another simple arc, and since the
punctures remain fixed pointwise, we are able to say that ϕ(α)
is another simple arc connecting p, q. We then introduce a the
following proposition:

Proposition: Given ϕ and α defined above, if ϕ(α) and α connect
the same pair of punctures, then there exists a homeomorphism of
S0,3 isotopic to ϕ, which we label ϕ′, which fixes α pointwise.

Assuming this proposition, we need only show that ϕ′ is iso-
topic to the identity. To complete the proof, we need only "cut
open" the surface S0,3 along α. This action produces a once-
punctured disk, with a lone puncture r and a boundary consisting
of two copies of α, and the punctures p, q. ϕ′ then induces a
homeomorphism on the disk, which we denote ϕ̄′, that fixes the
boundary and r. Therefore, we can see that ϕ̄′ is isotopic to the
identity using Alexander’s lemma. This induces an isotopy from ϕ′

to the identity on S0,3, and so we can see that ϕ must therefore be
isotopic to the identity.
Therefore, we have that any homeomorphism from S0,3 to itself that
fixes the punctures is isotopic to the identity. We can thus deter-
mine that this constitutes all the elements that have mapping class
in the kernel of our map Mod(S0,3) → Σ3, and so we determine that
Mod(S0,3) ≃ Σ3.
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Philosophy Of Categories

Mathematician Michael Atiyah once described mathematics as the ”sci-

ence of analogy.” In the samevein, the objective of category theory then

is mathematical analogy.

Thus, rather than characterize mathematical objects directly, the cate-

gorical approach emphasizes the transformations between objects of

the same general type. A fundamental lemma in category theory im-

plies that any mathematical object can be characterized by its repre-

sentations of morphisms to or from other objects of a similar form.

The Recipe For a Category

The contents of a Category are as follows:

A collection of Objects X, Y, Z, . . .

A collection ofMorphisms f, g, h, . . .

so that

Each morphism has specified domain and codomain objects; e.g.

f : X → Y is a morphism with domain X and codomain Y .

Each object has an identity morphism 1X : X → X .

Any pair of morphisms f, g with the codomain of f equal to the

domain of g, there exists a specified composite morphism gf whose

domain is equal to the domain f and whose codomain is equal to the

codomain of g i.e.:

f : X → Y, g : Y → Z  gf : X → Z.

Where two axioms must hold:

For any f : X → Y , the composites 1Y f and f1X are both equal to f .

For any composable triple of morphisms f, g, h, the composites h(gf )
and (hg)f are equal (thus denoted hgf ).

f : X → Y, g : Y → Z, h : Z → W  hgf : X → W.

Types of Categories

Categories assemble various mathematical objects which can be either

concrete or abstract. Concrete categories have underlying sets as ob-

jects and their morphisms as functions between those underlying sets.

Examples include:

Set has sets as its objects and functions, with specified domain and

codomain, as its morphisms.

Top has topological spaces as its objects and continuous functions

as its morphisms.

Graph has graphs as objects and graph morphisms as morphisms.

Other Types of Categories

By contrast, abstract categories do not restrict their morphisms to sim-

ply being functions e.g.:

MatR, for a unital ring R, is the category whose objects are positive

integers and in the set of morphisms from n to m is the set of m × n

matrices with values in R.

A poset (P,≤) can be treated as a category. The elements of P are

the objects and there exists a unique morphism x → y if and only if

x ≤ y.

Duality

For any category C, there is the opposite category Cop which has

the same objects as in C, and
a morphism f op in Cop for each morphism f in C where the domain of

f op is defined to be the codomain of f and the codomain of f op is

defined to be the domain of f i.e.,

f op : X → Y ∈ Cop ! f : Y → X ∈ C

Any theorem quantifying over ”all categories C” then necessarily applies

to the opposite category. So any proof in category theory simultaneously

proves two theorems, the original statement and its dual.

Example: Below is the category C with elements A,B,C and morphisms

f : A → B and g : B → C and its dual Cop.

C Cop

A B C A B C
f g f op gop

Functors and Natural Transformations

A functor F : C → D, between categories C and D, consists of:

An object Fc ∈ D, for each object c ∈ C.
A morphism Ff : Fc → Fc′ ∈ D, for each morphism f : c → c′ ∈ C, so
that the domain and codomain of Ff are equal to F applied to the

domain or codomain of f .

A natural transformation α : F ⇒ G between two functors F, G : C → D
is a family of morphisms αA : F (A) → G(A), where A is an object in C,
such that for every morphism f : A → B in C, the following diagram

commutes:

F (A) F (B)

G(A) G(B)

αB

G(f )

αA

F (f )

The Yoneda Lemma

Lemma: Let C be a locally small category, and let A be an object in C.
For any functor F : C → Set, there is a natural bijection between the

set of all natural transformations Nat(Hom(A, −), F ) and the set F (A).
In other words, we have:

Nat(Hom(A, −), F ) ∼= F (A)
where Nat(Hom(A, −), F ) represents the collection of all natural trans-

formations from the covariant hom functor Hom(A, −) to the functor

F .

Applications of Yoneda Lemma

The Yoneda Lemma is a fundamental result in category theory that estab-

lishes a powerful connection between representable functors and natural

transformations. Here are some significant applications:

Use in Category Theory: Provides a way to characterize the structure

of categories and to establish isomorphisms between different

categories

Functorial Semantics: Allows us to represent types and operations in

a programming language as functors and natural transformations,

allowing us to study their behavior and interactions

Universal Algebra: Helps in characterizing and understanding the

universal properties of algebraic objects, such as groups, rings, and

modules

Data Analysis and Machine Learning: Provides a theoretical

foundation for understanding the relationship between data points,

features, and transformations

Type Theory and Programming Languages: Helps in understanding

the relationship between types and programs, and in the design of

expressive and powerful type systems

Quantum Information Theory: Establishes connections between

quantum channels and their representations as exclusively positive

trace-preserving maps

Acknowledgements

We would like to thank our graduate mentor, Andres Barei, and the DRP

community for the great opportunity to learn and delve deeper into some

new math! Andres was very helpful through this process and made the

experience super enjoyable.

References

[1] Emily Riehl.

Category Theory In Context.

Dover Publications Inc., 2017.



Category Theory and the Snake Lemma
Theodore Bafrali, Jackson Weidmann, Adrian Weitzer. Mentor: Jeremy Brightbill

2023 Mathematics Directed Reading Program.

Category Theory and the Snake Lemma
Theodore Bafrali, Jackson Weidmann, Adrian Weitzer. Mentor: Jeremy Brightbill

2023 Mathematics Directed Reading Program.

Categories

A category C is the following data:
(i) A collection Ob(C ), called objects of C .

(ii) For any two objects A,B of C , a collection HomC (A,B) of mor-
phisms/arrows f from A to B, denoted A → B, f : A → B, or

A
f→ B.

(iii) A composition law ◦ : HomC (A,B) × HomC (B,C) →
HomC (A,C), written as ◦(f, g) = g ◦ f or gf . Additionally ◦ must
satisfy

h ◦ (g ◦ f ) = (h ◦ g) ◦ f
whenever all the compositions are defined.

(iv) For every object A of C there exists a morphism 1A ∈ HomC (A,A)
called the identity (on A) satisfying:

1A ◦ f = f, g ◦ 1A = g

for all morphisms f ∈ HomC (B,A) and g ∈ HomC (A,C).

A collection of morphisms, e.g., f : A → B, g : A → C, h : C → D,
and k : B → D, may be arranged in a diagram:

A B

C D

f

g k

h

Fig. 1: Diagram

We say this diagram commutes if k ◦ f = h ◦ g.
Some example of categories:

(i) Top The category of topological spaces and continuous maps.

(ii) R-Mod The category of left R modules and R-homomorphisms.

(ii) Define a category C with objects the positive integers and

HomC (n,m) =

{
{∗} if n | m
∅ otherwise

(Co)Limits

(i) Given an indexing set I and a family of objects (Ai)i∈I in C , A prod-
uct of (Ai)i∈I is a pair (

∏
Ai, (πi)i∈I), where

∏
Ai ∈ Ob(C ) and

πi ∈ HomC (
∏

Ai, Ai) for every i ∈ I , and such that if (T, (ti)i∈I)
is another pair also satisfying these conditions, there exists a unique
morphism r : T →

∏
Ai making Figure 2 commute for every i ∈ I .

(ii) Given the diagram

Y Z X
g f

A pullback is an object P and morphisms f̃ : P → Z, g̃ : P → Y
such that f ◦ f̃ = g ◦ g̃, and for any T and ft, gt with the same
properties there is a unique φ ∈ HomC (T, P ) such that Figure 4
commutes.

These are special cases of ”categorical limits”and they recover important
constructions in many disciplines. In Top the product is the product
space. In the category C , the product of the integers {ni} is∏

i∈I

ni = GCD(ni)

∏
Ai

T Ai

πir

ti

Fig. 2: Product

Ai T

∐
Ai

ti

ιi
u

Fig. 3: Coproduct

We can dualize(reverse all the arrows) in the above
definitions and get examples of ”categorical colimits”:

(i) A coproduct of (Ai)i∈I is a pair (
∐

Ai, (ιi)i∈I)
with

∐
Ai an object and ιi : Ai →

∐
Ai mor-

phisms such that for any other pair (T, (ti)i∈I) of
an object T and morphisms ti : Ai → T , there ex-
ists a unique morphism u : C → T making Figure
3 commute for every i ∈ I .

(ii) Given the diagram

Y Z X
fg

A pushout is an object P and morphisms f̃ : P →
Z, g̃ : P → Y such that f̃◦f = g̃◦g, and for any T
and ft, gt with the same properties there is a unique
φ ∈ HomC (P, T ) such that Figure 5 commutes.

Going back to our examples in Top, the coproduct is
the disjoint union with the disjoint union topology, and
in the category C ,∐

i∈I

ni = LCM(ni)

When a (co)limit exists, it is unique up to unique iso-
morphism.

T

P X

Y Z

φ

f

g

f̃
g̃

gt

ft

Fig. 4: Pullback

Z X

Y P ′

T ′

ft

φ

f̃

g̃

gt

g
f

Fig. 5: Pushout

Abelian Categories

We can also consider categories that have more struc-
ture, with an addition defined on the morphism sets
and (co)kernels with nice properties. First define

(i) A zero object for C , denoted by 0, is an object
such that for every object X of C there are unique
morphismsX → 0 and 0 → X . Similarly, the zero
morphism 0XY : X → Y is the unique morphism
X → 0 → Y .

(ii) A kernel of a morphism f : X → Y is a pullback

of X Y 0
f 0

(iii) A cokernel of a morphism f : X → Y is a pushout

of Y X 0
f 0

(iv) An image of a morphism f : A → B is a kernel
of the cokernel of f .

(v) A coimage of a morphism f : A → B is a cokernel of the
kernel of f .

An Abelian category is defined by requiring a category satisfy
a sequence of conditions:

(i) A preadditive category is a category C such that the mor-
phism sets are abelian groups under an operation + and for
all morphisms f, f1 ∈ HomC (A,B), h, h1 ∈ HomC (C,A)

(a) (f + f1) ◦ h = (f ◦ h) + (f1 ◦ h)
(b) f ◦ (h + h1) = (f ◦ h) + (f ◦ h1).

(ii) An additive category is a preadditive category with a zero
object in which every nonempty, finite collection of objects
admits a product.

(iii) An abelian category is an additive category where every
morphism f has a kernel and cokernel and there is a unique
isomorphism θ such that im(f ) ◦ θ ◦ coim(f ) = f

In an abelian category, a morphism f is called an epimor-
phism/epi(resp. monomorphism/mono) if coker f = 0 (resp.,
ker(f ) = 0. Epis/Monos are denoted by ↠/↪→.

Within an abelian category A consider the sequence of objects:

0 A B C 0
f g

Fig. 6: Exact Sequence

This sequence is called exact at B if ker(g) = im(f ). It is
called a short exact sequence if additionally f is a monomor-
phism and g is an epimorphism.
A longer diagram is called exact if it is exact at every position.

The Snake Lemma

Theorem.(The Snake Lemma) In an abelian category A if the
diagram

0 A1 B1 C1 0

0 A2 B2 C2 0

f1

α

g1

β γ

f2 g2

commutes and has exact rows, there is a connecting morphism
δ : ker(γ) → coker(β) giving the following exact sequence

0 ker(α) ker(β) ker(γ)

coker(α) coker(β) coker(γ) 0
δ

Schanuel’s Lemma. The snake lemma provides a quick proof
of many different diagram lemmas.
First we introduce the concept of a projective object in an
abelian category A . There are two equivalent definitions for
projective P . Let N,X be any objects in A .

• If we have an epi, h, there exists f ′ such that Figure 9
commutes

• If we have an exact sequence as in Figure 10, then N ≃
X ⊕ P (⊕ denotes product/coproduct, which coincide in
abelian categories).

N

P X
f

h
f ′

Fig. 9:

X N P
f g

Fig. 10:

Schanuel’s lemma states that if we have two exact sequences
like below, then K ⊕ P ′ ≃ K ′ ⊕ P .

K ′ P ′ M,
f ′ g′

K P M
f g

We can construct the second row of this diagram to be exact
using the properties of the product. We can then find the map
K⊕P ′ → P using the properties of the product and projective
modules. The snake lemma connects the top and bottom rows
to form an exact sequence which gives that ker(h) = K and
cokerh = 0.

0 ker(h) K

0 K K ⊕ P ′ P ′ 0

0 K P M 0

0 coker(h) 0

πPιK

gf

g′1 h
ḡ

Third Isomorphism Theorem This result is often seen
in group theory, but it also applies more generally to any
abelian category. The theorem states that given groups T ⊂
S ⊂ M with T, S normal in M , we get an isomorphism
(M/T )/(S/T ) ≃ (M/S).
In an abelian category A , suppose we haveM,S, T and σ◦η =
τ (note τ = τ ◦ 1), from the diagram below. As mentioned
earlier we can create the quotientsM/T and S/T which makes
the middle two rows of the diagram exact. The properties of
cokernels give us a map S/T → M/T , and we have the setup
for the snake lemma. The exact sequence given by the snake
lemma shows that K = 0 and M/S ≃ (M/T )/(S/T ).

0 0 K

0 T S S/T 0

0 T M M/T 0

0 M/S (M/T )
(S/T ) 0

τ

σ

η

1
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Linear Equations

Given two whole numbers a and b, we are going to look at all the possible num-
bers we can get by adding a multiple of a to a multiple of b. In other words, we
will consider all numbers obtained from the formula:

ax + by

Every number of the form ax + by is divisible by gcd(a, b), since both a and b are
divisible by gcd(a, b). In Conclusion, the smallest positive value of ax+ by is equal
to gcd(a, b) .
We will use the Euclidean algorithm to find integers x and y that are solutions to
the equation

ax + by = gcd(a, b)

We are going to start by illustrating the Euclidean algorithm method for solving
ax + by = gcd(a, b) with a particular example:

22x + 60y = gcd(22, 60)

60 = 2× 22 + 16

22 = 1× 16 + 6

16 = 2× 6 + 4

6 = 1× 4 + 2

4 = 2× 2 + 0

We can summarize the above computation in the following efficient tabular form.
Note that the left-hand equations are the Euclidean algorithm, and the righthand
equations compute the solution to ax + by = gcd(a, b).

a = 2× b + 16 16 = a− 2b

b = 1× 16 + 6 6 = b− 1× 16

= b− 1× (a− 2b)

= −a + 3b

16 = 2× 6 + 4 4 = 16− 2× 6

= (a− 2b)− 2× (−a + 3b)

= 3a− 8b

6 = 1× 4 + 2 2 = 6− 1× 4

= (−a + 3b)− 1× (3a− 8b)

= −4a + 11b

4 = 2× 2 + 0

Eventually, we get down to the last nonzero remainder, which we know is equal to
gcd(a, b), and this gives the desired solution to gcd(a, b) = ax + by. This process
is summarized in the Linear Equation Theorem. For nonzero integers a and b,
and let g = gcd(a,m). The equation

ax + by = g

always has a solution (x0, y0) in integers that can be found by using the Euclidean
Algorithm .

Extension to Linear Equation Theorem

Given the Linear Equation Theorem, we may want to figure out that, under what conditions
on a,b,c, the equation

ax + by + cz = 1

has a solution. Suppose that (x0, y0) is a solution to

ax + by = gcd(a, b)

Then by the Linear Equation Theorem, there exist a solution (w0, z0) to

gcd(a, b)w + cz = gcd(gcd(a, b), c) = gcd(a, b, c)

Hence, there exist a solution (x0, y0, z0) to

axw + byw + cz = gcd(a, b, c)

So the equation
ax + by + cz = 1

always has a solution if gcd(a, b, c) = 1.

Fermat’s Little Theorem

Fermat’s Little Theorem
Let p be a prime number, and let a be any number with a ̸≡ 0(mod p). Then

ap−1 ≡ 1(mod p).

Before giving the proof of Fermat’s Little Theorem, we want to indicate its power and show
how it can be used to simplify computations. As a particular example, consider the congru-
ence

622 ≡ 1(mod 23).

This says that the number 622−1 is a multiple of 23. If we wanted to check this fact without
using Fermat’s Little Theorem, we would have to multiply out 622, subtract 1, and divide by
23. Here’s what we get:

622−1 ≡ 23× 5722682775750745

Now we are ready to prove the theorem. First, we may want to introduce a lemma that
helps us with the proof. However, we will skip the verification of the lemma due to space
constraint.
Lemma Let p be a prime number and let a be a number with a ̸≡ 0 (mod p). Then the
numbers

a, 2a, 3a, ..., (p− 1)a (mod p)

are same as the numbers
1, 2, 3, ..., (p− 1) (mod p),

although they may be in a different order.
Using the lemma, it is easy to finish the proof of Fermat’s Little Theorem. By the lemma, we
know that a, 2a, 3a, ..., (p− 1)a (mod p) and 1, 2, 3, ..., (p− 1) (mod p), are the same. Thus,

a · (2a) · (3a) · · · ((p− 1)a) ≡ 1 · 2 · 3 · · · (p− 1) (mod p).

Now if we factor our p− 1 copies of a from the left-hand side of the equation, we will get

ap−1 · (p− 1)! ≡ (p− 1)! (mod p).

Since (p−1)! is relatively prime to p, we are able to cancel it from both sides of the equation
to obtain Fermat’s Little Theorem,

ap−1 ≡ 1 (mod p).

Congruences

We say that a is congruent to b modulo m, and we write a ≡ b(modm). Before
giving the general theory, let’s try an example. We will solve the congruence

18x ≡ 8(mod 22)

This means we need to find a value of x with 22 dividing 18x− 8, so we have to
find a value of x with 18x− 8 = 22y for some y. In other words, we need to solve
the linear equation

18x− 22y = 8

Using the Linear Equation Theorem we can solve the equation

18u− 22v = gcd(18, 22) = 2,

and indeed we easily find the solution u = 5 and v = 4. But we really want the
right-hand side to equal 8, so we multiply by 4 to get

18× (5× 4)− 22× (4× 4) = 8

Thus, 18 × 20 ≡ 8 (mod 22), so x ≡ 20 (mod 22) is a solution to the original
congruence. We will soon see that this congruence has two different solutions
modulo 22; the other one turns out to be x ≡ 9 (mod 22). Suppose now that we
are asked to solve an arbitrary congruence of the form

ax ≡ c (modm)

Linear Congruence Theorem
Now we generalize the solution from the example above to solve an arbitrary
congruence of the form

ax ≡ c (modm)

where a,c m are integers with m ⩾ 1, and let g = gcd(a,m). Rearranging
this equation, we find that ax ≡ c (modm) if and only if the linear equation
ax − my = c has a solution. By the Linear Equation Theorem, we know that
there is always a solution to the equation

au +mv = g

Suppose g divides c, if we multiply this equation by the integer c
g to obtain

a

(
cu

g

)
+m

(
cv

g

)
= c

Thus, x0 ≡ cu
g (modm) is a solution to the congruence ax ≡ c(modm) and

x ≡ x0 + k · m
g

where k = 0, 1, ......, g − 1.
If g does not divide c, however, then the congruence ax ≡ c (modm) has no
solutions.
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Introduction

A (rational) elliptic curve is a curve given by points
(x, y) in the plane satisfying an equation

y2 = x3 + ax + b (a, b ∈ Q)

that is typically in one of the two shapes. The study
of elliptic curves has garnered significant attention for
its involvement in crucial theorems, notably including
the proof of Fermat’s Last Theorem, a renowned prob-
lem unsolved within 350 years since proposed. Ad-
ditionally, the inherent fascinating properties of elliptic
curves make them an intriguing subject for investiga-
tion in their own right.
In this expository writing, we focus on the unique fea-
tures that make elliptic curves stand out-the group structure on elliptic
curves. Simply put, we would like to find a reasonable way to ‘add’ two points
on an elliptic curve to get another, in such a way that this addition satisfies all
desired properties such as associativity. Let C denote an elliptic curve.

A geometric approach

Fix a point O on C. Starting with two points P and Q, let P be intersection of
line PQ and C. Define P +Q = O ∗ (P ∗Q). If P = Q, we can take the tangent
line of C at P in place of PQ.

Now, we show the above addition satisfies the following properties.
Identity element: Identity element is O, with P +O = P for all P .
Inverse element: For any Q on C, let −Q = Q∗(O∗O). Then, Q+(−Q) = O.
Commutativity: P +Q = Q + P since line PQ = QP .
Associativity: Let P,Q, and R be three points on the curve. We want to
prove that (P + Q) + R = P + (Q + R). By definition, we only need to prove
(P + Q) ∗ R = P ∗ (Q + R). In the figure, there are 10 points O,P,Q,R,
P ∗ Q, P + Q, Q ∗ R, Q + R, P ∗ (Q + R) and (P + Q) ∗ R, each of the first
8 lying on one of the dashed lines and one of the solid lines by construction,
and our goal is to show the 9-th point agrees with the 10-th. We can regard C1,
the union of the three dashed lines, and C2, the union of the three solid lines,
both as cubic curves since their equations are given by products of 3 linear
equations. Now, the cubic curve C intersects both C1 and C2 at the 8 points
O,P,Q,R, P ∗ Q,P + Q,Q ∗ R,Q + R. A theorem of Bèzout then says that
the 9-th intersection of C and C1 must agree with the 9-th intersection of C and
C2, that is, (P +Q) ∗R = P ∗ (Q +R).

An analytic approach

The goal is to define the addition on the ellipse curve. Instead of looking at the curve
directly, we first look at the addition on a parallelogram at the origin.
Addition on a parallelogram
For points u and v inside a parallelogram, we have the usual vec-
tors addition. But if u+ v is out of this parallelogram, we need to
find a new u + v inside this parallelogram. We consider all par-
allelograms in this plane as equavelent by allowing translation.
In this way we can find a new u + v in the origin parallelograms
which is a shift of the ”u + v” outside the parallelogram.
Mapping parallelogram to elliptic curve
Consider the function: ℘ : C −→ C by ℘(u) = 1

u2
+∑

ω∈L(
1

(u−ω)2
− 1

ω2
), where L is the set of endpoints of all parallelograms except the

origin. Note that if we replace u by a correpsonding point in a different parallelogram,
we will get the same summation(just shifting the summands)! Thus the values of ℘ on
all parallelograms agree and we can consider it as a function from one parallelogram to
C. Computation yields an differential equation: ℘′(u)2 = 4℘(u)3 − g2℘(u) − g3 for any
u ∈ C. Thus every complex number u in the parallelograms has a corrosponding point
Q(u) = (℘(u), ℘′(u)) on a curve y2 = 4x3− g2x− g3 which is essentially an elliptic curve.
Defining the addition on elliptic curve
It turns out that the map Q is onto and one to one. There is then a natural addition on
ellipse curve P coming from the one on a parallelogram: For points A = Q(u), B = Q(v)
correpsonding to u, v, simply define A +B to be Q(u + v)!

An algebraic approach

As before, we will first consider a seemingly irrelevant group that will lead to a solution
eventually. Note that all we need is to find a bijection from the points on C to something
that is already a group!
The divisor group Div
We define a divisor group DivC consisting of elements of the form

D = a1P1 + ... + amPm

where Pi ∈ C with integer coefficients ai. Obviously, divisors can be added and sub-
tracted. Let D,D′ ∈ DivC,D′ = a′1P1 + ... + a′mPm. We can easily conclude that

D +D′ = (a1 + a′1)P1 + ... + (am + a′m)Pm = D′ +D

The group Pic0

However, DivC is too big for our problem-solving; we need a smaller group. We identify
D and D′ if they differ by "plus or minus zeros counted with multiplicities" of a polynomial.
For example, consider the polynomial f = (x− y)2(x− 2y). Let P1, P2, P3 be points on C
satisfies x− y = 0, Q1, Q2, Q3 be points on C satisfies x− 2y = 0. If D and D′ differ with
2(P1+P2+P3) +Q1+Q2+Q3, then they are equivalent. It turns out that the equivalent
classes of D = a1P1+ ...+ amPm satisfying a1+ ...+ an = 0 is the correct thing. We call
it Pic0C. Let P0 ∈ C be a point. Then the map

C → Pic0C, P 7→ P − P0

can be shown to be a bijection.

Rational points on elliptic curves

If a point has rational x-coordinate and y-coordinate, we call it a rational point. We
mention here that all three approaches before essentially define the same ad-
dition on elliptic curves. In what follows we take the geometric approach. If we
start from P and Q that are both rational, to find the x-coordinate of P ∗ Q, we need
to solve a cubic equation with rational coefficients, obtained by solving the system of
equations for line PQ and C(both with rational coefficients). Since P and Q has ra-
tional x-coordinates, by Vieta theorem, P ∗ Q must have rational x-coordinate. Since
P ∗ Q is on a rational line, it must have a rational y-coordinate, too. Thus P ∗ Q is
rational. Similarly, P +Q = (P ∗Q) ∗O must be rational .
Upshot: if P ,Q are rational, so is P +Q.

An arithmetic application

Can you find positive integers a, b, c such that

a

b + c
+

b

c + a
+

c

a + b
= 4?

It is not complex to find a solution which are integers,
such as a = 4, b = −1, c = 11. However, it is hard to
find a positive integer solution by simple calculation
or even using computers. In this case, we need to
use some other methods. Let x =

−28(a+b+2c)
6a+6b−c and

y =
364(a−b)
6a+6b−c.

We can show that x and y satisfy an equation y2 = x3 + 109x2 + 224x, which is an
elliptic curve. In fact, we can also recover (a, b, c) from (x, y):

a =
56− x + y

56− 14x
, b =

56− x− y

56− 14x
, c =

−28− 6x

28− 7x

Through the equation above, we can see that there exists a bijection between the set
of rational points on the curve and the (rational) solution set {a, b, c}. By observation,
we can find a solution a = 4, b = −1, c = 11 which are integers, but they are not all
positive. From this solution, we can find a rational point P on the elliptic curve. Now
by addition defined in the previous sections, we can find other rational points 2P, 3P ,
and so on with their corresponding a, b, c. In some cases, the a, b, c might be rational
but not integers. In these cases, we can multiply a, b, c with (56− 14x). Then, they will
be integers. Now for 2P, 3P, ..., we compute their corresponding a, b, c and ask if they
are all positive with the help of computer programs, until we eventually find the a, b, c
corresponding to 9P that are all positive: (a, b, c) =

(154476802108746166441951315019919837485664325669565431700026634898253202035277999,

36875131794129999827197811565225474825492979968971970996283137471637224634055579,

4373612677928697257861252602371390152816537558161613618621437993378423467772036)
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What is PSL(2, R)?

Let us start by defining SL(2,R), the matrix group representing all real 2x2 ma-
trices with determinant 1. Note that the determinant of a matrix product is the
product of the determinants, satisfying closure.

SL(2,R) :=
{[

a b
c d

] ∣∣∣∣a, b, c, d ∈ R, ad− bc = 1

}
.

PSL(2,R) is simply SL(2,R)/{±I}. In this way, SL(2,R) can be thought of as
two copies of PSL(2,R), so we can learn about PSL(2,R) by studying SL(2,R).
Consider the characteristic polynomial of A ∈ SL(2,R):
det(A− λI) = (a− λ)(d− λ)− bc = λ2 − (a + d)λ + ad− bc = λ2 − tr(A)λ + 1,
which has roots

λ =
tr(A)±

√
tr(A)2 − 4

2
.

Note that the discriminant is imaginary when |tr(A)| < 2, 0 when |tr(A)| = 2, and
positive real when |tr(A)| > 2. These cases describe a classification of SL(2,R)
as transformations on R2. Quotienting SL(2,R) by {±I} will give us a convenient
relationship between PSL(2,R) and isometries of the hyperbolic plane H2.

Relation to Hyperbolic Geometry

Let us use Poincaré’s upper half-plane model to represent H2, which has space U
and transformation group U . U = {z ∈ C| Im(z) > 0}, and this has metric ds2 =
(dx2+dy2)/y2 with ideal points on the x-axis and at ∞. The group U is all Möbius
transformations T such that T (U) = U, called an isometry. We can associate
every A ∈ PSL(2,R) with an orientation-preserving Möbius transformation:

TA(z) 7→
az + b

cz + d
∈ U .

To classify these, let us consider the following subsets of SL(2,R):{[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] ∣∣∣∣θ ∈ R
}
,

{[
1 t
0 1

] ∣∣∣∣t ∈ R
}
,

{[
r 0

0 1
r

] ∣∣∣∣r ∈ R, r > 0

}
.

Figure 1: Elliptic

Figure 2: Parabolic

Figure 3: Hyperbolic

SL(2,R) can actually be expressed as a prod-
uct of these three sets. Disregarding the identity,
these subsets are distinct and correspond to the
three types of isometries of U, which are elliptic,
parabolic, and hyperbolic, respectively.
An element from each is visualized to the right, with
bolded lines denoting orbits of the corresponding
transformation on U.
Elliptic Möbius transformations are characterized by
tr < 2 and have one interior fixed point. In Fig 1,
this point is i, and the orbits are circular.
Parabolic Möbius transformations are characterized
by tr = 2 and have one boundary fixed point. In Fig
2, this point is ∞, and the orbits are horizontal.
Hyperbolic Möbius transformations are character-
ized by tr > 2 and have two boundary fixed points.
In Fig 3, these points are 0 and ∞, and the orbits
are radial.
It turns out that every element of PSL(2,R) is
conjugate to a member of one of the three sets.
PSL(2,R) is a useful tool for studying H2 as it rep-
resents precisely its set of isometries.

Lie Algebra of PSL(2, R)

We can also learn about PSL(2,R) by investigating the Lie algebra of SL(2,R).
Let K ∈ {R,C}. The Lie algebra of a matrix group G ⊆ GLn(K), where GLn(K) is the
group of invertible n by n matrices, is the tangent space to G at I, denoted

g := g(G) := TI(G) := {γ′(0)|γ : (−ϵ, ϵ) → G differentiable and γ(0) = I}.

Figure 4: Visual of a manifold

We can think of a matrix as living in Kn2, where
the tangent vector at any point is also matrix. In
this way, we can view matrix groups as manifolds,
in which the dimension of the Lie algebra defines
the dimension of the manifold which is equivalent
to that of the matrix group. In the case of SL(2,R),
the Lie algebra is denoted sl(2,R) and is the set
of all traceless 2x2 matrices. To see why, we
can prove that for any differentiable γ : (−ϵ, ϵ) →
Mn(K) where γ(0) = I, we have

d

dt

∣∣∣∣
t=0

det(γ(t)) = tr(γ′(0)).

For any γ′(0) ∈ sl(2,R), we know γ(t) ∈ SL(2,R)
which means det(γ(t)) = 1 and subsequently has
derivative 0, so tr(γ′(0)) = 0. Now we have

sl(2,R) =
{[

a b
c d

] ∣∣∣∣a, b, c, d ∈ R, a + d = 0

}
,which has basis

{[
1 0
0 −1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]}
.

Thus we can think of SL(2,R) as a 3-dimensional manifold which is embedded in R4.
Another useful way to explore the relationship between matrix groups and their Lie algebra
is through matrix exponentiation, which is defined for all A ∈ Mn(K) by

eA = I + A +
1

2!
A2 +

1

3!
A3 + . . . =

∞∑
k=0

1

k!
Ak.

It turns out that when applied to an element of a Lie algebra, this exponential map gives us
an element of the corresponding matrix group. This also solidifies the connection between
addition in a Lie algebra and multiplication in the matrix group, since as one might expect
eA+B = eAeB for all A,B ∈ Mn(K).
One can also prove that det(eA) = etr(A) for all A ∈ Mn(K), verifying that the exponential
map sends elements A ∈ sl(2,R), which have tr(A) = 0, to elements eA ∈ SL(2,R) with
unit determinant.
A Lie algebra g also comes with an additional operation to the vector space structure. This
operation is called the Lie bracket which is an R-bilinear form denoted

[·, ·] : g× g → g, where [A,B] = AB −BA for allA,B ∈ g.

Note that tr[A,B] = tr(AB − BA) = tr(AB) − tr(BA) = 0, which verifies that the Lie
bracket sends two elements of sl(2,R) to sl(2,R).
Moving from SL(2,R) to PSL(2,R), notice that we have an immersive inclusion mapping f
between PSL(2,R) and SL(2,R) so for any γ : (−ϵ, ϵ) → SL(2,R) satisfying γ(0) = I, we
can generate psl(2,R) by considering the elements (f◦γ)′(0) to generate psl(2,R). Through
the same means as to determine the structure of sl(2,R), we can find that composing γ and
f does not impact the contents of the lie algebra described so we find sl(2,R) = psl(2,R)
so in general, we just consider sl(2,R).

Conjugacy Class Structure

In order to describe the conjugacy classes of PSL(2,R), we first must de-
fine a few maps. First, we pick any g ∈ PSL(2,R) to be the group element
whose conjugacy classes we are looking at. We define the first map to be
π : PSL(2,R) → PSL(2,R)/C(g), where π(A) = A · C(g) to be the typical
coset mapping of PSL(2,R) to its quotient group. Next, we note that we have a
bijection between our quotient group and the set of the conjugacy classes of g,
Conj(g). In order to make sense of what this means, we first note that as C(g)
is closed, the Closed-Subgroup Theorem tells us that PSL(2,R)/C(g) is in fact
a manifold as well so due to the existence of this bijection, we also have a diffeo-
morphism f between these two spaces and so Conj(g) is both a manifold and
has the same dimension as our quotient group. It is important to note though
that when looking at the images of f and ϕg, we will need to choose representa-
tives of each of these cosets in the quotient group in order to ensure our maps
are well-defined.

PSL(2,R) PSL(2,R)/C(g) Conj(g)

PSL(2,R)

ϕg

π f

ι

Now, we investigate the differential map dϕg : sl(2,R) → sl(2,R) · g. The kernel
of this map will tell us exactly how many fewer dimensions the image of ϕg is
than its domain. As it turns out, this kernel is exactly the centralizer of g which
we already know to be one dimensional so then the image of dϕg, and thus that
of ϕg, is two dimensional so ϕg is a submersion into a two dimensional subman-
ifold of PSL(2,R). As f is known to not be a subersion and ι is an immersion, it
follows that π must be a submersion thus PSL(2,R)/C(g) ∼= Conj(g) must be
two-dimensional as ϕg is just the composition of our other three maps.
As an example, we can look at the picture below to see how these maps
transform the circle C centered at 2 + 2i ∈ U first by the Möbius transformation

that can be represented by the matrix g =

[
2 0

1 1
2

]
which has its image repre-

sented by the curve Tg. Furthermore, we also have the images of C under the

conjugation of the elliptic element
[
0 −1
1 0

]
denoted TE, the hyperbolic element[

2 0

0 1
2

]
denoted TH , and finally the parabolic element

[
1 1
0 1

]
with image denoted

TP .
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Introduction

An artificial neural network is a computational model that is based on organic
neural networks in brains. A human brain is robust, efficient and flexible at achiev-
ing many tasks, including being able to associate unrelated concepts with each
other. One of the earliest model neurons that was designed to emulate associa-
tive memory is the McCulloch-Pitts model.

n1 w12 =  w21

n2n5

n3n4

Each model neuron takes a value of −1 or 1, based on a weighted sum of the
values of all other neurons. Note that all neurons are pairwise connected in this
model. The value is determined by the following update rule:

ni(t + 1) = sgn

 N∑
j=1

[
wijnj(t)

]
+ bi

 = sgn(hi) (1)

Where:

• ni = ith neuron, which takes on one of two values {−1, 1}.

• t = current time iteration/step. We will always start with t = 0.

• wij = weight describing how ni is affected by nj.

• bi = bias term for ni. This is a real-valued constant that can change the
activation threshold for each neuron. For simplicity’s sake, we can let bi = 0.

• N = length of patterns. In this case, it is also the number of neurons.

• hi =
∑N

j=1

[
wijnj(t)

]
+ bi, which is a shorthand for the expression inside of

the sign function.

The neurons can update synchronously, which means all at the same time, or
asynchronously, meaning that only one neuron is updated at each time step.
These choices are equivalent.

The Discrete Hopfield Model

The Hopfield Model is a neural network designed to model associative memory
using McCulloch-Pitts neurons with predetermined weights. Fundamentally, the
associative memory problem states that given a set of p patterns {ξ1, . . . , ξp} ⊆
{−1, 1}N to "remember," when a new pattern ζ is inputted into the network, it
should output one of the stored patterns that best resembles ζ. We define the
weights

wij =
1

N
·

p∑
µ=1

ξ
µ
i ξ

µ
j

which are chosen in accordance with Hebb’s Law of Association. At each time
step, the state of the network can be described by the following real-valued func-
tion H, which is referred to as an energy function:

H(t) = −1

2

N∑
i=1

N∑
j=1

wij · ni(t)nj(t) (2)

An application of the triangle inequality shows that the energy function is
bounded. It is simple to show that the energy function decreases as the system
updates, which means that (2) is a Lyapunov Function. Therefore, the system
always converges to a local minimum of the energy function, or the attractors of
the network, which is the final output.

By construction, the stored patterns {ξ1, . . . , ξp} are local minima of H, but they are not the
only attractors. It is clear from the definition of (2) that −ξµ and ξµ have the same energy,
so the reverse of a stored pattern is also an attractor.

Figure 1: Basins of Attraction over {−1, 1}10
As it turns out, linear combina-
tions of an odd number of stored
patterns are also local minima,
referred to as mixture states. At-
tractors that are not stored pat-
terns are referred to as spuri-
ous states. These patterns have
relatively small basins of attrac-
tion compared to the stored pat-
terns (as shown in Figure 1),
but the existence of these states
imply that this model does not
work perfectly. One can reduce
the basins of attraction for spuri-
ous states by changing the bias
terms bi of (1), or by introducing
stochasticity.

Figure 2: Image Samples
(a) Controlled Inputs (b) Random Inputs

Figure 1 shows each attractor of a model trained on 2
stored patterns (in blue). The model computed the stable
state of every element in {−1, 1}10.
Figure 2 shows a model trained on 3 black and white
50 × 50 ({−1, 1}2500) images. (a) shows the result of
controlled inputs, giving us our 3 learned patterns. (b)
shows the result of 3 random inputs. The first two out-
puts are opposite attractors, while the third is a spurious
attractor.

The Continuous Case

In most scenarios, binary sequences do not accurately represent real-world patterns. Thus,
it useful to generalize our pattern space from {−1, 1}N to [−1, 1]N , thereby allowing our
neurons to take on a continuum of values.

A useful continuous variant of (1) we will use is

τi
dni
dt

= −ni(t) + σ

 N∑
j=1

wij · nj(t)

 (3)

Where τi is a time constant, chosen such that (3) admits a stable system, and where σ is a
strictly increasing, differentiable, and bounded function between −1 and 1 (e.g. tanh). For a
discussion on how to obtain suitable τi, refer to Hertz and Krogh (1991).

As a result, we can obtain a new energy function similar to (2), given by

Hc(t) = H(t) +

N∑
i=1

∫ ni(t)

0
σ−1(x)dx (4)

Note that even though (3) and (4) suggests a continuous time domain, in practice we will
still operate with discrete values of t. One can obtain an update rule by applying numerical
methods.

Figure 3: Sample Energy Function
Figure 3 shows an example of an energy function defined
over [−1, 1]2. The minima of the graph are attractors of
the system. The blue areas are basins of attraction for
each of these attractors; patterns that are equidistant to
these basins of attraction are spurious states.

Stochasticity

To minimize the appearance of spurious states, we can introduce a notion of
randomness. We consider a new parameter β ∈ [0,∞], inspired by statistical
mechanics. The update rule for each neuron ni becomes the following:

Prob(ni = ±1) = fβ(±hi) =
1

1 + exp(∓2βhi)

Each spurious state has a "critical point" such that sufficiently chosen β less than
the critical value ceases it from functioning as an attractor. However, making β
too small will increase the amount of noise (and thus, unwanted attractors).

The graph above displays fβ with different parameters. As β → ∞, fβ becomes
deterministic. An optimal β can be found through numerical methods.

Dense Associative Memories

The maximum number of patterns that can be recalled within a certain error
threshold, referred to as the storage capacity, is relatively small in the standard
Hopfield Model. In the following table, Perror denotes the probability of error per
neuron, pmax denotes the storage capacity and N is the number of neurons.

n1 n2

n3

n1 n2

n3

Note that we use the Gauss error function to compute Perror. After some com-
putations, we get that pmax = N/2 logN . A Dense Associative Memory is a
generalization of the Hopfield Model that significantly increases the storage ca-
pacity by increasing the number of neurons that are connected to each other per
connection. The energy function is generalized to the following:

E = −
p∑

µ=1

F

∑
i

ξ
µ
i ni


where F is a function depending on the interaction between the neurons. In
the image above, a cubic interaction term F (x) = x3 is implemented next to
the standard Hopfield Model with 3 neurons. The energy function implicitly uses
Hebb’s Law to compute weights.
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Background: Hyperbolic Geometry and
Hyperbolic Isometeries

The Hyperbolic Plane is the metric space consisting of the open
half-plane

H2 = {(x, y) ∈ R2; y > 0} = {z ∈ C; Im(z) > 0}
Let P,Q ∈ H2, we define the distance between P,Q to be

dhyp(P,Q) = inf{ℓhyp(γ); γ goes from P to Q}
with the explicit formula

D(P,Q) = dhyp(P,Q) = log
|P − Q̄| + |P −Q|
|P − Q̄| − |P −Q|

An important idea in geometry is the notion of a distance-preserving
function, also called isometry. Let (X, d), (X ′, d′) be two metric
spaces. Let φ : X → X ′ be a bijection. Then φ is an isometry
if

d′(φ(P ), φ(Q)) = d(P,Q)

For all P,Q ∈ X. Notably, all hyperbolic isometries can be written
in the form of a fractional linear map: Let z ∈ H2, then a fractional
linear map is the function

z 7→ az + b

cz + d
, z 7→ cz̄ + d

az̄ + b
where a, b, c, d ∈ R and ad− bc = 1.

Topological Groups
A group is the data (G, ·) of a set G and a binary operation · on G,
satisfying these axioms:

1. · is associative: ∀a, b, c, (a · b) · c = a · (b · c).
2. Identity: there exists e ∈ G such that for all a ∈ G, a ·e = a = e ·a.

3. Inverse: for all a ∈ G, there exists a−1 ∈ G such that a · a−1 = e =
a−1 · a.

A topological space is a pair (X, T ) where X is a set and T is a
collection of subsets of X such that

1.∅, X ∈ T .

2. Let X1, X2 ∈ T . Then X1 ∩X2 ∈ T .

3. Let {Xi} be a collection of elements in T . Then⋃
i

Xi ∈ T

We say that T is a topology on X. Elements of T are called open
sets. A subset A ⊆ X is closed if its complement X − A is open.
A topological group is a group G that is also a topological space
such that the group operation (g, h) 7→ gh and inversion g 7→ g−1

are continuous functions.

General Linear Group, Special Linear Group, and
Projective Linear Group

• The general linear group, denoted by GL(n, F ), is the set of all invertible
n× n invertible complex matrices.

• The special linear group, denoted by SL(n, F ), is the set of n×n matrices
with determinant 1.

We can replace F with C, R, etc. We will consider the case of real numbers
and n = 2. Define the projective linear group

PSL(2;R) = SL(2,R)/(±I)

Let V be a real vector space of dimension n. Then GL(V ) ∼= GL(n, F ).
We have the following diagram of short exact sequences that illustrates the
relationships of these groups:

These Groups have the following relations to geometric spaces:

• SL(2,R) is the group of all linear transformations that preserve oriented
area in R2.

•PSL(2,R) is the group of orientation-preserving isometries in H2

Group Actions on Hyperbolic Space
Let G be a group. Let A be a set. A group action of G on A is an operation
· : G× A → A, (g, a) 7→ g · a that satisfy two axioms:

1. Associative: ∀g1, g2 ∈ G,∀a ∈ A, g1 · (g2 · a) = (g1 · g2) · a.

2. Unitary: ∀a ∈ A, e · a = a.

We say “G acts on A”.

The orbit of a ∈ A is given by the set O(a) = {g · a | g ∈ G}.

In the context of hyperbolic space, we have PSL(2;R) acting on H2 by

fractional linear transformations:[
a b
c d

]
· z =

az + b

cz + d

This gives us a way to describe all hyperbolic isometries in terms of groups.

Fuchsian Groups
To discuss Fuchsian Group, we introduce the following concepts: A
subgroup of a topological group Γ is called a discrete subgroup if
it contains no limit points.
Examples:

•Z is a discrete subgroup of R.

•Q is not a discrete subgroup of R.

A group action is properly discontinuous if:
∀x ∈ X, there is a neighborhood V of x such that there are only
finitely many γ ∈ Γ where γV ∩ V ̸= ∅.

Or equivalently, ∀x ∈ X, O(x) under the action of Γ is locally finite.

With the necessary background information, we provide two equiv-
alent characterizations of a Fuchsian group:

• A Fuchsian group is a discrete subgroup of PSL(2;R)
• A Fuchsian group is a group that acts properly discontinuously on
H2.

Applications of Hyperbolic Space/Groups
to Neuroscience

Despite the abstract nature of topological groups, computational
neuroscientists are able to use related concepts to apply them to
the study of the brain. Here are some applications:

• Wang et. al. (2023) showed that the neurons in a particular part
of the mouse brain (CA1 region of hippocampus) that facilitate
spatial perception represent spatial information according to hy-
perbolic geometry.

• Manifold Gaussian process latent variable model (mGPLVM) in-
troduced by Jensen et. al. (2020) is a novel method to understand
neural representations of visual features and it does not assume
Euclidean feature spaces but to identify the related manifolds to
which the features belong.
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Manifolds

While our main topic of discussion is orbifolds, some preliminary properties of

manifolds will help clarify our description of an orbifold. A topological space M
is a topological manifold of dimension n, which we will shorten to manifold, if it
satisfies the following three properties:

M is a Hausdorff space

M is second countable

M is locally Euclidean of dimension n

Wewill omit a thorough description of these properties, but the important part for

the orbifold comparison is that manifolds are locally Euclidean; every point in the

manifold has a neighborhood that is diffeomorphic to an open subset of Rn.

Classification of 2-Dimensional Manifolds

Classification Theorem for Closed Surfaces: Every compact connected surface

is homeomorphic to a sphere, a connected sum of tori, or a connected sum of

projective planes.

Here we will introduce the classification of orientable closed 2-manifolds.

Figure 1. Orientable Closed 2-manifolds

Euler Characteristics for Manifolds

The Euler characteristic χ offers a way to categorize the manifolds. If a surface
M has a cell decomposition with V vertices, E edges and F faces, its Euler

Characteristic is calculated by:

χ = V − E + F (1)

For orientable surfaces, it’s calculated as:

χ = 2 − 2g, (2)

where g is the genus.

It follows that if M̃ is a d-fold covering of M then χ(M̃) = dχ(M) since M̃ has

a cell decomposition obtained by lifting cells from M , and each cell of M has d

lifts to M .
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Orbifolds

Orbifolds can be viewed as generalizations of manifolds. They retain some key

features of manifolds, while also introducing new concepts. An orbifold Q is es-

sentially a topological space that locally resembles ”quotients” of Euclidean space,

which we’ll clarify. It follows these three properties:

Q is a Hausdorff space.

Q is second countable.

Q is locally modeled on the quotient spaces of Euclidean space by finite group

actions.

What distinguishes orbifolds from manifolds is the third property. Rather than

being locally Euclidean, each point in an orbifold has a neighborhood that is diffeo-

morphic to the quotient of an open subset ofRn under the action of a finite group.

For example, a point may have a neighborhood that has been ”folded” or ”creased”

in a certain way. Generally, most points will have the trivial group as the associ-

ated action, and the neighborhood around these points will be diffeomorphic to a

subset of Rn

Singular locus:

The set of points with a nontrivial associated group is referred to as the ”singular

locus.” In dimension 2, the singular locus has:

Cone Points - Cyclic Rotation Zn

Mirror Points - Reflection

Corner Points - Dihedral Group

An orbifold with an empty singular locus is just the underlying manifold.

Figure 2. Pillow Case Example: 4 singular cone points where the local group of symmetries is Z2.

Euler Characteristics for Orbifolds

We would like to extend the Euler Characteristics formula to orbifolds. Consid-

ering the universal coverD̃ → D2(n). This is an n-fold cyclic branched cover of
the disc, branching over the cone point p inD2(n)where p accounts for only 1/n
of a vertex. The orbifold covering transformation group Zn of D̃ fixes a point ,

projecting to p. Hence, we might perceive p as having n ”separate lifts”, each tak-
ing up 1/n of the point . This thought process leads to the following definition.

The orbifold Euler characteristic of Q is

χ(Q) =
∑
σ∈Q

(−1)dim(σ)

|Γ(σ)|
, (3)

where σ ranges over (open) cells in XQ and Γ(σ) is the local group assigned to
points in σ.

Classification of SO(3)

The key observation is that any finite subgroup G of SO(3) naturally acts on the
sphere S2, and the quotient space S2/G is a 2-orbifold. The Euler characteristic χ
of an orientable 2-orbifold is given by the formula:

χ = 2 − 2g −
∑

(1 − 1
ni

), (4)

where g is the genus and would be 0 here.

For χ > 0, the formula simplifies to 2 −
∑

(1 − 1
ni

) > 0, which is equivalent to∑
(1 − 1

ni
) < 2. Therefore, we can have:

The sphere S2, which has χ = 2 and no cone points.
S2(n) for n = 2, 3, 4, . . ., which is the sphere with one cone point of order n.

S2(n, m) for n, m = 2, 3, 4, . . ., which is the sphere with two cone points of
order n and m.

S2(2, 3, n) for n = 3, 4, 5 which is the sphere with three cone points of order 2, 3
and n.

S2(n) and S2(n, m) where n 6= m are ”bad orbifolds,” meaning they are not a quo-

tient of S2, so the possible forms of G are:

S2(n, n) where G is cyclic of order n.

S2(2, 2, n) where G is dihedral of order 2n. Since any two rotations about
distinct axes in 3D space either generate a dihedral group or the whole group

SO(3) (if the axes are orthogonal), we see that G must be a dihedral group.

The action of G on S2 have more than two axes of rotation. The only way this

can happen is if G is the symmetry group of a regular polyhedron since those
are the only configurations of more than two axes of rotation in 3D space that

are preserved by a group action. This corresponds to S2(2, 3, 3) if G are the
symmetries of a regular tetrahedron, S2(2, 3, 4) if G are the symmetries of a
cube or an octahedron, and S2(2, 3, 5) ifG are the symmetries of an icosahedron
or a dodecahedron which gives the symmetry groups of the Platonic solids.
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COMPLEX MANIFOLDS

An n-dimensional complex manifold is a topological space that is locally isomorphic to Cn. This means mani-
folds can take arbitrary, and often extremely complicated, forms on a global scale, but "zooming in" allows us to
study their local properties with relative ease. This construction is defined by an atlas of open sets (Ui)i∈M that
cover our manifold, each with a chart (φ) that that links it to C

In order for this construction to be useful. It must guarantee continuity of functions on the surface of our manifold.
This is achieved through requiring that our charts (φi) be holomorphic (analytic) diffeomorphisms, and requiring
that, on the intersection, the composition φ−1

i ◦ φj is a smooth map.

TANGENT BUNDLES

Now that we know what the surface of a manifold looks like, we can begin talking about what happens along that
surface. At any particular point p we define TpM , the tangent space at that point. This space in generated by
the tangent vectors (at p) of every curve on our manifold that passes through p. As usual, this is equivalent to
using the partial derivatives of our chart with respect to the basis vectors in Vi at the preimage of our point,

TpM =

〈
∂

∂e1
(φi)

∣∣∣∣
φ−1
i (p)

,
∂

∂e2
(φi)

∣∣∣∣
φ−1
i (p)

, · · · , ∂

∂e2n
(φi)

∣∣∣∣
φ−1
i (p)

〉
=

〈
∂

∂e1
,
∂

∂e2
, · · · , ∂

∂e2n

〉
The notation on the
right hand side is less
formal, but is permis-
sible in the local (Ui)
frame. Note that this
basis is isomorphic to
R2n under ∂

∂e1
↔ e1.

Which yields the usual
understanding of a tan-
gent space, depicted for
a 2-(real)-dimensional
manifold on the right.

The tangent space is specific to each individual point, because it relies on evaluating the partial derivative at
the unique (restricted to Ui) preimage of p. In order to address the manifold at large, we can define a tangent
bundle (TM ) which is the set of all pairs of points (p), and vectors in that point’s tangent space.

TM = {(p, v⃗) | p ∈ M, v⃗ ∈ TpM}

Naturally, there are a LOT of vectors in the tangent space of any particular point. The (tangent) vector field (ξ)
provides us a method for selecting one of these vectors, given a particular point.

ξ := M 7→ TM

p 7→ (p, v⃗)

For the purposes of integration, we want to remember which point each of these vectors comes from. This is
why its essential for the vector field to map to the tangent bundle rather than a particular tangent space.

COTANGENT BUNDLES

Using our definitions of tangent spaces, bundles, and fields, we will define cotangent spaces, bundles, and fields.
A covector (ω)(also called a 0-form, or a linear functional) is a function that takes in a vector and outputs a scalar.

ω := v⃗ 7→ z

Naturally a cotangent vector is a covector who’s domain is the tangent space (at a point), so we can be sure
that it intakes tangent vectors. Applying what we know about tangent spaces, we can see that the cotangent
space should be the space of all cotangent vectors.

T ∗
pM = {ω|ω : TpM 7→ C}

COTANGENT BUNDLES (CONT.)

Here we use the notation for the dual of the tangent space since thats exactly what the cotangent
space is! It is the set of all maps(covectors) from the tangent space to the underlying field(C in our
case). In light of this, we can define a basis for the cotangent space, with the conventional linear
functional basis of a dual space

T ∗
pM = ⟨dep1, de

p
2, · · · , de

p
2n⟩, depi

(
∂

∂ej

∣∣∣∣
p

)
=

{
1 i = j

0 i ̸= j

Similarly, the cotangent bundle is the set of all point-cotangent vector pairs

T ∗M = {(p, ω)|p ∈ M,ω ∈ T ∗
pM}

Again, this is the dual of the tangent bundle
Finally, a covector field is analogous to a vector field. It is a map that, given a point, provides a
covector in the cotangent space of that point

α := M 7→ T ∗M

p 7→ (p, ω)

When we require this map to be smooth, we realize this "covector field" as a section of the cotangent
bundle, or a differential one form

DIFFERENTIAL 1-FORMS AND EXTERIOR DERIVATIVES

Differential 1-forms are functions that are nearly equivalent to covector fields, the main difference is
that we allow them to intake a point AND a vector (i.e. a vector field), so their output becomes a
point-scalar pair . Differential forms are written

α(p, v⃗) =

(
p,

2n∑
i=1

fi(p)de
p
i (v⃗)

)
=

(
p, f1(p)de

p
1(v⃗) + f2(p)de

p
2(v⃗) + · · · + f2n(p)de

p
2n(v⃗)

)
So, in the particular case where v⃗ = ∂

∂ei
that we achieve

α

(
p,

∂

∂ei

∣∣∣∣
p

)
= 0 + · · · + fi(p)de

p
i

(
∂

∂ei

∣∣∣∣
p

)
+ · · · + 0 = (p, fi(p))

Inspecting the second term, evaluation of α at a point allows us to "measure" the value of α in the
∂
∂ei

∣∣
p

direction. So, summing α along a curve is equivalent to integrating fi with respect to ei. More
generally, evaluating along some vector field, ξ, allows us to integrate along our entire manifold (with
respect to ξ).
Thus, 1-forms are the tools we use in every one dimensional integral. We can use the exterior
derivative to achieve 2-forms, which allow us to integrate area, and eventually m-forms, which
measure m-dimensional oriented density.
The exterior derivative, d, asks us to differentiate each of our fis with respect to each epj and to note
that differentiation in the result

d(α) =

2n∑
j=1

2n∑
i=1

∂fi
∂ej

depj ∧ depi

The wedge product (∧) here is a complicated algebraic structure that explicitly outlines how to eval-
uate the vector part of our input.

COHOMOLOGIES

In order to better understand the properties of a certian manifold, it can be helpful to understand
how differential forms of change as we differentiate them. For this we will use a cohomology. A
cohomology is a sequence of groups (and maps from one group to the next) with a useful property
called exactness, that every element becomes 0 after being mapped twice.

Inspecting the quotient group ker(φi)/Im(φi−1) allows us to measure just how fast this process is hap-
pening.

THE DOLBEAULT COHOMOLOGY

Since we are working with a complex manifold. We can chose a convenient basis to address our
tangent and cotangent spaces

⟨z1, z1, · · · , zn, zn, ⟩
This choice of basis leads to a method for splitting the exterior derivative

d = ∂ + ∂

Where ∂ takes the partial derivatives with respect to the complex basis ⟨z1, z2, · · · , zn⟩, and ∂ takes the
partial derivatives with respect to the complex conjugate basis ⟨z1, z2, · · · , zn⟩. Using these operators,
we can construct a cohomology in two directions. Begining with Ω0,0 the space of 0-forms (covectors)
we construct,

Ω0,0 Ω1,0 Ω2,0

Ω0,1 Ω1,1 Ω2,1

Ω0,2 Ω1,2 Ω2,2

∂̄0,0

∂0,0

∂̄1,0

∂1,0

∂̄2,0

∂2,0

∂̄0,1

∂0,1

∂̄1,1

∂1,1

∂̄2,1

∂2,1

∂0,2

∂̄0,2

∂1,2

∂̄1,2

∂2,2

∂̄2,2

Note that ∂ ◦∂ = ∂ ◦∂ and that Ωi,j = Ωj,i. Inspecting i = 1, j = 0 reveals that Ω1,0 are the holomorphic
1-forms, and Ω0,1 are the antiholomorphic 1-forms, on our manifold.

THE HODGE DIAMOND

We now inspect the downward cohomology of the dobeault cohomology. We name the quotient groups
that it creates

H i,j(M) = ker(∂(i,j))
/
Im(∂(i,j−1))

We call the dimension of these groups the hodge numbers, hi,j = |H i,j(M)|. Then we arrange these
into the Hodge diamond

h0,0

. .
. ...

. . .

h0,n · · · hn/2,n/2 · · · hn,0

. . .
... . .

.

hn,n

The hodge diamond is ex-
ceptionally useful in algebraic
topology as a tool to classify
manifolds. The row that each
of these hodge numbers are in
corresponds to the weight of
the represented group. This
weight is the order of the forms
contained within the cosets
that make up each individual
H i,j(M).

HODGE STRUCTURES

We call the direct sum of all cohomology groups of a particular weight(k), the hodge structure of
weight k

Hk(M,C) =
⊕
i+j=k

H i,j(M)

In the case of hodge structures of weight 1 we know

H1(M,C) = H1,0(M)⊕H1,0(M) = H1,0(M)⊕H1,0(M)

So we conclude that H1(M,C) is of even dimension. This must also be true for the lattice subset
H1(M,Z) ⊂ H1(M,C). Thus we identify a torus

T = H0,1(M)
/
H1(M,Z)

The map from a complex torus to the cohomology groups generated on that torus yields an inverse
map and thus we establish a bijection between complex tori and hodge structrues of weight 1

T ↔ H1(M,C)
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Reinforcement Learning

Reinforcement learning (RL) is a technique for training an agent to act
favourably in an arbitrary environment. Environments consist of states, actions,
observations, and rewards. The agent’s job is to choose actions that maximize
the total reward.
There are many approaches to solving this task. The agent can try to predict the
long-term consequences of its actions and maximize its long-term benefits (value-
based approach). It can also try to learn the environment itself (model-based
approach). Here we will look at what is known as a policy-based approach to
RL, which refers to optimizing the sequence of actions we take to maximize our
current and future rewards.

Markov Models

These models come in different variants, with different tradeoffs. The following
four classes of models are all "stochastic, discrete state, discrete time" [1] finite
state machines with Markovian dynamics – that is, the next state depends only on
the current state and the action. We restrict our discussion here to MDPs (Markov
Decision Processes) and POMDPs (Partially Observable Markov Decision
Processes), but you may be familiar with other Markovian processes:

States Completely Observable? Control over State Transitions?

NO YES

YES Markov Chain MDPs

NO Hidden Markov Model POMDPs

MDPs and POMDPs

Both MDPs and POMDPs are especially helpful in the RL setting because they
can represent the relationship between the agent and the environment.

• In an MDP, we assume the environment is fully observable. As such, the
states fully capture all relevant information for decision-making (state transi-
tions contain Pa(s | s′), the probability that taking action a at time t in state s
will lead us to state s′ at time t + 1).

• We can generalize an MDP into a POMDP by assuming that the environment
is only partially observable. This implies that states in our model only capture
part of the true environment—observations give us information that are only
partially informative, which makes it more challenging! We thus need to in-
troduce what is known as the belief state, which is a probability distribution
over all states encoding how closely a state resembles the true environment
[3].

Formally, a POMDP is a tuple of the following items:

• S, a set of states

• A, a set of actions

• P (st | a, st−1), state-action transition probabilities

• R : S × A → R, state-action reward function

• O, a set of observations

• P (o | s), conditional observation probabilities

• γ ∈ [0, 1), the discount factor

Diagram of a POMDP

Adaptive State Aggregation for MDPs

MDPs can be solved by iterating the operator

Ts(V) = min
a∈A

(
r(s, a) + γ ·P⊤

s,aV
)
.

Value iteration is simple and guarantees convergence, but is computationally expen-
sive. For large state spaces solving an MDP with this technique becomes infeasible!
We can use state aggregation to reduce these costs by dynamically grouping states
with similar cost-to-go values [2].

This algorithm alternates between two phases: a global update phase and an aggre-
gated update phase. The global update phase performs value iteration on S and the
aggregated update phase groups together states with similar cost-to-go values.
We need both phases because the aggregated update phase will require updated
knowledge of V* to perform aggregation. In the following algorithms, Ai reference our
state-aggregation and Bi reference global iterations.

Value Iteration

We must use some form of value-iteration to obtain a value function for our aggre-
gation. We observe an algorithm using a pre-specified aggregation where W is the
value function generated by the mega-states and Ṽ is the incuced value function. In
the following algorithm αt is the step size of the learning algorithm (αt = 1 recovers
the formula for value iteration). This has been proven to converge and our alterations
maintain a similar convergence bound [2].

Algorithm 1 Random Value Iteration with Aggregation
Input: P, r, γ,Φ, {αt}∞t=1

Initialize W0 = 0
for t = 1, . . . , n do

for j = 1, . . . , K do
Sample state s uniformly from set Sj

Wt+1(j) = (1− αt)Wt(j) + αtTsV(Wt)
end for

end for
Output: Ṽn

State Aggregation

Divide the state space S into K subsets and view these subsets as mega-states. The
value function generated by each mega-state can be used to find the optimal value
V ∗. The algorithm is below:

Algorithm 2 Value-based Aggregation [2]
Input: ε, V = (V (1), ..., V (|S|))T
b1 = mins∈|S| V (s), b2 = maxs∈|S| V (s),∆ = (b2 − b1)/ε
for i = 1, ...,∆ do

Ŝi = {s|V (s) ∈ [b1 + (i− 1)ϵ, b1 + iϵ)}
Ŵ (i) = bi + (i− 1

2)ε
end for
Return {Si}Ki=1 and W

Adaptive State Aggregation Algorithm

Combining the two techniques above, we get the following algorithm where Ai are our
state-aggregation and Bi are our global iterations.
This method is separate from other aggregation techniques because it learns the cost-
to-go values continuously, which aggregation methods need to generate mega-states.

Algorithm 3 Value Iteration with Adaptive Aggregation [2]
Input: P, r, ε, γ, {αt}∞t=1, {Ai}∞i=1, {Bi}∞i=1

Initialize W0 = 0, V1 = 0, tsa = 1
for t = 1, . . . , n do

if t ∈ Bi then
if t = min{Bi} then

Vt−1 = Ṽ(Wt−1)
end if
for j = 1, . . . , |S| do

State Vt(j) = TjVt−1

end for
else

Find current i s.t. t ∈ Ai

if t = min{Ai} then
Run our Value-based Aggregation algorithm with input ε, Vt−1

Set the {Si}Ki=1 and Wt to be the output of our Algorithm
end if
for j = 1, ..., K do

Sample state s uniformly from set Sj

Wt(j) = (1− αtsa)Wt−1(j) + αtsaTsṼ(Wt−1)
end for
tsa = tsa + 1

end if
end for
if n ∈ Bi then return Vn

end if
return Ṽ(Wn)
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Background

The theory of general relativity describes gravity and is based on
coordinate invariance and the equivalence principle. In order satisfy
these, we describe space as a smooth manifold equipped with a
metric, so let us define what these are:

Smooth manifold
This is a space that may have curved geometry, but locally looks
like Rn. That is, for every point in the manifold, there exists a
neighborhood around it where a diffeomorphism to Rn exists.

Metric
A metric in general allows for a notion of distance within a space.
For us, the metric will be a map taking vectors to dual vectors.

gabV
a = Vb

Tensor
Coordinate invariant objects used to build the physics of general
relativity. We will use Einstein summation notation to represent
tensors, where repeated indices are summed over.

Levi-Civita Connection

In general relativity, our manifold can be curved, so tangent spaces
at every point are independent from each other. We need the Levi-
Civita connection to relate tangent spaces, given by,

Γa
bc =

1

2
gad

(
∂bgdc + ∂cgdb − ∂dgbc

)
The connection is a coordinate dependent object, and so it is not
tensorial. Instead the connection defines a notion of parallel trans-
port in the manifold, as well as other useful properties [2]:

Covariant Derivative
The covariant derivative is a coordinate invariant form of the
derivative.

∇aV
b = ∂aV

b + Γb
caV

c

Geodesic Equation

The geodesic equation allows for you to calculate the path of an
object in free fall.

d2xa

ds2
+ Γa

bc

dxb

ds

dxc

ds
= 0

Riemann Curvature Tensor

The Riemann Curvature tensor, built out of the connection, fully describes
the curvature of the manifold at every point.

Ra
bcdV

b = [∇c,∇d]V
a

This is based on the idea of parallel transporting a vector around a loop to
detect a deviation from flat space.

By simplifying the above expression, we can also write this in terms of the
Levi-Civita connection which is useful for calculation [2].

Ra
bcd = ∂cΓ

a
bd − ∂dΓ

a
bd + Γa

ceΓ
e
bd − Γa

deΓ
e
bc

Ricci tensor and scalar
The Ricci tensor, Rbd, and the Ricci scalar, R, are both built by contracting
indices from the Riemann curvature tensor and are used in the Einstein
field equations.

Rbd = Ra
bad, R = gbdRa

bad

Einstein-Hilbert Action

The curvature of our space is determined by the physical configuration of the
system, so we need a way to solve for the metric based on this. To do this
we can use the principle of least action and variational calculus:

Action
The action, denoted S, is a quantity obtained by integrating a scalar over
the entire manifold. The scalar is chosen to embody the physical properties
of the system studied.

Principle of Least Action

This states that any system will be at a minimum of its action. This means
we can find the equations of motion by varying an action against its param-
eters.

In general relativity the Einstein-Hilbert action is used for our system, given
below [2],

S =

∫ √
|g|Rdnx

Here R is the Ricci scalar, and |g| is the determinant of the metric. Together
these encode the curvature of space, and so by finding the variation of this
with respect to the metric we get the Einstein field equations.

Einstein Field Equations

For an n dimensional manifold, the Einstein field equations are a
set of n2 partial differential equations that solve for the metric.

Rab −
1

2
Rgab = Tab

Here Rab is the Ricci tensor, R the Ricci scalar and Tab is the energy
momentum tensor, describing the energy present in a system.

In general, these are difficult equations to solve, but specific config-
urations have analytic solutions [2].

Einstein-Hilbert-Palatini Formalism

When choosing a connection we assumed it to be Levi-Civita since
it has useful properties, but the Palatini formalism seeks to give a
reason why this is the correct connection to use.

Γa
bc = Γa

cb

The Levi-Civita connection is torsion free, satisfying the above prop-
erty, allowing for the simplification of the Riemann curvature tensor.

∇agbc = 0

It is also metric compatible, allowing for simplifications when vary-
ing the Einstein-Hilbert action.

In the Palatini formalism we choose an arbitrary affine con-
nection for our manifold as a second parameter for variation. This
variation gives the usual Einstein field equations and an equation
restricting our arbitrary connection. Solving these restrictions
shows the only physical solutions to the equations of motion are
given by the Levi-Civita connection [1].
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Abstract

Financial markets are notoriously complex and unpredictable. Therefore, investors
must consider several factors and strategies in order to increase profits. Modern
portfolio theory, or mean-variance analysis, is a mathematical framework which
uses analysis to model the relationships between profits and losses in the portfolio
selection process. Ultimately, the objective is to maximize expected investment
return given a certain risk amount. In our project, using a dimension reduction
procedure, we apply modern portfolio theory to a high-dimensional data set. The
results include a sequence of optimal portfolios (efficient frontier).

Introduction

Let’s generalize the description of the financial market with the following notation,

• Assets: there are N assets (securities) which are traded in our market. Let
Si
t represent the price of asset i at time t.

• Returns: The return of an asset i is given to be Ri ≡
Si
1−Si

0
Si
0

. The market with

N assets is characterized by the random vector R = (R1, . . . , RN ).

• Portfolio Values: The initial value of a portfolio equals x = (x1, . . . , xN ); that
is, at time zero, the investor invests amount xi into asset i.

• Reward vs Risk: Our portfolio selection process is characterized through a
trade-off between reward and risk. The variables expectation (E[Rx] ≡ mx)
and variance (Var[Rx] ≡ σ2x), respectively, capture this unique relationship.
Suppose,

– m represents the vector of expected returns, m = (m1, . . . ,mN ).

– V is the covariance matrix of returns, that is: V = (σij) where σij =

Cov(Ri, Rj). Note that, W ≡ V −1.

Problem Statement: Consider the following scenario: an investor wishes to
determine an optimal allocation of his/her assets according to an individual risk
preference τ ≥ 0, also called the risk parameter. Applying Markowitz’s result in
[4] & [1], this problem can be solved as follows:

max
x∈RN

{
τmx − σ2x

}
subject to

N∑
i=1

xi = 1 . (1)

The trade-off lies in the conflicting parameters mx and σ2x. Usually, a higher
expected return is associated with more risk, and vice versa. Intuitively, the goal
remains to maximize return while minimizing risk.

Principal Component Analysis: Principal component analysis (PCA, [2]) is a
dimension reduction procedure, whose benefits include:

• Data transformation into a new space, with the same order, and orthogonal
axes (i.e principal components).

• The newly formed axes are ordered, decreasingly, in terms of their explained
variability (weight). That is, the first principal component explains more
variance than the second one, and the pattern continues.

In our project, we apply PCA to our covariance matrix V for the following reasons:

• Understand the major sources of variance and the effect of those factors on
each security in our data set.

• Optimal portfolios require the inversion of a covariance matrix (see Thm 2).
Our sample V has a condition number on the order of 1020. The inversion of
such a large covariance matrix (dim: 5119× 5119) is numerically unstable.

Theoretical Results

Assumptions:

• The law/distribution of the portfolio return is fully characterized by the mean E[Rx] and variance Var[Rx].

• The covariance matrix V is positive definite; that is, ⟨x, V x⟩ > 0, ∀x ̸= 0.

• There are at least two assets i and j where mi ̸= mj.

Theorem 1. The expected return & variance of a portfolio Rx equals,

E[Rx] =

N∑
i=1

ximi = ⟨x,m⟩ , Var[Rx] ≡
N∑

i,j=1

xiσijxj ≡ ⟨x, V x⟩ (2)

Proof. Note that, Rx ≡
∑N

i=1 xiRi and Mx =
∑N

i=1 ximi. As a result, by definition:

E[Rx] = E[
N∑
i=1

xiRi] =

N∑
i=1

xiE[Ri] =

N∑
i=1

ximi ≡ ⟨x,m⟩

Var[Rx] = E[Rx − E[Rx]]
2 = E[Rx −Mx]

2

Continuing to expand the variance, we get the final answer:

E[Rx −Mx]
2 = E[

N∑
i=1

N∑
j=1

xixj(Ri −mi)(Rj −mj)] =

N∑
i,j=1

xixjCov(Ri, Rj) ≡ ⟨x, V x⟩

Theorem 2. For each risk tolerance parameter τ ≥ 0 the Markowitz portfolio selection problem has a unique
solution,

x∗τ =
We

⟨e,We⟩
+
τ

2

(
Wm− ⟨e,Wm⟩

⟨e,We⟩
We

)
,with e = (1, 1, . . . , 1). (3)

Proof. Suppose L(x, λ) represents the Lagrange Multiplier i.e.

L(x, λ) = τ⟨m,x⟩ − ⟨x, V x⟩︸ ︷︷ ︸
function to maximize

+λ
(
⟨x, e⟩ − 1

)︸ ︷︷ ︸
constraint

The objective is to solve for the vector x ≡ x∗τ such that i) Lx = 0 and ii) mτ − 2V x + λe = 0. If τ = 0, we see
that:

−2V x + λe = 0 ⇔ −2x + λWe = 0; (applying W both sides)

⇔ λ =
2

⟨e,We⟩
; (since ⟨x, e⟩ = 1).

So the minimum variance portfolio becomes:

−2x +
2

⟨e,We⟩
×We = 0 ⇒ xmin ≡ x∗{τ=0} =

We

⟨e,We⟩
.

Assume τ > 0. Define z ≡ x− x∗0. Equiv, x = z + We
⟨e,We⟩ Then, Equations i) & ii) can be re-written as such:

i∗) mτ − 2V (z + x∗0) + λe ≡ mτ − 2V

(
z +

We

⟨e,We⟩

)
+ λe = 0;

ii∗) ⟨z, e⟩ = 0.

Applying W to Equation i∗) and simplifying, we obtain: λ = 2
⟨e,We⟩ −

τ⟨e,Wm⟩
⟨e,We⟩ . In conclusion,

τWm− 2z − τ⟨e,Wm⟩
⟨e,We⟩

We = 0 ⇒ z =
τ

2
z∗ where z∗ = Wm− ⟨e,Wm⟩

⟨e,We⟩
We.

Coding Application

We collect data from [3], which provides daily stock returns for all US-based
securities and ETFs trading on the NYSE, NASDAQ, and NYSE MKT. Stocks
which contained missing values were excluded from the analysis, leaving a final
sample of 5,119 assets across 218 data points (January 2nd, 2017-November
10th, 2017).

Dimension Selection: Let V represent the covariance matrix constructed from
our estimated factors using the Principal Component method. Our analysis from
Fig. 1 concludes that 3 eigenvectors sufficiently explain the majority of
uncertainty in our dataset.

Results: Using this lower-dimensional matrix V , we applied Theorem 2 to find
the optimal portfolio x∗τ . The points (σ2x,mx) on the efficient frontier represent
the variances (x-axis) and expectations (y-axis) of the returns on x∗τ with risk
tolerance τ ≥ 0. Intuition: more money means higher risk.
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What are Lie Algebras?

We define a Lie Algebra over a field F as an F-vector space L, together with a
bilinear map, which we call the Lie bracket. The Lie bracket is defined as

L× L ⇒ L, (x, y) 7→ [x, y]

satisfying
[x, x] = 0, ∀x ∈ L,

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, ∀x, y, z ∈ L.

This second condition is known as the Jacobi identity. Here is a consequence
of those two conditions:

0 = [x + y, x + y] = [x, x] + [x, y] + [y, x] + [y, y] = [x, y] + [y, x]

=⇒ [x, y] = −[y, x]

We note that the Lie bracket [x, y] is often referred to as the commutator of x and
y.

Examples of Lie Algebras

Here we highlight three examples of Lie Algebras.

(1) Suppose V is a finite-dimensional vector space over field F and let gl(V ) be
the set of all linear maps from V to V . gl(V ) is also a vector-space over F and is
a Lie algebra, known as the general linear algebra, defined by the Lie bracket

[x, y] := x ◦ y − y ◦ x, ∀x, y ∈ gl(V )

where ◦ denotes the composition of maps. We can check that the Jacobi identity
holds for this Lie algebra:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, ∀x, y, z ∈ gl(V )

=⇒ (x ◦ [y, z]− [y, z] ◦ x) + (y ◦ [z, x]− [z, x] ◦ y) + (z ◦ [x, y]− [x, y] ◦ z) = 0

=⇒ x ◦ (y ◦ z− z ◦ y)− (y ◦ z− z ◦ y) ◦ x+ y ◦ (z ◦ x− x ◦ z)− (z ◦ x− x ◦ z) ◦ y
+z ◦ (x ◦ y − y ◦ x)− (x ◦ y − y ◦ x) ◦ z) = 0

=⇒ 0 = 0

since the composition of linear maps is commutative.

(2) Let g(n,F) be the vector space of all n × n matrices over F with the Lie
bracket defined by

[x, y] := xy − yx,

where xy is the usual product of matrices x and y. Since gl(n,F) is a vector
space, it has a basis consisting of the matrix units eij for 1 ≤ i, j ≤ n, where eij
is the n × n matrix that has a 1 in the ij-th position and 0 in all other positions.
Letting δ be the Kronecker delta, defined by δij = 1 if i = j and δij = 0 otherwise,
we have

[eij, ekl] = δjkeil − δilekj,

which can be verified using the Lie bracket.

(3) Let sl(n,F) ⊆ gl(n,F) denote the set of all n × n matrices such that
the matrices have trace equal to zero. Then, we can define the Lie bracket

[x, y] := xy − yx, ∀x, y ∈ sl(n,F)

and sl(n,F) is a Lie algebra, known as the special linear algebra. The two
properties of Lie brackets are inherited from gl(n,F).

Subalgebras

A Lie subalgebra of a Lie algebra L is defined to be a vector space K ⊆ L such that

[x, y] ∈ K, ∀x, y ∈ K.

In our previous example of Lie algebras, particularly example 2, we saw that sl(n,F) is
a subalgebra of the Lie algebra gl(n,F). Another way to think about the definition of a
subalgebra is as follows: a subalgebra L′ of a Lie algebra L is a subset of elements of L
that themselves form a Lie algebra with the same commutator and field as that of L.

Ideals

Given a Lie algebra L a subalgebra I of L is defined to be an ideal if

[x, y] ∈ I for all x ∈ L, y ∈ I

If I and J are both ideals of a Lie algebra L, then I ∩ J , I + J , and [I, J ] are also ideals,
where

I + J := {x + y | x ∈ I, y ∈ J}
[I, J ] := Span{[x, y] | x ∈ I, y ∈ J}

Examples of ideals:

(1) L is an ideal of itself.

(2) {0} is the trivial ideal.

(3) A frequently non-trivial ideal is the center of L, which is defined to be

Z(L) := {x ∈ L | [x, y] = 0 for all y ∈ L}

(4) If I = J = L, then we write L′ = [L,L]. This ideal is the derived algebra of L.

Given an ideal I we can define a new Lie algebra by considering the cosets z+ I = {z+x |
x ∈ I and then define the corresponding quotient Lie algebra

L/I := {z + I | z ∈ L}

where the bracket relation on L/I is given by

[w + I, z + I ] := [w, z] + I for w, z ∈ L

Theorem: There is a bijective correspondence between the ideals of L/I and the ideals of
L that contain I.

Proof. If J is an ideal of L and I ⊆ J , then J/I is an ideal of L/I. If K is an ideal of L/I,
then J := {z ∈ L | z + I ∈ K} is an ideal of L that contains I.

Homomorphisms

If L1 and L2 are Lie algebras over a field F , then a map φ : L1 → L2 is a homomorphism
if φ is a linear map and

φ([x, y]) = [φ(x), φ(y)] for all x, y ∈ L1

If φ is also bijective, then we say that it is an isomorphism.

If L1 = L2, then any homomorphism between them can be referred to as an endomorphism.
An isomorphism between a Lie algebra and itself is called an automorphism.

Adjoint

For a Lie Algebra L we define its adjoint homomorphism ad : L → gl(L) by

(ad(x)(y) := [x, y] for all x, y ∈ L

Example: Consider the case when L = sl(2,C). A basis for this Lie algebra is

h =

[
1 0
0 −1

]
, e =

[
0 1
0 0

]
, f =

[
0 0
1 0

]
,

with structure equations

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h

Then for any x ∈ L we know x = a1h+a2e+a3f with ai ∈ C. Then to understand
ad(x) ∈ gl(L) we see that

ad(x)(h) = [x, h] = [a1h + a2e + a3f, h] = −2a2e + 2a3f

ad(x)(e) == [x, e] = [a1h + a2e + a3f, e] = 2a1e− a3h

ad(h)(f ) = [x, f ] = [a1h + a2e + a3f, f ] = −2a1f + a2h.

Lie Algebra Isomorphism Theorems

(1) Let φ : L1 → L2 be a homomorphism of Lie algebras. Then kerφ is an ideal
of L1, im φ is a subalgebra of L2 and

L1/ kerφ
∼= imφ.

(2) If I and J are ideals of a Lie algebra J , then

(I + J)/J ∼= I/(I ∩ J).

(3) Suppose that I and J are ideals of a Lie algebra L such that I ⊆ J . Then
J/I is an ideal of L/I and

(L/I)/(J/I) ∼= L/J.

Example: Fix a field F and consider the linear map tr : gl(n, F ) → F which is
defined by taking the trace of a matrix. It can be shown that tr is a surjective Lie
algebra homomorphism and that ker tr = sl(n, F ). Thus by the first isomorphism
theorem we can conclude that

gl(n, F )/sl(n, F ) ∼= F.

References

[1] Karin Erdmann and Mark J. Wildon. Introduction to Lie Algebras. Springer, 2006.



A BRIEF INTRODUCTION TO MACHINE LEARNING

Tyler Ramil and Terry Wang
University of California Santa Barbara

A BRIEF INTRODUCTION TO MACHINE LEARNING

Tyler Ramil and Terry Wang
University of California Santa Barbara

Intro to The Statistical Learning Framework

The basic statistical learning setting involves a learner who is given a set of
objects (the "domain set"), a set of labels, and a training set consisting of labeled
examples. As an example, consider the domain to be the set of all papayas
where each papaya can be represented by its color and softness. So these
papayas may be labeled with Y = {0, 1}, where 0 means not tasty and 1 means
tasty. The learner’s goal is to output a prediction rule, h : X → Y that can
be used to predict the label of new objects. In our papaya example, this would
predict whether a papaya is tasty or not. The training data is generated by
sampling objects from a probability distribution and then labeling them according
to an unknown labeling function. The error of a predictor is defined as the
probability that it predicts the wrong label for a randomly chosen object (papaya)
from the distribution. The learner is blind to the underlying distribution and la-
beling function and can only interact with the environment through the training set.

ERM and Overfitting

The concept of Empirical Risk Minimization (ERM) can be used to analyze how
a learning algorithm performs. The algorithm receives a training set S, which
is sampled from an unknown distribution D and labeled by some target function
f . It outputs a predictor hS : X → Y , where the subscript S emphasizes that
the predictor depends on S. The goal is to find a predictor that minimizes the
error with respect to the unknown D and f . Since the true error is unknown to the
learner, a useful notion of error is the training error, which is the error the predictor
incurs over the training sample:

LS(h)
def
=

|{i ∈ [m] : h (xi) ̸= yi}|
m

,

where [m] = {1, . . . ,m}.
The idea behind ERM is to find a predictor that minimizes the training error,
which is a measure of how well the predictor fits the training data. However, this
approach can lead to overfitting, where the predictor fits the training data too well
and does not generalize well to new data. This means that the predictor may
have a low training error but a high error on new data.

ERM with Inductive Bias

Even though the ERM rule may lead to overfitting, there are ways to address this
problem. One solution is to apply the ERM learning rule over a hypothesis class,
denoted by H. Each h ∈ H maps from input space X to output space Y . The
ERMH learner chooses a predictor h ∈ H with the lowest possible error over the
training sample S,

ERMH(S) ∈ argmin
h∈H

LS(h)

where argmin stands for the set of hypotheses in H that achieve the minimum
value of LS(h) over H.[1] This is an inductive bias, which biases the learner
toward a specific set of predictors based on prior knowledge about the problem.
For example, relating back to the papaya example given earlier, we might assume
that there is a softness threshold after which a papaya is too hard to be tasty.
However, choosing a more restricted hypothesis class may introduce a stronger
inductive bias.
A fundamental question in learning theory is which hypothesis classes lead to
ERM learning that does not overfit. To answer this is dependent on the problem at
hand and the choice of our hypothesis class. The tradeoff between restricting the
hypothesis class and avoiding overfitting is something that is highly considered in
machine learning.
Overall, ERM is a very useful tool that is used in machine learning, but given its
limitations, such as overfitting, we must pay attention to how we work to resolve
such issues.

A Formal Learning Model

PAC Learning Probably Approximately Correct (PAC) learning is a framework for super-
vised learning that allows us to quantify the trade-off between the accuracy of a learned
model and the number of training examples required to achieve that accuracy. In PAC
learning, we seek to find a hypothesis that is "probably approximately correct" with respect
to an unknown target function, given a finite set of training examples drawn from some
distribution over the input space. Formally, we have the following definition:

Definition (PAC Learnability):
A hypothesis class H is PAC learnable if there exist a function mH : (0, 1)2 → N and a
learning algorithm with the following property: For every ϵ, δ ∈ (0, 1), for every distribution
D over X , and for every labeling function f : X → {0, 1}, if the realizable assumption
holds with respect to H,D, f , then when running the learning algorithm on m ≥ mH(ϵ, δ)
i.i.d. examples generated by D and labeled by f , the algorithm returns a hypothesis h
such that, with probability of at least 1−δ (over the choice of the examples), L(D,f )(h) ≤ ϵ [1]

A limitation of PAC learning is that it assumes that the target function belongs to the hypoth-
esis class being considered, which may not always be the case. Also, the PAC framework
assumes that the training examples are drawn independently and identically from some
fixed distribution, which may not be true in most real-world scenarios. Finally, the sample
complexity bounds for PAC learning can be quite loose in some cases, leading to a large
number of training examples being required to achieve a desired level of accuracy.

Perceptron Algorithm

Perceptron is an implementation of ERM rule. It’s an iterative algorithm that output a
sequence of vectors w(1), w(2), .... At iteration i, the algorithm would update w(i) based on
one misclassified data point by adding to it the instance xi times its label yi. The following
is an example of Perceptron algorithm implemented in Python and screenshots of two
iterations. The misclassified point that is causing the update is marked with a red x.

Boosting

Weak Learnability

The limitations of PAC learning, which ignores the computational aspect of
learning, motivates a new type of learnability: γ-Weak-Learnability.

Definition ( γ-Weak-Learnability):

- A learning algorithm, A, is a γ-weak-learner for a class H if there exists a
function mH : (0, 1) → N such that for every δ ∈ (0, 1), for every distribution
D over X , and for every labeling function f : X → {±1}, if the realizable
assumption holds with respect to H,D, f , then when running the learning
algorithm on m ≥ mH(δ) i.i.d. examples generated by D and labeled by
f , the algorithm returns a hypothesis h such that, with probability of at least
1− δ, L(D,f )(h) ≤ 1/2− γ
- A hypothesis class H is γ-weak-learnable if there exists a γ-weak-learner for
that class. [1]

This is a weaker definition than the PAC learning definition. While PAC learning
implies the ability to find a classifier with error rate at most an arbitrary small
number ϵ > 0, our weak learning only need to find a hypothesis with error rate
less than 1

2−γ. With the Weak Learnability, we can now introduce the AdaBoost
algorithm.

AdaBoost

AdaBoost, short for Adaptive Boosting, is an algorithm using a weak learner to
find a hypothesis with relative low empirical error. The boost proceeds in several
consecutive rounds. Eventually, the result is a relative strong hypothesis that’s
the weighted combination of the several weak hypotheses. At each round i, the
algorithm defines a distribution Di over the input training set. Then the weak
learner passes this distribution and the training set and supposedly it should
return a hypothesis hi with error ϵi:

ϵi
def
= LDi

(hi)
def
=

m∑
j=1

Dij1hi(xj) ̸=yj ≤
1

2
− γ

After each round, the algorithm would assign a weight, wi =
1
2log(

1
ϵi
− 1) to hi

and then it will update Di so that in the next round, the probability of appearance
of the samples on which hi errs is higher than it is in the current round. This
ensures that additional rounds create a stronger learner overall.
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Structure frommotion

Structure fromMotion is an interdisciplinary field that merges

the principles of algebraic geometry and computer vision. Its

primary objective is to reconstruct three-dimensional struc-

ture from a sequence of two-dimensional images. Through

techniques such as camera calibration and feature extraction,

we can estimate the camera parameters and identify common

points across multiple images. By triangulating these corre-

spondences, we obtain a set of 3D points that represent the

object’s structure. Algebraic geometry provides a mathemati-

cal framework to handle perspective distortions and depth am-

biguities inherent in 2D image captures.

Algebraic Geometry

Let R = k[x1, . . . , xn] where k is algebraically closed.

Affine Variety: Given polynomials f1, . . . , fs ∈ R, an affine variety is the set

V = {(a1, . . . , an) ∈ kn | fi(a1, . . . , an) = 0 for all 1 ≤ i ≤ s}
Finitely Generated Ideal: Given polynomials f1, . . . , fs ∈ R we call an ideal generated by

f1, . . . , fs,

〈f1, . . . , fs〉 =
{ s∑

i=1
hifi

∣∣∣ h1, . . . , hs ∈ R

}
.

Hilbert’s basis theorem assures that every ideal I ≤ R is finitely generated. An ideal I can be

classified as a radical ideal
√

I if

I =
√

I = {f ∈ R | fn ∈ I for some n}
Additionally, we would like to define for an affine variety V ⊆ kn the ideal associated with the

variety is

I(V ) = {f ∈ kn | f (a1, . . . , an) = 0 for all (a1, . . . , an) ∈ V }
Ideal–Variety Correspondence:

1. The correspondence

affine varieties
I−→ radical ideals and radical ideals

V−→ affine varieties

gives an inclusion reversing bijection.

2. For any variety V it holds that V(I(V )) = V . Similarly for any ideal I , it satisfies
I(V(I)) =

√
I

n-Dimensional Projective Space: The n-dimensional projective space over k is denoted Pn(k).
This is,

Pn(k) = (kn+1\{0})/ ∼ .

Where the equivalence relationship ∼ is denoted by

(x′
0 : · · · : x′

n) ∼ (x0 : · · · : xn) ⇐⇒(x′
0, . . . , x′

n) = λ(x0, . . . , xn)
for some λ 6= 0.

We will say that (x0 : · · · : xn) are homogeneous coordinates.

Reconstruction

Overview - Reconstruction is achieved by taking a series of 2D input images and matching fea-

tures to reconstruct camera positions and 3D points.

Feature Extraction/ Feature Matching - Detects prominent points or lines in each image using

the SIFT algorithm (Scale-Invariant Feature Transform). Matches the extracted features across

different images to identify common parts of the scene.

Geometric Verification - Not all feature matches from the previous

step are correct, many are outliers. For verification, it is necessary

to compute a geometric transformation to map features between

images. If such a transformation exists, the features are geometri-

cally verified. This is an algebraic geometry problem that involves

solving systems of polynomial equations.

To account for outliers, the RANSAC sampling method is used,

which increases robustness.

Reconstruction - Using a pair of geometrically verified images, the

features of these images are matched to their corresponding 3D co-

ordinates. Next, a new image is registered by estimating its camera

pose using 2D-3D correspondences and solving polynomial equa-

tions. The 3D coordinates of the new image are reconstructed by

triangulation and considering the Euclidean distance degree. To im-

prove robustness, bundle adjustment is used to refine the camera

poses and 3D coordinates, enhancing the overall reconstruction

process.

Camera Model

In order to produce a mapping between 3D and 2D we must specify a camera model used. We

have selected a pinhole camera which uses homogeneous coordinates to classify points on the

same ray. This produces a map, P3 → P2.

Algebraically each camera C is given as a 3 × 4 matrix A of rank

3. We will use this notion of cameras to produce a fiber of a

joint camera map

Φ = X × Cm → Y .

This maps a collection of X ∈ X 3D points and an n-tuple of cam-

eras (C1, . . . , Cn) ∈ Cm to the n 2D images.

Multiview Geometry for Verification

Using the previously defined camera model, the joint image of the cameras is given by ΦC(P3
R).

The Zaraski closure of the joint imaage gives the joint image variety

MC := ΦC(P3
R)

Muliview Constraints

Let A1, · · · , Am be the 3 × 4 matrices of rank three that define the cameras.

xi = (xi1 : xi2 : xi3) represent the homogeneous coordinates on the i-th image of for the

homogeneous. This produces the following 3m × (m + 4) matrix:

MA :=


A1 x1 0 · · · 0
A2 0 x2 · · · 0
... ... ... . . . ...

Am 0 0 · · · xm


For 2 cameras (m = 2), MA is a 6 × 6 matrix. Its bilinear determinant defines the multiview

hypersurface MC in P2
R × P2

R The matrix representation F ∈ R3×3 of this bilinear form x>
2 Fx1

is known as the fundamental matrix.

Symmetry of Joint Camera Map

The joint camera map Φ carries a symmetry, where a group G acts on the fibers of Φ.
Suppose that Cm consists of tuples of calibrated cameras [R1|t1], . . . , [Rm|tm]whereRi ∈ SO(3)
and ti ∈ R3. TakeX = (P3)n again to consist of tuples of 3D projective points. Now the relevant

group is

G =
{

g ∈ GL(4,R) : g =
[
R t
0 λ

]
for some R ∈ SO(3), t ∈ R3, λ ∈ R \ {0}

}

Two projective cameras example

Fix two projective pinhole cameras C1, C2 : P3 → P2 represented by matrices A1, A2. Consider
the set of corresponding point pairs defined as the multiview variety:

Mc = {(x1, x2) ∈ P2 × P2 : ∃X ∈ P3 s.t. C1(X) = x1, C2(X) = x2}.

This equation for Mc may be written as xT Fx1 = 0 where for 1 ≤ i, j ≤ 3,

Fij = (−1)i+j det (submatrix ([A1|A2], {1, 2, 3, 4}, {1, 2, 3, 4, 5, 6} \ {i, j + 3})) .
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Intro to SINDy

Accurately modeling the nonlinear dynamics of a system from measurement data
is a challenging yet vital topic. Sparse Identification of Nonlinear Dynamics
(SINDy) is a data-driven method used for uncovering the underlying dynamics of
a nonlinear system from observational data. The key idea behind SINDy is to ex-
press the dynamics of the system as a sparse linear combination of a library
of candidate functions or basis functions. These basis functions can be cho-
sen based on prior knowledge or intuition about the system, such as polynomials,
trigonometric functions, or exponential functions.
SINDy has found applications in various fields, including physics, biology, engi-
neering, and finance. It enables the discovery of simplified mathematical models
that capture the essential dynamics of complex systems, even in the absence of
complete knowledge about the system’s governing equations.

The SINDy Method

Consider the following initial value problem

dx

dt
= f (x, t), x(t0) = x0 ∈ Rn

where f is a Lipschitz continuous function in x. SINDy addresses the problem
of inferring the function f from data and takes advantage of the fact that many
of these systems have dynamics with only a few active terms in the space of
potential functions f . This avoids the intractable combinatorial search across all
possible model structures. SINDy approximates f by a generalized linear model

f (x) ≈ Σ
p
k=1θk(x)ξk = Θ(x)ξ

with the fewest nonzero terms in ξ as possible. In the formula above, θk(x) rep-
resents the candidate functions we fit to the data and ξk is the corresponding
coefficients of these functions that demonstrate the weight of these functions on
the overall dynamics. Θ(x) is a library of candidate nonlinear functions and may
be constructed from X, e.g.,

Θ(X) = [1X X2 · · · Xd · · · sin(X) eX · · · ]

Then, it is possible to use sparse regression to solve for the relevant terms that
are active in the dynamics.The dynamical system can then be represented as

Ẋ = Θ(X)Ξ

where Ξ contains a column vector ξk that represents the coefficients determining
the active terms in the kth row. A parsimonious model will provide an accurate
model in fit with as few terms as possible in Ξ. Such a model may be identified
using a convex ℓ1-regularized sparse regression:

ξk = argminξ′k
||Ẋk − Θ(X)ξ′k||2 + λ||ξ′k||1

Here Ẋk is the kth column of Ẋ, and λ is a sparsity-promoting knob.
The sparse vector ξk may be synthesized into a dynamical system:

ẋk = Θ(x)ξk

Note that xk is the kth element of x and Θ(x) is a row vector of symbolic functions
of x.

Applying SINDy to the Duffing Equation

The Duffing equation is a mathematical model that describes the motion of a damped,
driven oscillator. It is named after the German engineer Georg Duffing, who first intro-
duced it in the early 20th century. The simplified version of this equation we explore takes
the form:

ẍ + γẋ + βx + ϵx3 = 0.

In this equation, x represents the displacement of the oscillator, t is time, overhead dot rep-
resents differentiation. γ controls the amount of damping, β controls the linear stiffness
and ϵ controls the amount of non-linearity in the restoring force. We consider three dynam-
ical systems generated by the equation. Our goal is to test how well SINDy performs in
three different situations.
Case I: Damped Linear Oscillator(ϵ=0)
A harmonic oscillator is a fundamental concept that refers to a system exhibiting simple
harmonic motion. The mathematical description of this system is:

ẍ + γẋ + βx = 0

This ordinary differential equation can be solved algebraically. By assuming γ>0, β>0,
γ2 − 4β<0, and setting the initial conditions to be x(0)=1 and ẋ=0, the exact solution for
this ODE is:

x(t) = e−
γt
2

(
cosωt +

γ

4ω
sinωt

)
where ω2 =γ2 − 4β. By comparing the x − t graph of the exact solution to the x − t
graph generated by SINDy algorithm and the x − t graph approximated by the Runge-
Kutta Method(ode45) with the same initial conditions, we conclude that SINDy is efficient
in identifying the dynamics of harmonic oscillators.

l
Case II: Undamped Nonlinear Oscillator(γ=0)
An undamped oscillator is a system that exhibits oscillatory motion without any dissipation
or damping effects. The mathematical description of this system is:

ẍ + βx + ϵx3 = 0

This equation cannot be solved algebraically due to the involvement of the nonlinearity ϵx3.
Considering ϵ to be a small parameter, we apply multiple-scale analysis to construct a
uniformly valid approximation to the solution of the undamped nonlinear oscillator:

x(t) = cos

(
1 +

3ϵ

8

)
t +O(ϵ) (1)

By comparing the x − t graph of the leading-order approximation to the undamped non-
linear oscillator with the x − t graph obtained by SINDy and numerics, we conclude that
SINDy performs well in the undamped case.
Case III: Duffing oscillator(γ ̸= 0, ϵ ̸= 0)
The last case is more general with both γ and ϵ not equal to 0. Having built confidence in
our methodology in the previous two cases, we rely solely on numerical simulations of the
differential equation to test the SINDy method. We then compare the graph generated by
SINDy with the numerical approximation. The two graphs suggest that SINDy yet again
performs well.

Applying SINDy to the Lorenz system

Lorenz system
The Lorenz system refers to a set of three differential equations that were dis-
covered by the mathematician and meteorologist Edward Lorenz in 1963. These
equations are used to describe a simplified model of atmospheric convection,
which is the process by which heat is transferred through the motion of a fluid. It
is a well-known model in chaos theory.
The system is defined by the following equations:

x′ = σ(y − x),

y′ = x(ρ− z)− y,

z′ = xy − βz.

In these equations, x, y, and z represent the variables that describe the state of
the system over time, and t represents time itself. σ, ρ, and β are parameters that
determine the behavior of the system. We simulate the system with ode45, and
show the resulting chaotic trajectory of the system upright corner of the figure
below.
We then apply SINDy to the data generated by the numerics. We choose all
polynomials up to 3rd order as our library of functions. The output of the SINDy
algorithm is a sparse matrix of coefficients Ξ. We show the coefficient matrix Ξ
found by the SINDy algorithm below:

l

Comparing the two graphs, we conclude that SINDy works efficiently to identify
the dominant terms that account for the observed behaviors of the Lorenz sys-
tem.
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Definitions and Notations

• e1, e2 ∈ R2 are said to be orthonormal unit vectors if

|e1| = |e2| = 1, ⟨e1, e2⟩ = 0,

where | · | is the norm and ⟨·, ·⟩ is the inner product. They form a basis
of R2, and geometrically this means that e1 and e2 have length 1 and are
perpendicular to each other.

• For a = a1e1 + a2e2 and b = b1e1 + b2e2, the dot product is defined by

a · b = a1b1 + a2b2.

• For a = a1e1 + a2e2 and b = b1e1 + b2e2, the bivector is defined by

a ∧ b = (a1b2 + a2b1)e12

Bivectors on R2

Given a vector space R2, the addition and scalar multiplication of the vectors are
well-defined. Then a natural question to ask is: can we define a vector multiplica-
tion on R2? Let a,b ∈ R2, we want the multiplication preserves the norm, i.e.,

|ab| = |a||b|,

and it is distributive and associative.
Let e1, e2 be the orthonormal unit vectors on R2. The norm of a vector

r = r1e1 + r2e2

is defined by

|r| =
√
r21 + r22.

If r is multiplied by itself, we require that r2 = |r|2, that is, we want

(r1e1 + r2e2)
2 = (r1e1 + r2e2)(r1e1 + r2e2)

= r21e1
2 + r1r2(e1e2 + e2e1) + r22e

2
2

= r21 + r22.

This equality is satisfied if the orthonormal unit vectors e1 and e2 satisfy the fol-
lowing properties:

e1
2 = e2

2 = 1, e1e2 = −e2e1.

Consequently, we have

(e1e2)
2 = e1e2e1e2 = e1(−e1e2)e2 = −1,

which follows that e1e2 is neither a scalar nor a vector of R2. This product is
called a bivector, representing the oriented plane area of the square with sides
e1 and e2. Denote e1e2 = e12, it is illustrated by the following figure from [1]

We defined the Clifford product of two vectors a = a1e1 + a2e2 and b = b1e1 +
b2e2 to be

ab = a1b2 + a2b2 + (a1b2 − a2b1)e12 = a · b + a ∧ b.

Reflections

Given two vectors a and r in R2, r has a parallel component to a denoted as r∥ that is given
by the dot product of r and a multiplied by the vector a−1 = a

|a|2, that is

r∥ = (r · a) a

|a|2
= (r · a)a−1

Also, r has a perpendicular component to a denoted as r⊥ that is given by

r⊥ = r− r∥ = r− (r · a)a−1 = (ra− r · a)a−1 = (r ∧ a)a−1

Thus the reflection of r denoted as r′ can be obtained by decomposing r = r∥ + r⊥ and
sending it to r′ = r∥ − r⊥. Note that since r⊥ is a bivector,

r⊥ = (r ∧ a)a−1 = −a−1(r ∧ a) = a−1(a ∧ r) = −(a ∧ r)a−1

Then we can find two direct formulas for r′ as

r′ = r∥ + r⊥
= (r · a)a−1 − (r ∧ a)a−1

= (r · a− r ∧ a)a−1

= (a · r + a ∧ r)a−1

= ara−1

r′ = (r · a− r ∧ a)a−1

= (2r · a− ra)a−1

= 2
a · r
a2

a− r

With the commutative properties of Clifford products,

ar∥a
−1 = r∥aa

−1 = r∥

and
ar⊥a

−1 = −r⊥aa
−1 = −r⊥

which yields to formula r′ = ara−1.

Reflections and Rotation in 3D

In the Euclidean space R3 the vectors r and ar−1 = 2(a · r)a−1 − r are symmetric with
respect to the axis a. The opposite of ar−1, the vector

−ara−1 = r− 2
a · r
a2

a

is obtained by reflecting r across the mirror perpendicular to a [reflection across the plane
ar123]
Consider a vector a = a1e1 + a2e2 + a3e3 and the bivector ae123 = a1e23+ a2e31 + a3e12
dual to a. The vector a has positive square

a2 = |a|2, where |a| =
√
a21 + a22 + a23,

but the bivector ae123 has negative square

(ae123)
2 = −|a|2

It follows that
exp (ae123) = cosα + e123

a

α
sinα

where α = |a|. A spatial rotation of the vector r = xe1 + ye2 + ze3 around the axis a by the
angle α is given by

r → ara−1, a = exp

(
1

2
ae123

)
.

The sense of the rotation is clockwise when regarded from the arrow-head of a. The axis of
two consecutive rotations around the axes a and b is given by the Rodrigues formula

c′ =
a′ + b′ + a′ × b′

1− a′ · b′
where a′ =

a

α
tan

α

2
This result is obtained by dividing both sides of the formula

exp

(
1

2
ce123

)
= exp

(
1

2
be123

)
exp

(
1

2
ae123

)
by their scalar parts and then by inspecting the bivector parts.

Linear Space of Bivectors In R3

Let e1, e2, e3 ∈ R3 be orthonormal unit vectors, so they form a basis of R3. The
bivectors

e1 ∧ e2, e1 ∧ e3, e2 ∧ e3

form a basis for the linear space of bivectors, denoted by
∧2R3. The inner prod-

uct on Euclidean space R3 can be extended to a symmetric bilinear product (an
inner product) on

∧2R3, given by

⟨x1 ∧ x2,y1 ∧ y2⟩ =
∣∣∣∣x1 · y1 x1 · y2
x2 · y1 x2 · y2

∣∣∣∣ .
In particular, we have

⟨a · b⟩ = |a|2|b|2 − (a · b)2.

The Hodge Dual

The Hodge dual sending a vector a ∈ R3 to a bivector ⋆a ∈
∧2R3, defined by

b ∧ ⋆a = (b · a)e1 ∧ e2 ∧ e3 for all b ∈ R3

The Hodge dual depends not only on the metric but also on the choice of orien-
tation - it is customary to use a right-handed and orthonormal basis {e1, e2, e3}
Thus, we have assigned to each vector

a = a1e1 + a2e2 + a3e3 ∈ R3

a bivector

A = ⋆a = a1e2 ∧ e3 + a2e3 ∧ e1 + a3e1 ∧ e2 ∈
2∧
R3.

Using the induced metric on the bivector space Λ2R3 we can extend the Hodge
dual to a mapping sending a bivector A ∈ Λ2R3 to a vector ⋆A ∈ R3, defined by

B ∧ ⋆A = ⟨B,A⟩e1 ∧ e2 ∧ e3 for all B ∈
2∧
R3.

Using duality, the relation between the cross product and the exterior product
can be written as

a ∧ b = ⋆(a× b),

a× b = ⋆(a ∧ b).
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Markov Chain Monte Carlo Methods

Markov Chain Monte Carlo methods are a type of algorithm that allow us to sam-
ple from a probability distribution without knowing what the distribution looks like.
We’ll begin by defining the individual parts that make up MCMC: Markov Chains
and Monte Carlo methods.
Markov Chains A Markov Chain is a random process that undergoes state
changes. The chain also has a property, called the Markov property, where the
probability of moving to the next state is only dependent on the current state. An-
other way to say this is "in order to know the future, the knowledge of the past
does not add anything to the knowledge of the present" ([1, p. 45]).
More formally, the discrete, or finite, case for a Markov Chain is defined as a
discrete-time process {Xn}n≥0, i.e. a collection of random variables with the
index n usually representing time, with values in a countable space E is a Markov
chain if for all n ≥ 0 and all states i0, i1, . . . , in−1, i, j ∈ E,

P(Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0) = P(Xn+1 = j|Xn = i),

where P(Y = j|X = i) means the conditional probability of the event {Y = j}
given {X = i} ([1, p. 46 (Definition 2)]).
Monte Carlo Methods Monte Carlo methods are algorithms that
estimate quantities that are too difficult to obtain analytically or by
discretization. This is done through repeated random sampling
and averaging the results. Some common examples are estimat-
ing π or integrals.
Markov Chain Monte Carlo Algorithm MCMC methods were
proposed by Metropolis and his colleagues in 1953. They wanted
to develop a method to estimate an unknown target distribution using Markov
Chains.
The algorithm for the discrete, or finite, case is defined as the following:

• Choose a value for i0 for X0 (randomly or e.g i0 = 0).

• Once values i0, . . . , in of X0, . . . , Xn, respectively, have been found:

– Generate a proposed value i∗n+1 ∈ E from an auxiliary distribution
Yn+1|Yn = in.

– If µi∗n+1/µin > un set Xn+1 = i∗n+1; in this case we say that the proposal
is accepted. Else set Xn+1 = in and we say the proposal is rejected.

Here, E is a discrete state space, i.e., the set of all possible events, µi∗n+1 and µin
are the value of the target distribution at i∗n+1 and in respectively, and un is drawn
from the uniform distribution on [0, 1] to carry out acceptance/rejection step with
probability min{1, µi∗n+1/µin}. ([1, p. 55]).
Typically, first few hundreds or thousands of samples will not be close to those
drawn from the target distribution. Once the Markov Chain converges to what is
called its stationary distribution, a point at which the probability distribution rep-
resenting the movement from one state to the next does not change, the Markov
Chain transition is just like "independent sampling" from our target distribution µ.

Visual Representation of MCMC Algorithm

Hamiltonian Dynamics

Visual Representation of the Phase Space [1, p. 74 (Figure 13)]

Hamiltonian Dynamics Hamiltonian dynamics is another way to look at classical mechan-
ics in physics. This framework describes how a system changes over time based on the
Hamiltonian function H which represents the total mechanical energy of a system, which
equals the sum of the kinetic and potential energy (represented by V ) of the system of ν
particles:

H =
∑
i

1

2mi
pTi pi + V (r1, . . . , rν),

where ri, pi and mi correspond to the position, momentum, and mass of i-th particle ([1, p.
70]).
Hamiltonian Equations From now on, we discuss the case with only one particle for sim-
plicity of presentation. In the phase space space RD, D = 2d, (p,x) ∈ RD, to each smooth
real-valued function H = H(p,x) (Hamiltonian), the corresponding system of first order
differential equations, called the canonical or Hamilton’s equations describes the time evo-
lution of the system ([1, p. 71]):

d

dt
pj = −∂H

∂xj
,

d

dt
xj = +

∂H

∂pj
, j = 1, . . . , d.

Flow The flow of a Hamiltonian system is denoted with {Φt}t∈R. Φt is a map in the phase
space, Φt : RD → RD, that is defined as follows: Φt(p0,x0) is the solution (p(t),x(t)) at
time t of the canonical equation with the initial value (p0,x0) at t = 0. Basically, Φt tells us
how the system evolves over time ([1, p. 71-72]).
Property 1: Conservation of Energy The function H is a conserved quantity of the Hamil-
ton’s equations. Along solutions, we have

d

dt
H(p(t),x(t)) =

∑
j

(
∂H

∂pj

d

dt
pj +

∂H

∂xj

d

dt
xj

)
=
∑
j

(
−∂H

∂pj

∂H

∂xj
+

∂H

∂xj

∂H

∂pj

)
= 0.

Therefore,
H(p(t),x(t)) = H(p(0),x(0)).

In other words, when d = 1, the dynamics follows a contour curve of H on the phase space
[1, p. 72] (see the figure above).
Property 2: Conservation of Volume If we take the area of a specific region in the phase
space and evolve it through time, the area remains the same even though the shape of the
area might change ([1, p. 72-73]).
Property 3: Reversibility This property states that if we go backwards in the time evolution
of our system, the system’s motion will also go backwards. This means that if we knew the
state of the system at any point in time, we could run it backwards and find the state of the
system at a previous point in time ([1, p. 73]).
These properties lead to many desirable aspects, when combined with the MCMC, including
the existence of a stationary distribution and high acceptance rate of proposed states.

Hamiltonian Monte Carlo

We can combine MCMC and Hamiltonian dynamics together to form Hamilto-
nian Monte Carlo methods. These methods use Hamiltonian dynamics for the
Markov chain transition. We write the target density π(x) in the state space RD

as exp(−V (x)). We can think of x ∈ Rd as the position of our mechanical sys-
tem, V (x) as corresponding potential energy, and p ∈ Rd as momentum. p is
usually endowed a Gaussian density with the identity covariance matrix, which
corresponds to mass being 1 in the canonical equation. With this set up, we can
construct a Markov Chain in Rd ([1, p. 78]). For the simplicity of presentation,
we further assume d = 1 below.
HMC Algorithm (analytic flow version) Define the transitions xn 7→ xn+1 in
the state space Rd by the following procedure:

• Draw pn from a Gaussian density.

• Find (p∗n+1, xn+1) = ΦT (pn, xn), where ΦT is the T-flow of the canonical
system (the Hamiltonian equations) with Hamiltonian function H.

Then xn 7→ xn+1 defines a Markov chain in Rd that has the target π(x) ∝
exp(−V (x)) as an invariant probability distribution ([1, p. 78-79 (Theorem 8)]).

Visual Representation of Sampling from the Hamiltonian Phase Space

Why is this helpful? MCMC algorithms are typically inefficient due to low ac-
ceptance rates, resulting in the Markov Chain converging to its stationary distri-
bution taking a long time. On top of this, MCMC algorithms usually suffer from
high autocorrelation which comes from each sample being too close to the pre-
vious one. This also leads to the Markov Chain taking a longer time to converge
to its stationary distribution.
Notice that the momentum p∗n+1 is refreshed every iteration. This makes it pos-
sible to explore different energy levels, which likely leads to wider range of state
space. Also note that HMC does not even feature acceptance/rejection step be-
cause the acceptance rate is always 1: the ratio of the current and proposed
energy levels. This dramatically reduces autocorrelation, which is high when the
states are repeated as is the case when the proposed states are often rejected.
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Introduction

Optimal transport (OT) originates from Gaspard
Monge who considered the problem of redistribut-
ing (transporting and reshaping) a pile of sand to
form a fortification with minimal effort.

Fig. 1: Optimal transport problem [1].

Kantorovich Relaxation

The key idea of Kantorovich formulation is to relax the
deterministic nature of transportation!
Replacing the permutation σ by a coupling matrix P =
Pij ∈ Rn×m

+ , where Pij is the mass found at xi toward
yj. Kantorovich’s optimal transport problem is

LC(a, b) = min
P∈U(a,b)

∑
i,j

CijPij = min
P∈U(a,b)

⟨C, P⟩ (⋆)

where
U(a, b) ≡

{
P ∈ Rn×m

+ : P1m = a and PT1n = b
}

North-West Corner Rule

The rule starts by setting P1,1 to min(a1, b1). At each step,
the entry Pi,j is chosen to saturate either the row constraint
at i, the column constraint at j, or both if possible. The rule
proceeds until Pn,m has received a value.

Entropy Regularization

The entropy of a coupling matrix P is defined
as

H(P) = −
∑

Pi,j (log(Pi,j)− 1)
Use −H as a regularizing function to approximate
solutions to the original transport problem (⋆):

Lϵ
C(a,b) = min

P∈U(a,b)
⟨P, C⟩ − εH(P)

The solution is unique and has the form
Pi,j = uiKi,jvj

∀(i, j) ∈ {1, . . . , n} × {1, . . . , m}, where Ki,j =
e−

Ci,j
ε , u and v are unknown scaling variables.

Assignment and Monge
Problem

Given an n×n cost matrix C = [cij], the optimal
assignment problem is to find a permutation σ of
{1, . . . , n} that solve

min
σ∈Perm(n)

1
n

n∑
i=1

Ci,σ(i)

Note that this assignment is not unique.

Fig. 2: Non-unique assignment [2]. Fig. 3: Monge problem [2].
Extending the above definition to a slightly larger
family of histograms, we obtain the Monger prob-
lem. It seeks a surjective map T : {x1, . . . , xn} →
{y1, . . . , ym}, T must verify:

bj =
∑

i:T (xi)=yi

ai, ∀j ∈ {1, . . . , m}

where a and b are weights associated with x and
y, respectively.
The Monge formulation does not allow for the
splitting of mass.

Bakeries and Cafés in Santa
Barbara

• Bakery production: [51, 78, 102, 98, 112]
• Cafe sale: [82, 88, 92, 88, 91]
• Total croissants: 441

Auction Algorithm

The auction algorithm maintains a partial matching
(σ, S) and prices function p that together satisfy ε-
complementary slackness (ε-CS),

c
(
x, σ(x)

)
+ p

(
σ(x)

)
≤ min

y∈Y
[c(x, y) + p(y)] + ε

for all x ∈ S ⊂ X and σ : S → Y is an injective map.
At the end of the execution, σ is a bijection, and (σ, p) satisfy
the ε-CS condition. The following algorithm is taken from [3].
Algorithm 1 Auction algorithm
Require: c, ε, p = 0

S ← ∅
while ∃x ∈ X \ S do

y0← arg miny∈Y c(x, y) + p(y)
y1← arg miny∈Y \{y0}c(x, y) + p(y)
p(y0)← p(y0) +

(
c(x, y1) + p(y1)

)
−
(
c(x, y0) + p(y0)

)
+ ε

if ∃x′ ∈ X s.t. σ(x′) = y0 then
S ← S \ {x′}

end if
S ← S ∪ {x}, σ(x)← y0

end while
return σ, p

Sinkhorn’s Algorithm

These two updates define Sinkhorn’s algorithm:

u(ℓ+1) = a
Kvℓ

and v(ℓ+1) = b
KTu(ℓ+1),

initialized with an arbitrary positive vector v(0) =
1m.

Varying the regularization parameter in Sinkhorn,
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Palindromic Parking Functions

A parking function of length n is a function f : {1, · · · , n} → {1, · · · , n} which
has the property that the list (f (1), · · · , f (n)) can be rearranged into ascending
order (a1, · · · , an) such that ai ≤ i, where f (j) = ai for some j ∈ {1, · · · , n}. Let
PFn denote the set of parking functions of length n.

Parking functions have applications in various areas of combinatorics, such as
graph theory and algebraic combinatorics. They are used to study problems
related to permutations, lattice paths, and Catalan numbers, among others.

The symmetric group Symn acts on PFn by permutating coordinates. The set
fixed by the permutation

(1, n)(2, n− 1) · · ·
(⌊n

2

⌋ ⌈n
2

⌉)
is called the palindromic parking function (or symmetric parking function).
That is, the palindromic parking functions are parking functions that read the same
from both of the forward and backward directions. Let PPFn denote the set of
palindromic parking functions of length n.

Based on the above definition, a conclusion follows immediately:

Theorem. The order of palindromic parking functions of length n is

|PPFn| = (n + 1)⌊
n+1
2 ⌋.

Consider a σ ∈ Symn fixing f ∈ PFn. Note that there are ⌊(n + 1)/2⌋ cycles in
σ. Therefore, the number of f fixed by σ is

(n + 1)⌊
n+1
2 ⌋

n + 1
= (n + 1)⌊

n+1
2 ⌋−1 = (n + 1)⌊

n−1
2 ⌋.

Parking Function Polytopes

In 2020, in the journal American Math Monthly, Richard Stanley proposed ques-
tions about parking function polytope Pn, an n-dimensional polytope defined
as the convex hull in Rn of all parking functions of length n. The questions are:

1. the number of vertices of Pn;

2. the number of (n− 1) dimensional faces (facets) of Pn;

3. the number of integer points in Pn;

4. the n-dimensional volume of Pn.

Fig. 1: Parking function polytope P3 (left), where the hexagonal facet is the regular permutahedron

and the three triangular facets are copies of P2; and the Schlegel diagram of P4 (right).

In Aruzhan Amanbayeva and Danielle Wang’s paper The Convex Hull of Parking
Functions of Length n, they proved that Pn is a simple polytope and found the
f -vector of Pn.

Palindromic Parking Function Polytope

Motivated by Richard Stanley, we are interested in the f -vectors of palindromic parking
function polytopes PPn. The f -vector of PPn is the sequence

(1, f0, f1, · · · , fk),

where k = ⌊(n + 1)/2⌋!, and fi denotes the number of i-dimensional faces. For example,
the f -vector of PP5 and PP6 is (1, 10, 15, 7, 1).

Fig. 2: Visualizations of PP5 (left) and PP6 (right).

PP5 and PP6 are combinatorically equivalent whose dimensions are both 3 and with 10 vertices.

Compare figure 1 and 2, we noted that P3 and PP5 & PP6 share the same number of
vertices (# = 10). This pattern still holds if we increase the length of parking function. We
conclude that

P⌈n⌉ and PPn

share the same number of vertices. Moreover, the number of vertices follows the recursion

a(0) = 0,

a(n) = n · a(n− 1) + 1.

i.e., the sequence (0, 1, 3, 10, 41, 206, · · · ).

Fig. 3: The schlegel diagram of PP7 and PP8 of dimension 4 and 41 vertices.

A New Theorem

From the previous example, we know that PP5 has 10 vertices, while |PPF5| =
36, indicating that not all the palindromic parking functions are the vertices of
PPn. The theorem we discovered provides which vertices are desired ones.

Theorem. The vertices coming from palindromic parking functions are:

• if n is even, the vertices of PPFn are (⃗a, ⃗a), where a⃗ is of length n/2 and is
a permutation of

(1, · · · , 1︸ ︷︷ ︸
k times

, 2k + 1, 2k + 3, · · · )

for 1 ≤ k ≤ n/2.

• if n is odd, the vertices are of the form (⃗a,m, ⃗a), where a⃗ is of length (n−1)/2
and is a permutation of

(1, · · · , 1︸ ︷︷ ︸
k times

, 2k + 2, 2k + 4, · · · )

for m = 1; and

(1, · · · , 1︸ ︷︷ ︸
k times

, 2k + 1, 2k + 3, · · · , m̂,m + 1, · · · )

for m ̸= 1. Where m is the middle term, an odd number smaller than n and
1 ≤ k ≤ (m− 1)/2.

To see how this theorem works, let us consider an example of length 5. PP5 is
an odd case. For m = 1, we have vertices

(1, 1, 1, 1, 1), (4, 2, 1, 2, 4), (4, 1, 1, 1, 4), (2, 4, 1, 4, 2), (1, 4, 1, 4, 1);

and for m ̸= 1, we have vertices

(4, 1, 3, 1, 4), (1, 1, 5, 1, 1), (3, 1, 5, 1, 3), (1, 4, 3, 4, 1), (1, 3, 5, 3, 1).

Based on this new theorem we discovered, the number of vertices of PPn can
be immediately counted:

Corollary. The number of vertices of PPn is given by

|PPn| =
⌊
n + 1

2

⌋
!

 1

1!
+

1

2!
+ · · · + 1⌊

n+1
2

⌋
!

 .

Future Direction

We understand how to find the vertices and compute the number f0. Using this,
we are confident that we can compute the entire f -vector for PPn. Another
future direction is to investigate the other polytopes that arise by considering
different permutations.
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Cox–Ingersoll–Ross Model

The Cox–Ingersoll–Ross model (CIR), introduced by John C. Cox, Jonathan E. Inger-

soll, and StephenA. Ross in 1985, is a mathematical equation employed to simulate

fluctuations in interest rates. CIR is a single-factor model as it describes interest

movements as driven by a sole source of market risk. This model finds application

in predicting future interest rate levels, allowing for the calculation of bond prices

and the valuation of interest-rate financial derivatives.

The CIR model specifies that the instantaneous interest rate rt evolves according

to the stochastic differential equation:

drt = a(b − rt)dt + σ
√

rtdWt

rt = Instantaneous interest rate at time t

Wt = Wiener Process (a Brownian motion random variable which models the

random market risk factor)

a = Rate of mean reversion

b = Mean of the interest rate

σ = Standard deviation of the interest rate(measure of volatility)

The square root element does not allow for negative rates and the drift factor,

a(b − rt) ensures mean reversion of the interest rate towards the long-run value b,
with the speed of adjustment governed by the strictly positive parameter a. Mean

reversion in the CIR model suggests that when r is high, mean reversion tends to

cause a negative drift; when r is low, mean reversion tends to cause it to have a

positive drift, corresponding to real-life phenomenon.

Numerical Method to Solve Stochastic Differential Equations

The Euler–Maruyama method provides an approximate numerical solution for a

stochastic differential equation (SDE). This method is the analog of the Euler

method for ordinary differential equations. To develop an approximate solution

on the interval [c, d], assign a uniform grid of points:

c = t0 < t1 < t2 < ... < tn = d

Approximate x values

w0 < w1 < w2 < ... < wn

will be determined at the respective t points. Given the SDE initial value problem{
dX(t) = a(t, X)dt + b(t, X)dWt

X(c) = Xc

Then we can compute the approximate solution as follows:

Euler-Maruyama Method:

w0 = X0

wi+1 = wi + a(ti, wi)∆ti+1 + b(ti, wi)∆Wi+1

∆ti+1 = ti+1 − ti

∆Wi+1 = W (ti + 1) − W (ti)

Each random number ∆Wi is computed as

∆Wi = zi

√
∆ti

where zi is chosen from N(0, 1), normal distribution with mean 0 and standard

deviation 1.

Numerical Solution to CIR model

Deterministic CIR: Without the Brownian motion term dWt, we define the deter-

ministic CIR model by the ODE:

dr

dt
= a(b − r) + σ

√
r

Given an initial value r(0), we are able to numerically solve it using the forward

Euler Method

rn+1 = rn + hf (tn, rn)
where f (tn, rn) = a(b − rn) + σ

√
rn

Stochastic CIR Using the Euler-Maruyama Method, we update the solution for the

stochastic CIR model:

ri+1 = ri + a(b − ri)∆ti+1 + σ
√

ri∆Wi

since ∆Wi = zi

√
∆t and we have discretized the time interval with equal length of

step and denoted as h, we can rewrite the formula in the form:

ri+1 = ri + a(b − ri)h + σ
√

rihzi

Visualization of Numerical Solution to CIR model By implementing these two

methods in Python, we simulate the deterministic and stochastic CIR models

by setting parameters a = 0.45, b = 1, initial value r(0) = 0.5, step size δt =
0.01, ending time T = 2.

Figure 1. Simulation of stochastic CIR model with σ = 0.03, 0.06, 0.09

Parameters Estimation of CIR Model

We shift our focus to estimating the coefficients of the CIR model using historical

data on interest rates. By addressing this inverse problem within the CIR model, it

brings forth several implications, including:

1. Forecasting: Estimating the coefficients enables us to generate forecasts of

future interest rate movements. By understanding the behavior of interest

rates, we can make informed predictions about their future trajectory, aiding in

decision-making and risk management.

2. Calibration and Model Comparison: Estimating the coefficients enables us to

find optimal parameter values that minimize the disparity between the model’s

predictions and the actual data and allows for meaningful comparisons with

alternative interest rate models, aiding in model selection and evaluation.

Figure 2. A real-life interest rate that can be modeled: FRED data of 30-Year Fixed Rate Mortgage

Average in the United States

Method to Solve the Inverse Problem

Suppose we are given T, σ, r(0) and N realizations of the stochastic CIR model,

and we are interested in estimating the parameters a, b. That is, how do we

estimate the respective paramters a and b? We propose to estimate a, b by

using the following regression problem:

min
ξ

J(ξ) = 1
2N

min
ξ

N∑
j=1

∫ T

0
(rdata

j − rξ)2dt

N - number of realizations of the stochastic CIR model that we have given

rdata
j - the given realization of the stochastic CIR model

rξ - solves the deterministic CIR model for parameter ξ = (a, b)∫ T

0 - sum the difference between the given data and the deterministic CIR

model at each infinitesimal steps

min - find ξ that minimizes the difference between rdata
j and rξ

Procedure

1. Write the functions to solve the stochastic and deterministic CIR model by

using Euler-Maruyama and forward Euler method

2. Apply the trapezoidal rule to numerically integrate the cost function J(ξ).
3. Create an anonymous cost function with respect to a, b and utilize the ”scipy”

package in Python to optimize and determine the values of a, b that minimize

the cost function. These values of a, b will serve as our desired coefficient.

Result

Following the aforementioned procedure above, we successfully implemented the

optimization on the cost function J(ξ). As a result, we present the following graph,
which illustrates our achieved outcome:

Figure 3. Performance of the Fitted Deterministic Models with Varying Number of Simulations

By setting our parameter σ to a fixed value of 0.1, we proceeded to simulate

10, 100, and 1000 times respectively data from the CIR model. The resulting im-

ages below demonstrate the close fit between the deterministic CIR model and

the average simulated data. The estimated â, b̂ are fairly close to the true a, b de-
spite the number of each simulations in each case.

Considering that the model imposes a condition of 2ab ≥ σ2 to prevent negative

values of rt, we can establish an upper bound for the corresponding σ. Yet, It is
important to note that a rigorous estimation for σ should be further developed,

which holds the potential for enhancing our estimation of CIR model parameters.
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Abstract

This poster explores the idea of distinguishing knots and
studying their projections using Reidemeister moves.
We will also discuss three interconnected knot invari-
ants: Tricolorability, P-Colorability, and Knot Polyno-
mials. More information can be found on our website,
available after scanning the QR code on Figure 2.

Introduction

Figure 1: Three projec-
tions of the same knot

Loosely speaking, a knot is a
tangled loop of string with con-
nected ends. Mathematically, it
is a closed curve embedded in 3-
D space. The most fundamental
knot is the unknot, or a circle.
One knot can be drawn in different
ways with different projections.

But how can we be sure that all
knots are not just different pro-
jections of the unknot? Strategies
called invariants can help us dis-
tinguish two knots. The ongoing

study of knot theory is a point of curiosity for other
sciences like cryptography and DNA sequencing.

Figure 2: Scan me!

Let’s now look at how we can
transport one knot projection
to another using Reidemeis-
ter moves.

Reidemeister Moves

Ambient isotopy is the idea of rearranging a knot in
space without tearing it or having it intersect itself. If
we can get from one projection to another by ambient
isotopy, then the projections are of the same knot.

Reidemeister moves are valid changes on a knot that
give different projections of the same knot.

Thus, two knots are equivalent if and only if one can be
transformed into the other through a finite sequence of
Reidemeister moves.

Invariants: An Overview

Figure 3: A wacky
projection of the unknot.

Invariants help us answer the fol-
lowing question, fundamental in
knot theory:

Could all knots just
be equal to the unknot?

We want to find an efficient way
to tell whether two knots are distinct. Checking to see
if no finite sequence of Reidemeister moves exists be-
tween two knot projections is a difficult task. Thus, we
search for invariants—properties that hold true across
all three Reidemeister movies—to distinguish knots.

Tricolorability

A knot is tricolorable if each strand of the knot
diagram can be colored one of three colors, subject to
the following rules:

1.At least two colors must be used.
2.At each crossing, the three incident strands are
either exactly the same or completely different colors.

Note: In a knot diagram, a strand indicates a
continuous piece that goes from one under-crossing
to the next.

Figure 4: Trefoil knot is
tricolorable

The rules of tricolorability
hold true under each Reide-
meister move, making it a
valid knot invariant (see a
proof on our website). As
pictured on the right, the
trefoil knot is tricolorable
since it can be properly col-
ored with three different colors.

Figure 5: The unknot
is not tricolorable.

Because the unknot can only be
colored by one color, it is not
equivalent to the trefoil knot and
any tricolorable knot. However,
if a knot is not tricolorable, we
cannot conclude that it is a
projection of the unknot.

P-Colorability

Notice that with tricolorability, we were subject to
just three “colors”. P-Colorability is another knot
invariant that generalizes the rules of tricolorability
numerically so we can use more colors.

A knot, and any of its projections, will be p-colorable
(where p is a prime > 2) if all strands of the knot
can be labeled with variables such that c is the
over-strand of a crossing, and a and b are the under-
strands, following the condition a+b−2c ≡ 0 (mod p).

We can use the determinant of the coloring invariant
matrix of a knot to deduce which primes make a valid
coloring system.

Theorem: A knot is p-colorable if and only if p
divides the determinant.

Based on our p-colorable equation, each element of the
matrix represents whether the strand is an overstrand
(i.e., coefficient is −2) or an under-strand (coefficient
is 1). If the coefficient is 0, that just means that the
strand is not part of the three participating strands of
that crossing.

Below is a coloring invariant matrix for the figure-8
knot.

A =


−2 0 1 1
1 1 0 −2
0 1 −2 1
1 1 1 0

 ⇒ ACofactor =

−2 0 1
1 1 0
0 1 −2



Figure 6: Figure 8 knot
is 5-colorable.

Then |det(ACofactor)| = 5, and
thus, we can conclude that the
figure-8 knot is 5-colorable. As
shown on the left, we can now
follow the coloring rules as we
defined earlier on the figure-8
knot with at most five colors.

Also, because the determinant of our matrix is invari-
ant on the labeling of the knot and the projection of
the knot, we can conclude that the determinant of a
knot’s coloring matrix is a knot invariant.

Knot Polynomials

Knot Polynomials are numerical representations of
knots and can be used as a knot invariant. The first
polynomial in this discussion is the bracket polyno-
mial. Calculation of the bracket polynomial, denoted
<L>, follows three rules:

It can be shown that the Type II or III move on
the knot’s projection will result in the same bracket
polynomial. However, making a Type I move will
change the final bracket polynomial, so the bracket
polynomial cannot be a knot invariant. Hence, we
define a new polynomial to work around this issue.

The X-Polynomial is defined as follows:

X(L) = (−A3)−w(L) < L >

where w(L) is the writhe (pronounced like “faith”)
of the knot projection. Each strand in the pro-
jection has to be given a direction (we call this
“oriented”) to calculate the writhe. The trefoil knot
has X(L) = A−4 + A−12 − A−16.

Another polynomial, the Alexander Polynomial
∆(x), is found by labeling crossings. Interestingly
enough, plugging t = −1 into ∆(x) gives the same
value as the determinant of our coloring matrix!

While there are other knot invariants that give us more
information, we focus on the most introductory ones
to present knot theory in a palpable way.
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Importance of Persistent Homology

When working with multidimensional data, it can be challenging to understand

its underlying geometric structure. By constructing a sequence of simplicial com-

plexes and computing the homology groups at each stage, one may gain insights

into the connectivity and presence of holes in a given dataset. Furthermore, the

structural knowledge gained is relatively robust to noise and sampling error.

What is Homology?

Simplicial homology is a fundamental concept from algebraic topology which

aims to quantify the number of n-dimensional holes in a simplicial complex.

Given a simplicial complex K , one first establishes bases for the cycles (lin-

ear combinations of simplices which “close up”) and boundaries (linear com-

binations of simplices which bound something higher-dimensional) of K . The

homology groups are then obtained by taking a quotient – cycles mod bound-

aries. This effectively removes all “trivial” cycles, i.e. those that bound a filled-in

region, leaving behind the true holes in the space.

Definitions

Let K be a simplicial complex and G an abelian group (for us, G = Q).

An n-simplex is the convex hull of n + 1 affinely independent points.

Figure 1. Examples of n-simplices, for n = 0, 1, 2, 3.

A simplicial complex is a mathematical structure formed from a collection of

simplices of various dimensions whose faces satisfy certain conditions.

An n-chain of K is a formal G-linear combination of n-simplices of K .

The nth chain group of K over G, denoted Cn(K; G), is the set of all n-chains
of K , under the binary operation of (formal) addition.

The nth boundary map is defined as

∂n : Cn(K; G) → Cn−1(K; G)

[v0, . . . , vn] 7→
n∑

i=0
(−1)i[v0, . . . , v̂i, . . . , vn],

where [v0, . . . , v̂i, . . . , vn] is the (n − 1)-simplex obtained by deleting the ith

vertex from [v0, . . . , vn].
n-cycles are elements of ker(∂n); n-boundaries are elements of im(∂n+1).
∂n ◦ ∂n+1 = 0, so the boundary maps form a chain complex:

· · · −→ Cn+1(K; G) ∂n+1−−→ Cn(K; G) ∂n−→ · · · ∂2−→ C1(K; G) ∂1−→ C0(K; G) ∂0−→ 0.

The nth homology group of K over G is defined to be

Hn(K; G) = ker(∂n)/ im(∂n+1).
Working over Q (or any field of characteristic zero) eliminates torsion, so the

rational homology groups are actually vector spaces over Q, since
Hn(K;Q) ∼= Hn(K;Z) ⊗Z Q.

The nth Betti number of K , denoted βn(K), is the rank of the nth homology

group of K . It can be computed as follows, using the rank-nullity theorem:

βn(K) = dim(Hn(K;Q))
= dim(ker(∂n)/ im(∂n+1))
= dim(Cn(K;Q)) − rank(∂n) − rank(∂n+1).

An Example

The boundary of the 2-simplex [v1, v2, v3] is
∂2([v1, v2, v3]) = [v2, v3] − [v1, v3] + [v1, v2] ∈ C1(K; G).

This can be seen geometrically in the simplicial complex, K , shown below.

v1

v2 v3

v4 v5 v6

Figure 2. A simplicial complex, K , composed of 6 vertices, 9 edges, and 3 faces.

Ordered bases for the chain groups of the simplicial complex above are given by

C0(K;Q) = 〈[v1], [v2], [v3], [v4], [v5], [v6]〉 ∼= Q6,

C1(K;Q) = 〈[v1, v2], [v1, v3], [v2, v3], [v2, v4],
[v2, v5], [v4, v5], [v3, v5], [v3, v6], [v5, v6]〉 ∼= Q9,

C2(K;Q) = 〈[v1, v2, v3], [v2, v4, v5], [v3, v5, v6]〉 ∼= Q3.

Computing the boundaries of each basis element yields ∂0 = ∂3 = 0, and

∂1 =


−1 −1 0 0 0 0 0 0 0
1 0 −1 −1 −1 0 0 0 0
0 1 1 0 0 0 −1 −1 0
0 0 0 1 0 −1 0 0 0
0 0 0 0 1 1 1 0 −1
0 0 0 0 0 0 0 1 1

, ∂2 =



1 0 0
−1 0 0
1 0 0
0 1 0
0 −1 0
0 1 0
0 0 1
0 0 −1
0 0 1


.

Bases for the null space of ∂1 and the column space of ∂2 can be computed as

null(∂1) =

〈

1
−1
1
0
0
0
0
0
0


,



0
0
0
1

−1
1
0
0
0


,



0
0
0
0
0
0
1

−1
1


,



0
0
1
0

−1
0
1
0
0



〉
, col(∂2) =

〈

1
−1
1
0
0
0
0
0
0


,



0
0
0
1

−1
1
0
0
0


,



0
0
0
0
0
0
1

−1
1



〉
.

Continuing in this fashion, one can compute:

H0(K;Q) = Q6/Q5 ∼= Q,

H1(K;Q) = Q4/Q3 ∼= Q,

H2(K;Q) = Q/Q ∼= 0.

β0(K) = 1,

β1(K) = 1,

β2(K) = 0.

Homology of the Torus

H0(T 2;Q) = Q,

H1(T 2;Q) = Q ⊕ Q,

H2(T 2;Q) = Q.

β0(T 2) = 1,

β1(T 2) = 2,

β2(T 2) = 1.

Figure 3. Simplicial complex for the 2-dimensional torus, and its rational homology groups.

Alpha Complexes

Let K be a simplicial complex with vertex set S. If Br(v) denotes the closed

ball of radius r centered on a point v ∈ S, and V (v) denotes the Voronoi region
associated to v, then the alpha complex of radius r is the simplicial complex

defined by

αr(K) =

{
σ ⊆ S :

⋂
v∈σ

(Br(v) ∩ V (v)) 6= ∅

}
.

Figure 4. Example of an alpha complex, along with the associated union of closed balls.

The alpha complex has the following nice properties:

The Nerve Theorem states that αr(K) is homotopy equivalent to
⋃

Br(v).
This implies that the two spaces have isomorphic homology groups.

The dimension of the alpha complex can be no larger than the dimension of

the ambient space to which the given data points belong.

Computing the associated homology groups is computationally inexpensive.

Persistence & Topological Data Analysis

Given a point cloud of data, one may construct a filtration of alpha complexes

by increasing the radius, r, of the closed balls surrounding the vertices. In

doing so, persistent holes may be detected in the alpha complexes, thereby

providing valuable insights into the structure of the underlying data.

β0(α0.75(K)) = 7,

β1(α0.75(K)) = 0.

β0(α1.5(K)) = 2,

β1(α1.5(K)) = 0.

β0(α2(K)) = 1,

β1(α2(K))= 1.

β0(α2.5(K)) = 1,

β1(α2.5(K)) = 0.

Figure 5. A filtration created by increasing r, along with the associated Betti numbers
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The Normed Space CL(X,Y)

CL(X, Y ) denotes the set of all continuous linear transformations
from a normed space X to a normed space Y.
A continuous linear transformation is characterized by
Theorem 1.
Let X and Y be normed spaces, and T: X → Y be a linear transfor-
mation. Then the following properties of T are equivalent:
(1) T is continuous.
(2) T is continuous at 0.
(3) There exists an M>0 such that for all x ∈ X, ||Tx||Y ≤ M ||x||X.
CL(X,Y) is a normed space, with pointwise operations and the “op-
erator norm” ||.|| : CL(X,Y) → R given by:
||T|| := sup{||Tx|| : x ∈ X, ||x|| ≤ 1}, T ∈ CL(X, Y )
A subspace Y of a normed space X is said to be an invariant sub-
space with respect to a linear transformation T: X → X if TY ⊂ Y.
Invariant subspaces are useful since they are helpful in studying
complicated operators by breaking them down into smaller opera-
tors acting on invariant subspaces. This is similar to the diagonal-
ization process in linear algebra where one decomposes the vector
space into eigenspaces, where the linear transformation acts triv-
ially. This also contributes to one of the open problems in functional
analysis known as the invariant subspace problem:
Does every T ∈ CL(H) on a separable complex Hilbert space H
have a non-trivial invariant subspace?

Topology in Normed Spaces

There are three key topologies in the normed space, categorized
into uniform operator topology, strong operator topology, and
weak operator topology on CL(X,Y).

Banach Spaces

Definition
A normed space in which the set of Cauchy sequences is equal to the set of
convergent sequences is called a Banach space. Sometimes, we also call
it a complete normed space.
Some common examples of Banach spaces include: (R, |.|), (C, |.|),
(lp, ||.||p), (C[a, b], ||.||∞), (L2[a, b], ||.||2).

A Property of Banach Space

Theorem 2.
In a Banach space, absolutely convergent series converge, that is:
If (xn)n∈N is a sequence in a Banach space (X, ||.||) such that

∑∞
n=1 ||xn|| <

∞, then
∑∞

n=1 xn converges in X. Moreover, ||
∑∞

n=1 xn|| ≤
∑∞

n=1 ||xn||.

Example:
∑∞

n=1
sin(n.)
n2 converges in C[0, 2π], ||.||∞). (Here sin(n·) means

the function t −→ sin(nt) : ([0, 2π] −→ R)
Indeed, we have

∣∣∣∣∣∣sin(n.)n2

∣∣∣∣∣∣
∞
= 1

n2, and
∑∞

n=1
1
n2 < ∞.

So x :=
∑∞

n=1
sin(n.)
n2 defines a continuous function on [0, 2π].

We can approximate the limit by computing the first N terms and plotting
the resulting function. The error can then be bounded as follows:∣∣∣∣∣∣

∣∣∣∣∣∣
∞∑

n=N+1

sin(n.)

n2

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

≤
∞∑

n=N+1

∣∣∣∣∣∣∣∣sin(nt)n2

∣∣∣∣∣∣∣∣
∞
≤

∞∑
n=N+1

1

n2
.

For example, if N = 100, then the error is bounded above by
∞∑

n=101

1

n2
≤

∫ ∞

100

1

x2
dx =

1

100
= 0.01.

Using Maple, one can plot the partial sum of x with N = 100 and get:

Thus the sum converges to a continuous function that lies in the strip of width
0.01 around the graph shown in the figure. We can also use Theorem 2 to
show that eA converges (A belongs to CL(X)). CL(X) denotes a certain
Banach space, namely the space of all "continuous linear transformations"
from X to itself, equipped with the "operator norm". For example, when
X = Rd, CL(X) turns out to be the space of all d× d real matrices. Why is
there a focus on eA? The answer is that it plays a crucial role in differential
equations. The initial value problem,

dx

dt
= A(t)x(t), t ∈ R, x(0) = x0 ∈ X,

has a unique solution given by x(t) = etAx0, where t ∈ R.

Spectral Theory

Spectrum and Resolvent

• For a linear transformation T ∈ L(X) on a finite dimensional
vector space X over C, the set of eigenvalues is known as its
spectrum σ(T ) with cardinality at most dimX. In infinite dimen-
sional complex vector spaces, linear transformations may have
no eigenvalues, finitely many eigenvalues, or infinite eigenval-
ues.

• Let X be a normed space and T ∈ CL(X). We say that λ ∈ C
belongs to the spectrum σ(T ) of T if λI − T is not invertible in
CL(X). Thus

ρ(T ) := C\σ(T ) = {λ ∈ C : λ is invertible in CL(X)}
• The set ρ(T ) is the resolvent set

• The set σp(T ) of all eigenvalues of T is called the point spectrum
of T.

• We have that σp(T ) ⊂ σ(T ), since if λ ∈ σp(T ) then there exists
a nonzero vector x such that Tx = λx, that is (λI − T )x =
0, showing that λI − T is not injective, and hence cannot be
invertible either.

Theorem 3.

• Let X be a Banach space and T ∈ CL(X). Then
(1) σ(T ) ⊂ {∈ C : |λ| ≤ ||T ||}
(2) ρ(T ) is an open subset of C
(3) σ(T ) is a compact subset of C
(4) σ(T ) is nonempty
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Introduction

Our project aims to calculate the lift and drag of an airfoil in two and
three dimensions. To achieve this goal, we need to obtain the equa-
tion of motion of the fluid passing over the airfoil. Two approaches can
be taken to address this problem: the microscopic approach utilizing
Boltzmann’s equation or the continuum approach that treats the fluid
as a group of parcels occupying each point of space with well-defined
thermodynamics properties. We will be utilizing the continuum ap-
proach, which relies on calculus to solve problems. This approach
utilizes several fundamental equations to comprehend fluid motion,
namely Euler’s equation and Navier-Stokes equations. Specifically,
Euler’s equation applies to ideal fluids, while Navier-Stokes equations
are applied to viscous fluids. These equations are derived from New-
ton’s second law, which states that an object’s acceleration is propor-
tional to the net force applied and inversely proportional to its mass.

Preliminaries
Euler’s and Navier-Stokes equations are fundamental for understanding
fluid motion. In our case, we need to apply these equations to fluid flow
around an obstacle, such as an airfoil. A stationary, ideal, and homogeneous
fluid setting is a suitable context for studying an airfoil in two dimensions,
as it allows us to simplify Euler’s equation to Cauchy-Riemann equations
in complex analysis. More specifically, consider the following setting:

Our velocity field U = (u(x, y), v(x, y))
Incompressible fluid ⇒ ∇ · U = ∂u

∂x + ∂v
∂y = 0, that is ∂u

∂x = −∂v
∂y

Irrotational fluid ⇒ ∇ × U = ∂v
∂x − ∂u

∂y = 0, that is ∂v
∂x = ∂u

∂y

These two conditions imply that our force F = u− iv is complex differen-
tiable.
Now assume that F = ∂W

∂z where W = ϕ + iψ, then by Cauchy-Riemann
equations, the force can be expressed as F = ∂ϕ

∂x + i∂ψ∂x = ∂ϕ
∂x − i∂ψ∂y = u− iv

where u = ∂ϕ
∂x and v = ∂ψ

∂y . In other words, U = (u, v) = ∇ϕ
We would also like to provide the following comments.

1. In a stationary, ideal, and homogeneous fluid, the original Euler’s
equation ρ

du

dt
= −∇P + ρb can be simply expressed as P = −ρ∥u∥2

2 .
Furthermore, the Cauchy-Riemann equations further simplify the incom-
pressible condition as ∇·U = ∇·∇ϕ = △ϕ = 0. Lastly, we consider the
boundary condition. Theoretically, the ideal flow would be tangential to
the boundary and not penetrate the boundary of the domain, which we
may express as U · n̂ = ∇ϕ · n̂ = V · n̂ on ∂D, where D refers to the
domain.
2. Our assumption of ideal and incompressible flow implies that the den-
sity field ρ is constant by the continuity equation. This result allows us
to apply the Kelvin’s circulation theorem, and understand how circula-
tion changes throughout time. Specifically, the theorem informs us that
dΓc(t)
dt =0 where Γc(t) denotes the circulation around contour c(t). If the

original circulation is zero, then the theorem tells us that the circulation
around c(t) will remain to be zero throughout the flow. See the following
graph.

Lift of 2-dim Airfoil
To determine the lift and drag of a 2-dimensional airfoil, we follow a system-
atic approach that involves analyzing the force and potential of the flow.
These steps outline the process:

1. We begin by examining the force and potential of the flow in the
absence of an airfoil. We express the initial velocity field as U = (u, v) =
(Q cosα,Q sinα). Because we proved in the previous section that the
force is F = u − iv, we rewrite it as F = Q cosα − iQ sinα = Qe−iα

by Euler’s formula. Then the complex potential is W = Qze−iα, since
F := ∂W

∂z .
2. Next, we investigate the force and potential of the flow after intro-
ducing a 2-dimensional disk-shaped airfoil. To calculate these values, we
can utilize the Milne-Thomson circle theorem, which allows us to insert
a circle into a 2-dimensional flow and understand how the complex po-
tential changes. Applying this theorem, the new complex potential is
given by

Ŵ = Qze−iα +Qze−iα = Qze−iα +Qeiαa2/z2 − iΓ ln z/2π

where Γ refers to the circulation and a denotes the radius of a disk.
3. We then apply conformal mapping techniques to transform the airfoil
shape. This transformation allows for easier analysis and computation
of the flow properties around the airfoil. See the below for two examples
of airfoils provided in [5].

Let us discuss the computation for the exterior of the disk of radius a.
Mathematically, we denote the exterior of the disk as z, and z will map
to the exterior of the plate (|x| ≤ 2a in R2), ẑ = z + a2/z. Then we
analyze the following equation:

dŴ

dẑ
= dŴ

dz

dz

dẑ
=

Qe−iα + Qeiαa2

ẑ2 − iΓ
2πẑ


√
ẑ2 − 4a2 + ẑ

2
√
ẑ2 − 4a2

We can obtain dz
dẑ by rewrite ẑ = z + a2/z in terms of z, which is

z = ẑ±
√
ẑ2−4a
2 . However, only the solution with plus sign will be taken

as we assume z ≈ ẑ at infinity.
Note that dŴ

dẑ is not defined precisely at ẑ = ±2a. The Kutta-
Joukowski condition allows us to eliminate one of the singularities at
ẑ = 2a. We pick Γ such that

(
Qe−iα + Qeiαa2

ẑ2 − iΓ
2πẑ

)
= 0, and it turns

out that this condition is satisfied when Γ = −4πa sinα. Applying
Kutta-Joukowski theorem, we can calculate the force exerted on D.
We obtain F̂ = ρΓ (V − iU) = −4ρπQa sinα + 4iρπQa sinα cosα =
ρΓ (Q sinα− iQ cosα) = x + iy, where F̂ = (x, y) denotes the force
field, and (U, V ) = (Q cosα,Q sinα) is obtained from (u, v) → (U, V )
at infinity by our assumption.
4. The lift, therefore, is the magnitude of the complex number F̂ , which
is 4πραQ2 sinα.

Whereas the flat plate had a singularity at the left endpoint, a general K-J
airfoil can have a smoother leading edge and a sharp trailing edge to which
we apply the K-J condition. For our analysis of the three-dimensional wing,
we consider each cross-section to be a general K-J airfoil in the coordinate
system shown below:

Lift of 3-dim Wing
When studying 3-dimensional wings, we can slice the wing by a plane
y = const. to obtain a 2-dimensional airfoil section. We consider Joukowski
airfoils - characterized by a smooth leading edge and a sharp trailing edge
- for the cross-sections of our wing. We use Prandtl’s model of a 3-
dimensional wing to calculate the lift. In this model, the wing is regarded as
long and thin; the aspect ratio of a wing is defined as wingspan2/wing area,
or 4b2/A where b is the half-span. This model is an asymptotic approxi-
mation as the aspect ratio of the wing tends to ∞.
We start by determining Γ(y), assuming each cross section is a Joukowski
airfoil and that angles formed by the flow and the airfoil, α, β are small:

l(y) = 4πρc(y)Q2 sin(α + β)
=⇒ Γ(y) = 4πc(y)U(α(y) + β(y))

We denote the effective angle of attack as

αeff = α + w(y)
U

where α is the fixed angle of attack and w(y) is the downwash due to shed
vorticity. A visualization of this downwash is below.

One computes the shed vorticity by an application of the Kutta-Joukowski
theorem to an infinitesimal section of the wing.

We now have
Γ(y) = 4πc(y)U(α + w(y)

U
+ β(y))

Note that a doubly infinite vortex creates a velocity given by the 2-
dimensional point vortex flow: namely, a line that carries unit circulation
and is parallel to the x-axis at a position y = η in the z = 0 plane intro-
duces the velocity

1
2π(y − η)

Since the shed vortex is semi-infinite, this vorticity is reduced by a factor
of 1

2. We can now determine w(y) from Γ(y):

w(y) = − 1
4π

∫ b
−b

dΓ
dy (η)
y − η

dη

We can also deduce an integral equation for Γ(y):

Γ(y) = 4πc(y)U(α + β(y) − 1
4πU

∫ b
−b

dΓ
dy (η)
y − η

dη

Solving this equation results in the lift on the wing:

L = ρU
∫ b
−b Γ(y)dy

It is important to note that this method is quite basic and assumes an ideal
fluid flow, which is unrealistic. In the real world, one major concept is that
of the boundary layer: a thin layer adjacent to the surface of the object
where the effect of viscosity is the most prominent. The boundary layer
acts as another source of viscosity, and in the case of airfoils, it causes the
fluid flow to "separate" or "detach" from the trailing edge into a wake.

Blasius’ Formula and the Kutta-Joukowski
Theorem

(Blasius’ Formula) Consider an ideal, incompressible, potential flow
(with flow velocity U = (u, v)) around a rigid obstacle B, and suppose
F = u− iv is the complex velocity. Then the force F exerted on B is
given by

F = −
∫
∂B pnds = −iρ

2
[∫
∂B F

2dz
]

In short, Blasius’ formula relates the force exerted by the pressure of the
flow to the force exerted by the density of the flow, and the diagram below
illustrates the infinitesimal normal displacement of along the boundary of
B, which can be used to derive Blasius’ formula from the expression of the
force involving pressure.

(Kutta-Joukowski Theorem) Consider an incompressible, poten-
tial flow exterior to an obstacle B, and suppose the velocity field (u, v)
goes to some constant value (U, V ) at infinity. Then the force F ex-
erted on D is given by

F = −ρΓ∂B||(U − iV )||n

where Γ∂B is the circulation about the obstacle and n is a unit vector
orthogonal to (U, V ).
Proof. Recall that in the statement of Blasius’ formula, we defined F to be
the complex velocity outside of B, so it is by definition analytic, and can
therefore be written in a Laurent series like so:

F = · · · + a−2

z2 + a−1

z
+ a0 + a1z + a2z

2 + . . .

But because of the limiting value at z → ∞, there are no positive powers
(otherwise F diverges) and so

F = a0 + a−1

z
+ a−2

z2 + . . .

Recall that F = u− iv as in Blasius’ formula, so we have
∫
∂B Fdz =

∫
∂B(u− iv)(dx + idy)

=
∫
∂B udx + vdy =

∫
∂B(u, v)ds = Γ∂B (1)

and by the Cauchy Residue theorem, we have that a−1 = Γ∂B

2πi . Finally,
using our derivation from (1) and Blasius’ formula, we get

F = −iρ
2

[∫
∂B F

2dz
]
= −iρ

2

∫
∂B

a2
0 + 2a0a1

z
+ . . .

 dz


= −iρ
2

2a0a−12πi = −iρ
2

· 2a0 · Γ∂B
2πi

· 2πi

= −iρ
2

2Γ∂B(U − iV ) = −ρΓ∂B(V − iU)

= −ρΓ∂B||(U − iV )||n

as desired.
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Geometry of Projective Transformations

A projective transformation is a geometric transformation that pre-
serves certain properties such as collinearity (a straight line is imaged
as a straight line). It models the distortion caused by perspective cam-
era and is commonly used in computer vision and computer graphics.
Homogeneous representation: it is a vector with an additional coor-
dinate which allows the representation of points at infinity and further
transformations.
Points:
- 2D: An arbitrary homogeneous representation of a point is
x = (x1, x2, x3)

T, which means x = (x1/x3, x2/x3) in R2.
- 3D: Similarly, for a point x in 3-space, x = (x1, x2, x3, x4)

T with x4 ̸= 0
represents (x1/x4, x2/x4, x3/x4)

T in R3.
Lines: In a plane, a line is represented by the equation ax+by+c = 0,
and therefore can be represented by the vector (a, b, c)T.
Planes: A plane in 3-space is shown as π1x+π2y+π3z+π4 = 0, so its
homogeneous representation can be written as π = (π1, π2, π3, π4)

T.
Since only the three independent ratio {π1 : π2 : π3 : π4} are signifi-
cant, the dof of a plane in 3-space is 3.
Ideal points: For two parallel lines l = (a, b, c)T and l′ = (a, b, c′)T, the
intersection is l× l′ = (c−c′)(b,−a, 0)T. Ignoring (c−c′), the scale fac-
tor, the inhomogeneous representation of the point (b/0,−a/0)T does
not make sense, except to indicate that the corresponding intersection
point has coordinates that approach infinity. Hence, points with the
homogeneous notation (x1, x2, 0)

T are called ideal points, also known
as points at infinity.
Line at infinity: It is a set of all ideal points which the ratio of x1 : x2
is constant. It is denoted as the vector l∞ = (0, 0, 1)T such that
(0, 0, 1)(x1, x2, 0)

T = 0
2D Projective transformation: A projective transformation is a gen-
eral non-singular linear transformation of homogeneous coordinates.
It generalizes an affine transformation, which encompasses a non-
singular linear transformation of inhomogeneous coordinates com-
bined with a translation. It can be decomposed as

H = HSHAHP =

[
sR t
0T 1

] [
K 0
0T 1

] [
I 0
vT v

]
=

[
A t
vT v

]
where A is a non-singular matrix given by A = sRK+tvT , and K is a
upper-triangular matrix normalized as det K = 1. The decomposition
is valid if v ̸= 0, and is unique if s > 0.
HP (2 dof) is an elation that moves line at infinity. HA (2 dof) affects
the affine properties but not move the line at infinity. HS (4 dof) is the
general similarity transformation that does not affect the affine or pro-
jective properties.

The Direct Linear Transformation (DLT)
Algorithm

The Direct Linear Transformation Algorithm is used for estimat-
ing the camera projection matrix from corresponding 2D and 3D
points. The transformation for the 2D to 2D point correspondence
xi ↔ x′i is given by the equation x′

i = Hx′
i. The equation is then

expressed using the vector cross product x′
i × Hxi = 0. Let the

j-th row of the matrix H be denoted as hjT and x′
i = (x′i, y

′
i, w

′
i)
T,

then:

Hxi =

h1Txi

h2Txi

h3Txi

 and x′
i ×Hxi =

y′ih
3Txi − w′

ih
2Txi

w′
ih

1Txi − x′ih
3Txi

x′ih
2Txi − y′ih

1Txi


Since hjTxi = xTi h

j for j = 1, 2, 3, ..., then the equations can be

written as:

 0T −w′
ix

T
i y′ix

T
i

w′
ix

T
i 0T −x′ix

T
i

−y′ix
T
i x′ix

T
i 0T

 h1

h2

h3

 = 0

These equations have the form of Aih = 0 where Ai is a 3 × 9
matrix and h is a 9-vector made up of the entries in matrix H.

The Gold Standard Algorithm

Estimation of the projection matrix P from 3D to 2D when 3D points
are accurately known:
Objective:
Given n ≥ 6 world to image point correspondence Xi ↔ xi, de-
termine the Maximum Likelihood estimate of the camera projec-
tion matrix P , i.e. the P which minimized the geometric error∑

i d(xi, PXi)
2.

Algorithm:
(i) Compute an initial estimate of P using linear methods such as:

(a) Normalization: Using a similarity transformation T to nor-
malize the image points (x̂ = Txi), and a second similarity
transformation to normalize the space points (X̂ = UXi).

(b) DLT: Form the 2n× 12 matrix A by stacking equations gen-
erated by each correspondence Xi ↔ xi (similar to 2D but
with vector P instead of vector h).

(ii) Use the linear estimate as a starting point to minimize the
geometric error over P̃ : min

P

∑
i

d(xi, PXi)
2

(iii) Obtain the camera matrix for the original coordinates:
P = T−1P̃U .

A quantity such as x represents a measured point
Estimated quantities are represented with a hat
True values are represented by a bar
Quantities of the transformed version are represented with the tidle symbol.

Camera Model and Computation

Camera centre: The camera centre C is the point for which PC = 0. The
algebraic expression is C = (X,Y,Z,T), where

X = det([p2, p3, p4]),Y = −det([p1, , p3, p4])

Z = det([p1, p2, p4]),T = −det([p1, , p2, p3])

Camera orientation and internal parameters: The camera matrix can
be decomposed into P = [M| −MC̃] = K[R| −RC̃]
The matrix R represents the orientation of the camera, and the matrix K
is the calibration matrix. As the diagonal entries in K are positive, the
ambiguity in the decomposition is removed. The matrix representation of
K is

K =

αx s x0
0 αy y0
0 0 1


αx and αy are the scale factors in the x- and y-coordinate directions
respectively. s is the skew factor, and (x0, y0)

T are the coordinates of the
principal point, which is the point of intersection between the camera’s
image plane and the axis.
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Classical Cryptography

Cryptosystems are cryptographic protocols that allow for secure communication between two

parties across the internet (or any mediumwhere eavesdroppers are a concern). AES is one such

protocol and is widely considered to be the most secure classical cryptosystem available today.

The premise behind AES is as follows: both parties are in possession of a secret private key of

either 128, 192, or 256 bits in lengthwhich is used for encryption and decryption. Its usefulness,

however, is dependent on both parties knowing the secret key, which may be difficult to share

in a secure manner. So, what if you wanted to communicate with someone you had never met?

Public Key Cryptosystems

Public key cryptosystems allow parties to generate and distribute a public key, which

others may use to encrypt and send them messages, as well as a private key which

they keep secret and use to decrypt messages received. The most popular of these

protocols is RSA which utilizes the difficulty of finding prime factors of large numbers.

RSA Key Creation

1. Choose two large prime numbers p and q.

2. Find n = pq and ϕ(n) = (p− 1)(q − 1).
3. Choose a relatively small number e such that e and ϕ(n) are coprime.
4. Find d ≡ e−1 mod ϕ(n).
5. The RSA public key is P = (e, n) and RSA private key is S = (d, n).

Security Considerations

Although RSA is a secure cryptosystem, it is not unbreakable. In cryptography, a break refers to

method of determining the secret key faster than using brute force. The protocol relies on the

inability of classical computers to factor large products of primes fast enough to be considered

a security concern.

However, when quantum computers become large and powerful enough, they will be able to

solve problems which are difficult for classical computers. Shor's algorithm, for example, is a

quantum factoring algorithm which runs in polylogarithmic time. This is much faster than the

fastest known classical algorithms. If a large enough quantum computer were to be built, RSA

would no longer be secure.

Figure 1: Classical vs Quantum factoring algorithm runtimes [2]
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Quantum Bits

A classical bit can be prepared in one of two states: 0 or 1. A quantum bit, or qubit for short,
can be prepared in any superposition of those two states. If we define the 0 state as the vector
|0〉 = [1,0] and the 1 state as |1〉 = [0,1], a superposition of these two states is a linear combi-
nation of the two vectors. We call |0〉 and |1〉 basis vectors, and these particular vectors form
the computational basis, also referred to as the Z-basis.

Another common basis is the X-basis, with basis vectors |+〉 = [ 1√
2,

1√
2] for the 0 state, and

|−〉 = [ 1√
2,−

1√
2] for the 1 state. Consider the qubit represented by the state |ϕ〉 = 1√

2[1, 1], and
see what happens when it is measured in either basis.

In the Z-basis, |ϕ〉 can be expressed as |0〉+|1〉√
2 , so it collapses to either state with equal probability.

However, in the X-basis, |ϕ〉 = |+〉 + 0 |−〉, so it collapses to the 0 state every time.

Non-Orthogonal Advantages

With classical bits, the two states they can be prepared in are orthogonal to each other, meaning

there is no interaction between the 0 state and 1 state. If a classical bit is measured as a 0, there

is no possibility it was prepared as a 1.

Two vectors, ~U and ~V , are orthogonal if the following condition is true.

~U · ~V = 0

Non-orthogonality allows for the creation of qubits that can only be read in a specific way. In

the example above, |ϕ〉 was prepared in a state not orthogonal to the Z-basis.

|ϕ〉 · |0〉 = 1√
2

|ϕ〉 · |1〉 = 1√
2

When |ϕ〉 gets measured in the Z-basis, it collapses to 0 or 1 with equal probability. This does
not tell you if |ϕ〉 was intended to be a 0 or 1 to begin with, illustrating the main advantage of
non-orthogonal states. Measuring a qubit as a 0 (or 1) does not mean it was prepared as a 0 (or

1) unless you know in which basis it was prepared in and measure it accordingly.

The No-Cloning Theorem

The no-cloning theorem states that it is impossible to create a perfect copy of an unknown

quantum state without altering the original state in some way.

Suppose a perfect cloning machine exists.

Apply it on two quantum states |ψ〉 6= |φ〉 which are non-orthogonal.
The action of the cloning machine is represented by a unitary operation U .

U copies the input state on some auxiliary system initially in a normalized state |s〉:
U(|ψ〉 ⊗ |s〉) = |ψ〉 ⊗ |ψ〉
U(|φ〉 ⊗ |s〉) = |φ〉 ⊗ |φ〉

Taking the inner product of the equations, we obtain:

〈ψ|φ〉 = (〈ψ|φ〉)2

This is only true when |ψ〉 and |φ〉 are either equivalent or orthogonal.

Thus, by contradiction, such a cloning machine does not exist.

Quantum Key Distribution

Quantum key distribution (QKD) takes advantage of the no-cloning theorem and non-

orthogonality principle to distribute cryptographic keys securely. By starting with a sequence

of 0s and 1s, a qubit string can be prepared which encodes the classical states allowing for se-

cure transmission.

The use of non-orthogonal states in QKD protocols ensure even if someone were to measure

a qubit, without knowing which basis to use, the measurement will be useless. The no-cloning

theorem prevents a malicious party from copying the key without leaving fingerprints.

A common QKD protocol is BB84, which, in contrast to classical protocols, is not simply difficult

to crack, but impossible.

BB84 Protocol

1. Alice (the sender) chooses 4n random data bits.
2. Alice randomly encodes each bit in the Z or X basis, keeping track of

which one she uses.

3. Alice sends the resulting product of qubits to Bob (the receiver).

4. Bob receives the 4n qubits, announces this fact, and measures each
qubit in the X or Z basis at random.

5. Alice and Bob compare the bases they used for each qubit, and discard

any bits for which their bases don't match. With high probability, there

are at least 2n bits left, which they keep. If there are less than 2n bits,
they abort the protocol.

6. Alice selects n of these bits to check for interference and tells Bob
which bits she selected.

7. Alice and Bob compare the values of the check bits. If more than an

acceptable number disagree, they abort the protocol. Otherwise, the n
non-check bits are kept and are the private key.

Even if there is an eavesdropper, Eve, she will not be able to successfully intercept the private

key. If she attempts to measure an intercepted qubit, since she won't know which basis it was

prepared in, the non-orthogonality principle ensures that Eve will not be able to determine if it

is a 0 or 1.

Additionally, the no-cloning theorem prevents Eve from cloning an intercepted qubit and waiting

until Alice announces the basis she used to prepare it. If she attempts to, she will change the

state the qubit is in when Bob receives it and Alice and Bob might not have matching bits even

if their bases match. In step 7, Alice and Bob check for this type of interference, and if they find

enough, they will abandon this attempt.

BB84 Protocol Example

Figure 2: Here, Alice and Bob will discard the first bit since they used different bases. Alice has chosen the third

bit as the interference test bit, which happens to be the a qubit Eve tried to clone. Alice and Bob will compare

their third bits, possibly realizing they don't match. If this exceeds their tolerance for interference, they will

abandon the protocol. Otherwise, the key will be 10.
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Quivers

A quiver Q = (Q0, Q1, s, t) consists of the data associated with a
directed graph where loops, as well as multiple edges between

vertices, are allowed. Q0 is the set of vertices of Q, and Q1 is the set of

arrows, s, t : Q1 → Q0 are maps associating to each arrow α ∈ Q1 its

source, s(α) ∈ Q0, and its target, t(α) ∈ Q0.

A path with source a and target b is a sequence

(a|α1, α2, ..., α`|b)
where αi ∈ Q1 for all 1 ≤ i ≤ ` and ` is the length of the path. The
path (a|α1, α2, ..., α`|b) can be visualized as follows:

a = a0 a1 a2 · · · a` = b
α1 α2 α`

Each vertex a ∈ Q0 has a trivial path εa = (a||a) of length ` = 0
associated with it.

The path algebra KQ of a quiver Q is a vector space over the field K
with a basis consisting of the set of all paths (a|α1, α2, ..., α`|b) in Q
where the product of two basis vectors

γ = (a|α1, α2, ..., α`|b), ϕ = (c|β1, β2, ..., βk|d) is
ϕγ = (a|α1, α2, ..., α`, β1, β2, ..., βk|d) if t(α`) = s(β1) and 0 otherwise.

We give the following examples of quivers and path algebras:

(a) Let Q be the quiver

1◦

2◦ 5◦

3◦ 4◦ 6◦

β

γ

α

δ φ

Then the basis of the path algebra KQ is
{ε1, ε2, ε3, ε4, ε5, α, δ, φ, β, γ, δα, φα, γβ}.

(b) Let Q be the quiver

1 α

Then the basis of the path algebra KQ is {ε1, α, α2, α3, ..., }.
Note: if we consider the mapping defined by ε1 7→ 1, α 7→ t, we get
that KQ ∼= K[t]!

Quiver Representations

A representation M of a quiver Q is defined by the following data:

(i) To each vertex a ∈ Q0 is associated a K-vector space Va,

(ii) To each arrow α ∈ Q1 is associated a linear transformation Vs(α) → Vt(α)
between the vector spaces associated to the source and target of α.

Examples of quiver representations:

One representation of any quiver Q is the zero representation given by
associating each vertex to the zero vector space and each arrow to the

zero map.

The Kronecker Quiver is 1◦ ◦2
An example of a representation of this quiver is:

K2 K
(1,0)T

(0,1)T

Another representation is:

K2 K2A

B

Where A =
(

1 0
0 1

)
, B =

(
0 0
1 0

)
IfM = (Va, fα), M̃ = (Ṽa, f̃α) are representations of Q, then φ : M → M̃
is a morphism if it consists of the data of a collection of linear maps

{φa : Va → Ṽa} such that the following diagram commutes:

Va Vb

Ṽa Ṽb

fα

f̃α

φa φb

For example there is a morphism φ between the two representations of

the Kronecker Quiver given above given by φ1 =
(

1 0
0 1

)
, φ2 =

(
1
0

)
K2 K

K2 K2A

B

(1,0)T

(0,1)T

φ2φ1

Modules Correspond to Representations

For any representation of a quiver Q we have a collection of vector
spaces {Va} and a collection of maps {Va → Vb}. Consider the vector
space

V =
⊕
a∈Q0

Va

with the action of a path a0 → · · · → a` given by the composition of

the corresponding linear maps

V � Va0 → · · · → Va`
↪→ V

Then V is a module overKQ, or KQ-module, corresponding to the
given representation.

If V is anyKQ-module, then we may define a representation of Q by,
Va = εaV and for all basis elements α of KQ corresponding to the
arrow a → b, α is a map Va → Vb because αεa = α and εbα = α.

Arrow Ideals & Quotients of the Path Algebra

Let Q be a quiver. The arrow ideal RQ of the path path algebra KQ is the
subspace ofKQ generated by paths of length ` ≥ 1. And so, RQ is closed

under multiplication by any elements in KQ.
Notice that there is a direct sum decomposition

RQ = KQ1 ⊕ KQ2 ⊕ · · · ⊕ KQ` ⊕ · · ·
where Q` is the set of all paths in Q of length `.
For all ` ≥ 1,

R`
Q =

⊕
m≥`

KQm

is the ideal where all paths are of length greater than or equal to `, as it
is a subspace of KQ and is closed under multiplication from elements of

KQ.
Note: it follows that R`

Q/R`+1
Q is a vector space over K with basis Q`, and

so is isomorphic to KQ`.

KQ/I is said to be a bound quiver algebra if I is an ideal such that Rm
Q ⊆

I ⊆ R2
Q.

Proposition

Let Q be a finite quiver, and KQ/I be a bound quiver algebra. Then,
KQ/I is finite dimensional.

Proof:

Since KQ/I is a bound quiver algebra, there exists m ≥ 2 such that
Rm ⊆ I , where R is the arrow ideal RQ of KQ. But then there exists
a natural surjective homomorphism KQ/Rm → KQ/I . And so, it suf-
fices to show that KQ/Rm is finite-dimensional. Now the equivalence

classes of paths of length less than m form a basis of KQ/Rm as a K-
vector space. Since there are finitely many such paths, we are done.
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Abstract

An algebra A is a vector space over a field together with a bilinear map from
A × A → A. A Lie algebra is a non-associative algebra and can be visualized
as the tangent plane to a Lie group. Two key properties of a Lie algebra are
solvability and semisimplicity. Understanding when a Lie algebra is solvable or
semisimple is helpful in determining its structure and characteristics. It also helps
classify finite-dimensional Lie algebras. This poster lays out the different ways in
which solvability and semisimplicity can be classified.

Preliminary Information

DEFINITION 1. A Lie algebra, L, over a field F is an F -vector space together
with a bilinear map called the Lie bracket:

L× L → L

(x, y) 7−→ [x, y]

such that: i) ∀x ∈ L, [x, x] = 0

ii) ∀x, y, z ∈ L, [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

We can visualize our Lie algebra as a tangent plane of a Lie group:

[2] [3]

DEFINITION 2. Let L1 and L2 be Lie algebras over a field F . Then, a map ϕ :
L1 → L2 is a Lie algebra homomorphism if and only if ϕ is a linear map where

ϕ([x, y]) = [ϕ(x), ϕ(y)] ∀ x, y ∈ L1

Example 1. Let V be a finite dimensional vector space over F . We call the vector
space gl(V ) the set of all all linear maps from V → V , and together with the Lie
bracket operation

[x, y] = x ◦ y − y ◦ x for x, y ∈ gl(V ), makes gl(V ) into a Lie algebra.

A particularly important Lie algebra homomorphism is the adjoint homomorphism.

DEFINITION 3. For a Lie algebra, L, define the adjoint homomorphism as fol-
lows:

ad: L → gl(V ) where for x, y ∈ L

(ad x)(y) := [x, y]

Analogs to Groups and Rings

An interesting tangent is that Lie algebras are structurally similar to two well-
known algebraic objects: groups and rings.

DEFINITION 4. An ideal of a Lie algebra L is a subspace, I ⊆ L, such that for
all x ∈ L, and for all y ∈ I, [x, y] ∈ I.

DEFINITION 5. A Lie algebra is abelian if for all x, y ∈ L, [x, y] = 0

DEFINITION 6. A non-abelian Lie algebra L is simple if it has no ideals other
than 0 and itself.

DEFINITION 7. A Lie algebra is said to be solvable if for some m ∈ N, m ≥ 1, we
have L(m) = 0 where L(m) = [L(m−1), L(m−1)] for m ≥ 2 and L(1) = L′ = [L,L].

Solvable Lie Algebras

Another condition which gives solvability of a Lie algebra, in terms of ideals, is: If L is a Lie
algebra with ideals Ij such that for some m ∈ Z≥0

L = I0 ⊇ I1 ⊇ · · · ⊇ Im−1 ⊇ Im = 0

where Ik−1/Ik is abelian for all 1 ≤ k ≤ m, then L is solvable. An interesting characteristic
of solvable ideals is that there is a unique solvable ideal of L which contains every other
solvable ideal of L.

DEFINITION 8. The largest such solvable ideal is called the radical of L, rad L.

A third way to test for solvability, which becomes more useful when working with complex
problems, is defined below:

DEFINITION 9. The Killing form on a complex Lie algebra L is a symmetric, bilinear form
κ : L× L → C defined as:

κ(x, y) = tr(adx ◦ ady), for x, y ∈ L.

THEOREM 1 (Cartan’s First Criteria). The complex Lie algebra L is solvable if and only if
κ(x, y) = 0 for all x ∈ L and y ∈ L′.

Example 2. Any 2-dimensional non-abelian Lie algebra, L, has basis {x, y} where [x, y] =
x. Take L to be a 2-dimensional complex non-abelian Lie algebra. Consider: (ad x)(x) =
[x, x] = 0, (ad x)(y) = [x, y] = x, (ad y)(x) = [y, x] = −[x, y] = −x, and (ad y)(y) = [y, y] = 0.
Notice that this also gives us a basis of L′, namely {x}. With respect to our basis for L, ad x
and ad y are:

ad x =

(
0 1
0 0

)
ad y =

(
−1 0
0 0

)
Since {x} is a basis for L′, {x} spans L′, that is, all elements of L′ are scalar multiplies of x.
By Cartan’s First Criteria, to prove solvability, it is sufficient to prove that κ(y, x) = 0 = κ(x, x).

κ(y, x) = tr(

(
−1 0
0 0

)
◦
(
0 1
0 0

)
) = tr(

(
0 −1
0 0

)
) = 0

κ(x, x) = tr(

(
0 1
0 0

)
◦
(
0 1
0 0

)
) = tr(

(
0 0
0 0

)
) = 0

Thus, any two dimensional non-abelian complex Lie algebra is solvable.

Semisimple Lie Algebras

Besides its usefulness in terms of solvability, the ideals of a Lie algebra help determine
whether a Lie algebra is semisimple.

DEFINITION 10. Let L be a nonzero Lie algebra. L is semisimple if it has no nonzero
solvable ideals. Alternatively, L is semisimple if rad L = 0.

DEFINITION 11. For S ⊆ V and a bilinear, symmetric form β : V × V → V , we define:

S⊥ = {x ∈ V | β(x, y) = 0, ∀y ∈ V, }

If V ⊥ = 0, β is said to be non-degenerate.

DEFINITION 12. The Lie algebra L is nilpotent if for some m ≥ 1, we have Lm = 0, where
Lm = [L,Lm−1].

THEOREM 2 (Cartan’s Second Criteria). The complex Lie algebra, L, is semisimple if and
only if the Killing form κ of L is non-degenerate.

Proof Sketch:
⇒: L⊥ ⊆ L is an ideal of L. By definition of an ideal, (L⊥)′ ⊆ L⊥. By Cartan’s First
Criterion L⊥ is solvable since κ(x, y) = 0 for all x ∈ L⊥ and for all y ∈ (L⊥)′. Since L is
semisimple, L⊥ = 0 and thus κ is non-degenerate.

Semisimple Lie Algebras: Continued

⇐: Suppose L is not semisimple, then rad L ̸= 0. L has a nonzero abelian ideal,
A. For nonzero a ∈ A and x ∈ L, im(adx ◦ ada) ⊆ A, thus (ada ◦ adx)2 = 0,
which means ada ◦ adx is a nilpotent map. Nilpotent maps have trace 0, thus
tr(ada ◦ adx) = κ(a, x) = 0. This holds true for all x ∈ L and so a ∈ L⊥, which
implies κ is degenerate. Thus, L is semisimple.

Further Ideas

Another perspective to Lie algebras is in the form of representations. Informally,
a representation is a function which compresses the information of a Lie algebra
L into a matrix representation.

DEFINITION 13. A representation of L is a Lie algebra homomorphism

ϕ : L → gl(V )

where V is a finite-dimensional vector space over F .

We note that the image of ϕ is a Lie subalgebra of gl(V ) and ker(ϕ) ⊆ L is
an ideal. This leads to the question: Can we discover conditions for solvability
based solely off a representation, ϕ, for the Lie algebra?

Lie groups are groups that are also smooth manifolds. To begin under-
standing the Lie algebra of a Lie group we can start with studying the tangent
spaces of the manifold and a defined Lie bracket. The unit circle is an example
of a smooth manifold.

The relationship between Lie groups and Lie algebras is something worth ex-
ploring and allows for overlapping subject matter.

More on Lie Theory:
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Introduction

In elementary calculus, the tangent space is typically intro-
duced as the vector space orthogonal to the gradient of a
function at a point. Intuitively, one can visualize any tan-
gent vector as an arrow emanating from the given point,

typically satisfying an equation
of tangency. This approach
works well when considering
surfaces given by a single
smooth function because we
can imagine how a surface

might sit in R3. However, on the more abstract subject of mani-
folds we aim for a more intrinsic definition of the tangent space.

Definitions

Germ: A germ at p ∈ Rn is an equivalence class of C∞ real-
valued functions wherein two functions are equivalent if they
agree on some neighborhood of p. In this way any directional
derivative can be thought to operate on the set of germs at
p. This set is an algebra over R denoted by C∞p .

Derivation: A derivation is a linear mapD : C∞p → R satisfying
the Leibniz rule D(fg) = (Df )g(p) + f (p)Dg. The set of all
derivations of this kind is the real vector space DpRn.

Coordinate Chart: A topological space M is locally Eu-
clidean of dimension n if every point p ∈ M has a neighbor-
hood U such that there is a homeomorphism φ from U into
an open subset of Rn. The pair (U, φ) is called a coordinate
chart.

Smooth Manifold: A
topological space M is
said to be a smooth
manifold if it is Haus-
dorff, second countable,
and has a C∞ atlas. An
atlas is a collection of
coordinate charts that
cover M , and we call it
C∞ if the transition functions are smooth. Some classical ex-
amples include the n-sphere, the torus, and perhaps the most
elementary is Rn itself.

Smooth Map: A map of manifolds F :M → N is said to be
smooth at p ∈ M if, for coordinate charts (U, φ) containing p
and (V, ψ) containing F (p), we have ψ ◦ F ◦ φ−1 : Rm → Rn

being smooth at φ(p) ∈ Rm.

Tangent Vectors as Derivations in Rn

In an intuitive sense tangent vectors might best be thought of as directions of travel.
For this reason a tangent vector to p ∈ Rn is any n-dimensional vector v = 〈v1, ..., vn〉.
The set of tangent vectors forms a vector space TpRn. For any tangent vector v at p,
the directional derivative Dv : C

∞
p → R is linear and satisfies the Leibniz rule. Hence,

it is in fact a derivation.

Theorem
The map ϕ : TpRn→ DpRn given by v 7→ Dv is an isomorphism of vector spaces.

Proof
Injectivity: Suppose Dv = 0 for some v ∈ TpRn. If we apply Dv to the coordinate
function rj then we have

0 = Dv(r
j) =

∑
i

vi
∂

∂ri

∣∣∣∣
p

rj = vj

Since this is true for 1 ≤ j ≤ n we have v = 0, and so ϕ is injective.
Surjectivity: Let D be an arbitrary derivation at p, and let f : Rn → R be the
representation of some germ in C∞p . By Taylor’s theorem with remainder there
exists smooth functions gi(x) in a neighborhood of p such that

f (x) = f (p) +
∑

(ri(x)− pi)gi(x), gi(p) =
∂f

∂ri
(p)

Now, applying D to both sides we get by the Leibniz rule,

Df =
∑(

Drigi(p) + (pi − pi)Dgi
)
=
∑

(Dri)
∂f

∂ri
(p)

D =
∑

(Dri)
∂

∂ri

∣∣∣∣
p

Thus D = Dv where v = 〈Dr1, ..., Drn〉. This shows that every derivation is the
directional derivative with respect to some vector, and so ϕ is a bijection.

With this in mind, we will redefine a tangent vector at p in Rn to be a derivation at p,
and the tangent space TpRn is the vector space of derivations with basis {∂/∂ri|p}ni=1.

Generalizing to Manifolds

It is rather straightforward now to extend our idea of a tangent space to manifolds. We
simply tweak our derivation definition to be a map D : C∞p (M) → R, where C∞p (M)
denotes the set of germs at any p ∈ M . These derivations form the tangent space
TpM , and the above becomes the particular case M = Rn.
Our goal has thus been reached, as the tangent space has been defined in a way
that does not depend on any coordinate chart. However, each coordinate chart (U, φ)
containing p can yield a basis for TpM as follows. We define the derivation ∂/∂xi|p
such that for any f ∈ C∞p (M) we have

∂

∂xi

∣∣∣∣
p

f =
∂

∂ri

∣∣∣∣
φ(p)

(f ◦ φ−1)

The collection of these derivations are linearly independent, and hence form a basis.
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The Pushforward

Given a smooth map F : M → N , the pushforward of F at
p ∈ M is a linear map F∗ : TpM → TF (p)N such that for
any v ∈ TpM and f ∈ C∞F (p)(N) we have F∗(v)f = v(f ◦ F ).

Any coordinate chart in-
verse φ−1 provides a
smooth map of manifolds
between an open subset of
Rn and a manifold M . For
a point p ∈ M we can then
consider the pushforward
(φ−1)∗ : Tφ(p)Rn → TpM .
If we attempt to apply this

map to our basis vectors ∂/∂ri|p we get the following result.

(φ−1)∗

(
∂

∂ri

∣∣∣∣
φ(p)

)
f =

∂

∂ri

∣∣∣∣
φ(p)

(f ◦ φ−1) = ∂

∂xi

∣∣∣∣
p

f

Properties
Matrix Representation: Being linear, the pushforward can
be represented by a matrix. This matrix is the Jacobian
[∂F i/∂xj(p)].

The Chain Rule: One final property of the pushforward that
will be used in the next section is its chain rule. Some el-
ementary linear algebra gives us the following powerful re-
sult: If F : M → N and G : N → P are both smooth maps
of manifolds, then we have (G ◦ F )∗ = G∗ ◦ F∗.

Applications to Calculus

The usual chain rule taught in calculus can be proven as a
particular case for when we consider smooth maps from Rm

to Rn.
As an example, let F : R → R3 and G : R3 → R be smooth
functions and let w be such that

w = (G ◦ F )(t) = G
(
F 1(t), F 2(t), F 3(t)

)
The pushforwards F∗, G∗, and (G ◦ F )∗ are given by the fol-
lowing matrices.

F∗ =

dF 1/dt
dF 2/dt
dF 3/dt

 G∗ =

[
∂w

∂F 1

∂w

∂F 2

∂w

∂F 3

]
(G ◦ F )∗ =

dw

dt

The chain rule for the pushforward gives us (G◦F )∗ = G∗◦F∗,
or equivalently through multiplication of the matrices above,

dw

dt
=
∂w

∂F 1

dF 1

dt
+
∂w

∂F 2

dF 2

dt
+
∂w

∂F 3

dF 3

dt
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What is a Manifold?
The backbone of differential geometry is the idea of a manifold. Intuitively, a manifold can be

thought of as a arbitrary 3D shape. However, in reality, manifolds can be any dimension.

More rigorously, A differential manifold of dimension n is a setM and collection of smooth mappings

xα : Uα ⊂ Rn → M of open set such that:

1.
⋃

α xα(Uα) = M.

2. if xα(Uα) ∩ xβ(Uβ) = W 6= ∅, then x−1(W ) are open in Rn and x−1
β ⊗ x−1

α and differentiable.

Tangent Vectors & Tangent Spaces
Now, we would like to extend the idea of tangent vectorc in the manifold settting. Intuitively a

tangent vector is an infinitesimal displacement at a specific point on a manifold.

We think of a tangent vector at a point p ∈ M as the directional derivative of some curve

α : (−ε, ε) → M with α(0) = p. The set of all tangent vectors to M at p is know as the tangent

space to M at p (TpM)

It can be shown that the set (TpM) with the usual operations of functions, forms a vector space

of equal dimension to the manifold. This vector space is isomorphic to Rn. Finally, the choice of

parameterization x : U → M determines an associated basis{(
∂

∂x1

)
0

, ...,

(
∂

∂xn

)
0

}
.

Riemannian Manifolds
After constructing a differential manifold, one can introduce riemannian structure by defining a

metric. A Riemannian metric on M is a correspondence that associates each p ∈ M to an inner

product 〈 , 〉p (i.e., a symmetric, bilinear, positive-define 2-from) on TpM that varies smoothly in

any coordinate neighborhood.

Example: The Euclidean Metric

If our manifold M = Rn, the the elements of the tangent space of M are given by { ∂
∂xi} ≡ {ei}

and our metric is

gij =
〈
ei, ej

〉
= δij.

The geometry induced by this metric on Rn is called euclidean geometry.

Connections & Covariant Derivative
To generalize the notion of ”directional derivatives” to vector fields, and by extension, tensor

fields, we define a new notation for directional derivatives (∇) and consider the properties we

wish the operator to have.

1. ∇X(f ) = Xf .

2. ∇X(T + S) = ∇X(T ) + ∇X(S).
3. ∇X(T ⊗ S) = ∇XT ⊗ S + T ⊗ ∇XS.

4. ∇fX+ZT = f∇XT + ∇ZT .

With these definitions, it turns out the connection of tensor fields depend on connection coeffi-

cients Γk
ij in the following way: Let X, Y ∈ X (M).

∇XY =

(
Xi∂Y k

∂xi
+ XiY jΓk

ij

)
∂

∂xk Γk
ij = ∇ ∂

∂xi

∂

∂xj
.

As it turns out, a Riemannian metric g uniquely specifies the connection coefficients such that

Γk
ij = 1

2
gkl (∂igji + ∂jgil − ∂lgij

)
In this case, we refer to the connection coefficients as the Christoffel symbols and the connection

as a covarient derivative.

Geodesics & Distance
With a Riemannian metric, it is possible to cal-

culate the length of a curve. Let c : I → M
be restricted to a closed interval [a, b] ⊂ I . The
length of this curve from t = a to t = b is de-
fined as

`a
b(c) =

∫ b

a

〈
dc

dt
,
dc

dt

〉1/2
dt.

With this, we define a geodesic to be a curve

between two points a, b ∈ M that minimizes

`a
b . However, this definition of a geodesic is im-

practical to use. Instead, we favor an alternative

definition: a geodesic is a curve of zero acceler-

ation with respect the covariant derivative.

0 = ∇vγvγ ⇐⇒ 0 = γ̈m + γ̇nγ̇mΓq
mn

As it turns out, these two definitions are equiv-

alent.

The Many Types of Curvature

The Riemannian Curvature Tensor

The Riemannian curvature tensor R is a multi-linear mapping that associates every X, Y ∈ X (M)
a mapping R(X, Y ) : X (M) → X (M) given by

R(X, Y )Z = ∇X∇Y Z − ∇Y ∇XZ + ∇[X,Y ]Z

Algebraically, the curvature tensor measures the failure of the covariant derivative to commute.

Example: The Curvature of Flat Space

In flat space, two vector fields will always commute as the basis vector fields commute. As

such, for all X, Y, Z ∈ X (M)
R(X, Y )Z = 0

Sectional Curvature

Given any two X, Y ∈ TpM that form a subspace σ ⊂ TpM, the section curvature is defined as

K(X, Y ) = 〈R(X, Y )X, Y 〉√
|X|2|Y |2 − 〈X, Y 〉

Ricci Curvature

Let {z1, ..., zj, ..., zn} be an orthonormal basis for TpM, then the Ricci curvature is

Ricp(zj) = 1
n − 1

∑
i 6=j

〈
R(zj, zi)zj, zi

〉

Scalar Curvature

Taking the average of the Ricci curvature for each Zj in the orthonormal basis of TpM gives the

scalar curvature

Sc(p) = 1
n

∑
j

Ricp(zj) = Ricp(zj) = 1
n(n − 1)

∑
j

∑
i

〈
R(zj, zi)zj, zi

〉

The Bonnet-Meyers Theorem
The Bonnet-Meyers theorem is a classic theorem in Riemannian geometry connecting the Ricci

curvature of a manifold to its diameter. Suppose M is a complete Riemannian manifold whose

Ricci curvature satisfies

Ricp(v) ≥ 1
r2 > 0

for any p ∈ M and all v ∈ TpM. Then M is compact and diam(M) ≤ πr, where

diam(M) = sup
a,b

( `ab(c))

and the curve C(t) is a geodesic with C(0) = a and C(1) = b. In essence, the Bonnet-Meyers

theorem states the larger the curvature, smaller the size.
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Introduction

The Gauss-Bonnet Theorem says that for a compact, orientable surface
S, its total curvature depends only on the surface’s Euler characteristic, a
topological concept which relates a surface’s faces, vertices, and edges.
The theorem itself takes form as∫∫

S

Kdσ = 2πχ(S).

In all, Gauss-Bonnet presents the surprising and extremely beautiful
connection between the worlds of differential geometry and topology.

Curvature

Normal and Principal Curvatures
The shape operator of a surface at a point p with tangent vector v

Sp(v) = −DNp(v)

measures how fast the normal vectors on a surface change. The second
fundamental form is defined as

IIp(v) = ⟨Sp(v), v⟩.
If C is a curve on a surface S, the normal curvature relates the normal
vector n of C to the normal vector N of S

kn = k cos(θ)

such that cos θ = ⟨n,N⟩. The maximum and minimum normal curvatures
are the principal curvatures with principal directions e1, e2.

Gaussian Curvature
The product of the principal curvatures is the Gaussian curvature:

K = k1k2

and is also the determinant of the shape operator with respect to the
orthonormal basis. The sign of the Gaussian curvature can be used to
chracterize the surface. At an elliptic point, shown on the left below, the
Gaussian curvature is positive. At a hyperbolic point, on the right, the
Gaussian curvature is negative.

Euler Characteristic

A regular region R is compact with boundary made up of a finite union of
simple, closed, piecewise, regular curves that don’t cross. Every regular
region of a regular surface admits a triangulation, which is a finite family
of triangles whose union covers R with empty intersection, i.e. is simply a
way of splitting up a surface:

The Euler Characteristic of a surface, given by the formula

F − E + V = χ(S),

is a number that describes a topological space’s shape or structure re-
gardless of the way it is bent or deformed, where F represents its faces,
E its edges, and V its vertices.
For the sphere above, notice that F = 8, E = 12, and V = 6, giving
χ(S) = 2. For the torus, χ(S) = 0.
There is actually a direct relation between the Euler characterstic of a sur-
face and its holes, or genus g:

χ(S) = 2− 2g

The Global Theorem

Theorem and Outline of Proof
If R is a regular region of S, then

n∑
i=1

∫
ci

kg(s)ds +

∫∫
R

Kdσ +

P∑
l=1

θl = 2πχ(R).

where the geodesic curvature is the covariant derivative of a parametriza-
tion α(s) of C on S

kg = [Dα′(s)/ds]

and θi are the external angles of the curves that make up the boundary of
R.

Proof. Since every regular region has a triangulation [1], we can use the
local Gauss-Bonnet Theorem on each triangle:

k∑
i=0

∫ si+1

si

kg(S)ds +

∫∫
R

Kdσ +

k∑
i=0

θi = 2π

When summing over every triangle, the interior angles of these triangles
can be related to the external and internal edges and vertices of the trian-
gulation, producing χ(S).

Compact and Orientable Surfaces

When a surface is compact, it has empty boundary, sending the
terms of geodesic curvature and external angles in the global the-
orem to zero, meaning a compact surface’s total curvature only
depends on its Euler characteristic.

For example, though extreme positive and negative curvatures are
evident after deforming the sphere above [2], the theorem tells us
that the total curvature of these two surfaces are the same:∫∫

S

Kdσ = 2πχ(S) = 2π(2) = 4π

Since a torus and a coffee mug have only one genus and thus are
the same from a topological perspective, and because the Euler
characteristic of the torus is zero, the total curvature of both objects
must also be zero.
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Vector and Principle Bundles

A principle bundle, denoted

G −→ P
π−→ M

is a fibre bundle with a Lie group G as its fibre and a smooth right
action P ×G → P . The action is transitive and preserves the fibres
of P . For every principle bundle, there exists a principle bundle atlas
with bundle charts, ϕi : PUi

→ Ui ×G. These charts satisfy

ϕi(p · g) = ϕi(p) · g ∀p ∈ PUi
, g ∈ G

where G acts on (x, a) ∈ Ui ×G by

(x, a) · g = (x, ag)

Physically, this is "attaching" a Lie group to every point in spacetime.
Given a representation (ρ, V ) of the structure group G, we can build
a vector bundle out of a principle bundle P which takes the form

E = P ×ρ V = (P × V )/G

A connection on a principle bundle is a g-valued 1-form while curva-
ture is a g-valued 2 form given by

A ∈ Ω1(P, g) F = dA +
1

2
[A,A] ∈ Ω2(P, g)

respectively. Both are required to be ad-invariant. A must act as
the identity on fundamental vector fields associated to the action of
G on P. Connection 1-forms correspond to gauge fields in the SM.
Curvature 2-forms physically represent the field strength, an exam-
ple being the EM field strength tensor: Fµν. We can realize these
sections as physical fields by specifying a local section (choice of
gauge) and pulling back the forms under the section. We will also
need a specific vector bundle called the spinor bundle. These are
defined using spin structures, denoted Spin+(M), which are a spe-
cial class of principle bundle. The spinor bundle is then defined by

S = Spin+(M)×κ ∆

Here (κ,∆) is the appropriate spinor representation. By definition,
sections of these spinor bundles are spinor fields, which describe
fermions. In 4 dimensions, the spinor bundle also decomposes into
chiral spinor bundles. The Dirac operator D acts on spinors via

D = ΣClea ◦ ∇ea

Mass Generation and Charged Matter

The SM Lagrangian is expressed as

LSM = LYM + LD + LH + LY

where LYM are Yang-Mills terms, LD are Dirac terms, LH are Higgs terms,
and LY are Yukawa terms.
The Yang-Mills Lagrangian for a principal bundle P → M is given by

LYM =
1

2
⟨FA

M , FA
M⟩Ad(P )

Here, the twisted two-form FA
M ∈ Ω1(M,Ad(P )) is induced from the curva-

ture of the principle bundle connection. The Higgs action for a scalar field Φ
coupled to a gauge field A is defined by

LH[Φ] = ⟨dAΦ, dAΦ⟩E − V (⟨Φ,Φ⟩E)
Here, the scalar fields are sections of an associated vector bundle of the
Yang-Mills principle bundle defined using an appropriate representation.
Likewise, the Dirac Lagrangian for a twisted spinor field Ψ of mass m coupled
to gauge field A on principal bundle P is defined by

LD[Ψ] = Re⟨Ψ, DAΨ⟩S⊗E −m⟨Ψ,Ψ⟩S⊗E

Here, the spinors are sections of S⊗E, where E is also an associated vector
bundle of the Yang-Mills principle bundle.
Spontaneous symmetry breaking occurs when the vacuum (lowest energy
field configuration) has a proper subgroup of symmetries of the Lagrangian.
In such a context, expanding the Yang-Mills-Higgs action about the vacuum
and keeping low-order terms implies that gauge Bosons may "acquire" mass.
This is called the Higgs Mechanism. This mechanism provides a way to give
mass to gauge Bosons by introducing massive scalar fields, which are called
Higgs fields. These are the scalars which appear in the SM.
We also need to be able to give masses to twisted chiral fermions. This is
done using scalar fields and quantities called Yukawa forms, which are maps
from unitary representations VL,W, and VR of G.

τ : VL ×W × VR −→ C
This form is invariant under the action of G, complex antilinear in VL, real
linear in W , and complex linear in VR. Given a Yukawa form τ , the Yukawa
coupling gY defines a gauge invariant Lagrangian

LY [ΨL,Φ,ΨR] = −gY (Ψ̄LΦΨR)− gY (Ψ̄LΦΨR)
∗

Standard Model Particle Content

The gauge group for the SM is SU(3)× SU(2)× U(1). The gauge
Boson content follows from the adjoint representation of the Lie
algebra g of this group, which splits into three subrepresentations:

g = su(3)C ⊕ su(2)L ⊕ u(1)Y

These are the gluon sector, the weak sector, and the hypercharge
sector, respectively. The 8 generators of SU(3) corresponds to 8
gluons, the 3+1 generators of SU(2) and U(1) corresponds to the
W±/Z Bosons and the photon γ.
However, without the Higgs field, the gauge Bosons would all be
massless. The SM then features multiplets of charged scalar fields
called Higgs fields to address this issue. The specific choice of
Higgs potential used in the action is depicted below!
The shifted Higgs Potential (due to spontaneous symmetry break-
ing) leads to Higgs Mechanism. Some of the gauge Bosons, in-
cluding Z and W±, acquire mass through this mechanism.
Building the twisted chiral spinor bundle to model spinors requires
a choice of representation of the SM gauge group, which is ulti-
mately determined by experiment. The correct choice of represen-
tation results in 3 generations of so-called quarks and leptons. Of
these, there are 6 charged quarks, 3 charged leptons, and 3 neu-
tral leptons (neutrinos). The Yukawa couplings present in the SM
then feature terms for both these quarks and leptons.
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Abstract

Tilings are characterized by covering Euclidean space with a set of
tiles, traditionally polygons, in which two adjacent tiles meet full edge
to edge. Given a tiling T , we can generate a complete met-
ric space, and we can study such a space using the tools of co-
homology. We will discuss a famous example, the chair tiling.

Fig. 1

This tiling is an ex-
ample of a substitution
tiling, as one can cover
the entire plane by it-
erating the substitution
shown on the left.

The Tiling Metric

Consider two tilings T, T ′ of Rm. We can assess their "closeness" us-
ing the tiling metric. Heuristically, two tilings are close if, after a small
translation, their patterns overlap on a large ball around the origin.

Fig. 2

As seen in figure 2, because the
blue patch centered at x is the same
as the blue patch centered at y, the
tilings centered at these points are
1
2-close but not 1

3-close because the
corresponding red patches differ on
their lower left corners. Equipped
with this metric, we can construct a
complete metric space ΩT around
T , called the hull of T , by taking
the orbit of T under translation and
completing this space by taking lim-
its of Cauchy sequences with re-
spect to the tiling metric.

ΩT := closure
{
T − x

∣∣∣x ∈ Rm
}

Acknowledgments and References

We thank Kyle Hansen for his time and guidance as well as the UCSB Di-
rected Reading Program for the opportunity to study this subject.

[1] Chair tiling - Wikipedia — en.wikipedia.org. https://en.wikipedia.org/wiki/
Chair_tiling. [Accessed 20-May-2023].

[2] Jeong-Yup Lee and Robert Moody. “Lattice Substitution Systems and Model Sets”. In:
Discrete & Computational Geometry 25 (Mar. 2000). DOI: 10.1007/s004540010083.

[3] Lorenzo Adlai Sadun. Topology of tiling spaces. Vol. 46. American Mathematical Soc.,
2008.

A Tale of Two Cohomologies

Fig. 3

To simplify our study, we will consider another substitution called the arrow substitution. As it turns out, we can group these arrow tiles in threes to achieve the
chair tiling, so these tilings are equivalent. We will use C to denote the arrow tiling and ΩC to denote its hull. In contrast to the complete construction of the
space ΩC , we can construct the hull as an inverse limit, as follows: Let Γ0 be the set of instructions for laying down a tile over the origin. Inductively, let Γn+1 be
the set of instructions for laying down a border of tiles around those patches in Γn. Linking these are the morphisms, fn : Γn+1 → Γn, a sequence of forgetful
functions which forgets the outermost layer of tiles. In the case of C we can think of these functions as forgetting the last iteration of the substitution, and is
in some sense dual to the substitution. For example, in figure 3, the 4× 4 square is sent to the 2× 2 square. To summarize, we can represent the hull as the
inverse limit:

ΩC
∼= lim
←

(Γn, fn) =
{
(x0, x1, ...) ∈

∏
n∈N

Γn

∣∣∣xn = fn(xn+1)
}
,

which can be thought of as the set of sequences in which each component has "forgotten" the structure of the component after it. To study the structure of this
space, we can use two types of cohomologies: the Cech cohomology and the PE variant of the De Rham cohomology. A special form of De Rham’s theorem
allows us to relate these two cohomologies:

H∗PE(T )
∼=

Closed PE forms on T
d(PE forms on T)

∼=
lim→Closed forms on Γn
lim→Exact forms on Γn

∼= lim
→

H∗deRham(Γn)
∼= lim
→

Ȟ∗(Γn,R) ∼= Ȟ∗(ΩT ,R)

C̆ech Cohomology

Fig. 4

The nerve N (U) of a cover U = {Uα} of a general space
X is a simplicial complex consisting of an n-simplex for
each nonempty intersection of n elements of U . In gen-
eral, Ȟ∗(X) := lim→H∗∆(N (U)) is the direct limit of the
simplicial cohomology of N (U) over all open covers U of
X. As we can view ΩC

∼= lim←(Γn, fn), and each Γn is a
CW complex, there is a nice property:

Ȟ∗(ΩC)
∼= lim
→

Ȟ∗(Γn)

This works because for any open cover of a CW complex,
we can create a "good" refinement such that finite inter-
sections of open sets are contractible. Sketch of proof:
Inductively take a "good" cover Un of each Γn as a refine-

ment of f−1n−1(Un−1). Let πn : ΩC → Γn be the projection. Then each Un induces a cover
Vn = π−1n (Un) of ΩC with N (Vn) = N (Un). We can pick Un to make the sequence Vn
cofinal on covers of ΩC . So Ȟ∗(ΩC)

∼= lim→ Ȟ∗(Vn) ∼= lim→ Ȟ∗(Un) ∼= lim→ Ȟ∗(Γn).

Calculating Ȟ1(ΩC)

Down to Earth, view ΩC as lim←(Γn, fn) where each fn is the map induced by
substitution. As each Γn is a finite ∆-complex, Ȟ∗(ΩC)

∼= lim→H∗∆(Γn). We
will compute Ȟ1(ΩC) using the chain complex of Γn and the homomorphism from
H1
∆(Γn) to H1

∆(Γn+1) induced by the substitution. Up to rotation r by π
2 and the

ways we identify tiles, there is one tile A, one edge α, and two vertices a, b in each
Γn (see Fig.5), with the relations: A = r4A, α = r4α, and a = ra, b = rb.

Fig. 5

The boundary map ∂i : Ci→ Ci−1 is ∂2A = (1−r+r2−r3)α, and
∂1α = b − a. Now we compute lim→H1

∆(Γn) by decomposing it
into 3 irreducible representations of Z4, as the group of rotations:
The cases r = 1 and r = −1 contribute no cohomology in degree
1. The case r2 = −1 is 2-dimensional, so we have C0 = 0 and
C1 = C2 = Z ⊕ Z. We have Im(∂T1 ) = 0, and ker(∂T2 ) = C1

because ∂2(A) = (1 − r − 1 + r)A = 0. Hence for each Γn we

have H1
∆(Γn)

∼= ker(∂T2 )

Im(∂T1 )
∼= Z⊕ Z. Moreover, substitution induces

multiplication by 2 in the direct limit, since σ(α) = (1− r2)α = 2α.
Therefore, as direct limits commute with direct sums, we have

Ȟ1(ΩC)
∼= lim
→

H1
∆(Γn)

∼= Z[1/2]⊕ Z[1/2].

Pattern Equivariant De Rham Cohomology

To understand the PE variant of the De Rham cohomology, we must understand its
namesake, pattern equivariant functions. Let T be a tiling on Rm. A smooth function
f : Rm→ R is called pattern equivariant on T if, for some radius R, whenever two balls
BR(x), BR(y) of radius R share the same pattern in T , f (x) = f (y). In figure 2, we
can see that a PE function f on a chair tiling with blue radius must have f (x) = f (y),
however a function PE on the red radius need not have f (x) = f (y), because the red
balls differ on the bottom left corner. In the arrow tiling case, these will be functions of
the form γ (0-forms), α1dx1+α2dx2 (1-forms), and ζdx1dx2 (2-forms), where α1, α2, γ, ζ
are pattern equivariant on the arrow tiling. We will denote by Λk(T ) the set of k-forms
pattern equivariant on a tiling T . The pattern equivariant cohomology is constructed as
the quotient

Hk
PE(T )

∼=
{α ∈ Λk(T )|dα = 0}

{α ∈ Λk(T )|α = dγ, γ ∈ Λk−1(T )}
We will make sense of this in the section below.

Understanding Ȟ1(ΩC) Using H1
PE
(C)

PE cohomology helps us interpret the result calculated for Ȟ1(ΩC). To do this, we will
find pattern equivariant 1-forms on the chair tiling C which represent the cohomology
classes we computed previously. These will be functions on the horizontal and ver-
tical edges of figure 3. By symmetry, we can focus on the horizontal components.
The quotient from the cohomology induces the equivalence relation ∼ on the set of
PE functions on the horizontal edges of an order n supertile such that αn ∼ βn iff
there exists some 0-form γn (a PE function on vertices) such that dγn = αn − βn.

Fig. 6

The representatives νn of each of these classes
will form the basis for the horizontal component
of H1

PE(C), and they will satisfy νn ∼ 2νn+1. The
order 0 supertile is simply one tile, so ν0 is a nat-
ural representative for 1 in the horizontal compo-
nent of H1

PE(C) and thus of Ȟ1(ΩC). Inductively,
2nνn ∼ ν0, and so νn is a natural representative
for 1

2n in the horizontal component of H1
PE(C).

These representatives of (1, 1/2, ..., 1/2n, ..) form a basis for the horizontal component
of Ȟ1(ΩC) and by the above symmetry, the vertical component will be the same. So we
now have a greater understanding of the original result

Ȟ1(ΩC)
∼= Z[1/2]⊕ Z[1/2].
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Abstract

After Euler found that Σp1p diverges, Legendre and Gauss found that
approximately,

π(x) ∼ x

log x
,

where π(x) = number of primes less than or equal to x.

Background

The zeta function is related to some of the facts of numbers, like
Σp1/p diverges, Dirichlet Theorem (for any a, q that are coprime,
there exists infinitely many primes with the form p = an+ q), and so
on. [1]

Some theorems and definitions that are related to the proof of prime
number theorem are:

The initial definition for zeta function when s > 1 is real is

ζ(s) = Σ∞
n=1

1

ns
,

by using analytic continuation, we could define ζ(s) on C.

An alternative form for zeta function is

ζ(s) = Πp(1− p−s)−1

Theorem. The function ζ is holomorphic for Re(s) > 1 and has
an analytic continuation to all of C as a meromorphic function with
simple poles at s = 0 and s = 1. Moreover,

ζ(s) = ζ(1− s)

Theorem. The zeta function has no zeros on the line Re(s) = 1.
After Riemann introduced the analytic continuation of ζ, he begun
to believe: The zeros of ζ(s) in the critical strip lie on the line
Re(s) = 1/2, which is called Riemann Hypothesis.

During the studies, Tchebychev found another approximation for
π(x) that is easier to compute.
Definition. Tchebychev’s ψ-function is defined by

ψ(x) = Σp≤x log p

Definition. Define function ψ1 by

ψ1(x) =

∫ x

1

ψ(x)du.

Proposition. For all c > 1,

ψ1(x) =
1

2πi

∫ c+i∞

c−i∞

xs+1

s(s + 1)
(−ζ

′(s)

ζ(s)
)ds.

Relation between ψ,ψ1, and π

Theorem. If ψ(x) ∼ x as x→ ∞, then π(x) ∼ x
log x as x→ ∞.

Proof. It suffices to show:

1 ≤ lim inf
x→∞

π(x)
log x

x
and lim sup

x→∞
π(x)

log x

x
≤ 1. (1)

Using the trick that:

ψ(x) = Σp≤x[
log x

log p
] log p ≤ Σp≤x

log x

log p
log p = π(x) log x.

the first inequality in (1) holds.
Fix 0 < ϵ < 1, note that

ψ(x) ≥ Σp≤x ≥ Σxϵ<p≤x ≥ (π(x)− π(xϵ)) log xϵ,

thus

ψ(x) + ϵπ(xϵ) log x ≥ ϵπ(x) log x.

Dividing both side by x, and noting that π(xϵ) ≤ xϵ, ϵ < 1, ψ(x) ∼ x, we have
ϵπ(xϵ) log x

x
≤ ϵ log x

x1−ϵ
→ 0 as x → ∞,

thus

1 ≥ ϵ lim sup
x→∞

π(x) log x

x
.

Since ϵ is arbitrary, the proof is complete.
Proposition. If ψ1(x) ∼ x2

2 , then ψ(x) ∼ x as x→ ∞.
Sketch. Let α < 1 < β, the proof follows from the inequality:

1

(1− α)x

∫ x

αx

ψ(u)du ≤ ψ(x) ≤ 1

(β − 1)x

∫ βx

x

ψ(u)du,

since ψ is increasing. we get lim supx→∞
ψ(x)
x ≤ 1. By a similar argument,

lim infx→∞
ψ(x)
x ≥ 1.

The Asymptotics for ψ1

Proposition. ψ1(x) ∼ x2

2 as x→ ∞
Proof.

[2]: Page 195

Proof Continued

Let F (x) = xs+1

s(s+1)(−
ζ ′(s)
ζ(s) ). Let γ(T ) = γ(T, δ). We have

1

2πi

∫ c+i∞

c−i∞
F (s)ds =

1

2πi

∫
γ(T )

F (s)ds.

Next, we pass from γ(T ) to γ(T, δ). For fixed T , we choose δ > 0
small enough such that ζ has no zeros in the box

{s = σ + it, 1− δ ≤ σ ≤ 1, |t| ≤ T}.
Thus ζ does not vanish on the line σ = 1. Note that F (s) has a
simple pole at s = 1 with residue is x2

2 . Thus

1

2πi

∫
γ(T )

F (s)ds =
x2

2
+

1

2πi

∫
γ(T,δ)

xs+1

s(s + 1)
F (s)ds.

Decompose the contour γ(T, δ) as γ1, γ2, γ3, γ4, γ5. Note that for T
large,

|
∫
γ1

F (s)ds| ≤ ϵ

2
x2 and |

∫
γ5

F (s)ds| ≤ ϵ

2
x2.

Fix T , let δ be small. On γ3, there exists a constant CT such that

|
∫
γ3

F (s)ds| ≤ CTx
2−δ.

Finally, on γ2(similarly on γ4), estimates the integrals as:

|
∫
γ2

F (s)ds| ≤ C ′
T

∫ 1

1−δ
x1+δdσ ≤ C ′

T

x2

log x
.

Thus there exists CT , C ′
T (possibly different from the ones above)

such that

|ψ1(x)−
x2

2
| ≤ ϵx2 + CTx

2−δ + C ′
T

x2

log x
.

Thus, dividing x2

2 , and for x large,

|2ψ1(x)

x2
− 1| ≤ 2ϵ + 2CTx

−δ + 2C ′
T

1

log x
≤ 4ϵ,

which leads that

ψ1(x) ∼ x2/2 as x→ ∞.

Thus, we finished sketching the proof of the prime number theo-
rem.
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Introduction

Topology provides the framework needed to describe continuous deformations and
to characterize the differences between spaces that appear the same locally, but
have a fundamentally different global structure. A topology on a space is a structure
that defines how elements of a set are spatially related. In this poster, we explore
the role of quotient topologies and how to understand them.

Quotient Topology

It turns out that we can construct new spaces from old ones via some sort of a
"gluing" operation. For example, consider taking a rectangle and "gluing" two oppos-
ing edges together to form a Cylinder, or adding a half-twist to get a Möbius Strip.
This act of "gluing" (identification) is formally defined using the language of quotient
topologies.

AA

Möbius Strip

B

A

B

A

Torus

B

A

B

A

Klein Bottle

B

A

B

A

RP2

Definition 1. Suppose that (X, T ) is a topological space and that ∼ is an equiv-
alence relation on X. Denote the set of equivalence classes by X/∼, and let
p : X → X/∼ be the function that assigns to each point of X the equivalence
class it is in. Let T̃ be the family of all subsets Ũ ⊆ X/∼ such that p−1(Ũ) ∈ T .
Then T̃ is a topology for X/∼, called the quotient topology, (X/∼, T̃ ) is called a
quotient space (of X), and p : X → X/∼ is called the quotient map. [2]

Above are four examples of quotient spaces, each given by defining different equiv-
alence relations on the square. Geometrically, the quotient map p sends points on
the square to their equivalence class by aligning arrows of the same color. For the
Torus and Klein Bottle, the image of p is shown below.

1

Figure 1. Torus(left) and Klein Bottle(right)

The Real Projective Plane, RP2, can be difficult to visualize, so we outline equivalent
forms of the space to help build intuition.

Proposition 2. Let S2 denote the unit 2-Sphere in R3 and let D be the unit disc in
R2. The following quotient spaces are all homeomorphic:

(a) (R3\{0})/∼ where x ∼ y iff y = λx for some non-zero λ ∈ R;

(b) S2/∼ where ∼ identifies each pair of antipodal points of S2;

(c) D/∼ where ∼ identifies each pair of antipodal points on the boundary of D;

(d) The square with given identifications seen above.

Proof. We provide the intuition for each homeomorphism. (a) describes the space of
lines in R3 passing through the origin. Each such line intersects S2 exactly twice, at
antipodal points. For (b), each point in the upper hemisphere of S2 has its antipodal
point in the lower hemisphere, so we can discard the lower hemisphere and then
project our points down to the unit disk in R2. For (c) and (d), center D and the
square at the same point and project the square radially onto D. (Detailed proof,
p.162 [2])

Path Homotopy and Fundamental Groups

Definition 3. Let f, g : X → Y be maps. Then f is homotopic to g if there exists a
map F : X × I → Y such that F (x, 0) = f (x) and F (x, 1) = g(x) for all points x ∈ X,
where I is the unit interval. The map F is called a homotopy from f to g. [1]

Intuitively, the homotopy F is a continuous deformation of f into g.

Lemma 4. The relation of ’homotopy relative to a subset A of X ’ is an equivalence
relation on the set of all maps from X to Y which agree with some given map on A.
(For proof see p.90 [1])

Since it is an equivalence relation, naturally, we want to discuss its equivalence class:

Theorem 5. Let ⟨α⟩ denote the homotopy class of a loop α (Where homotopy classes
are equivalence classes from the relation of homotopy relative to I). The set of homo-
topy classes of loops in X based at p forms a group under the multiplication

⟨α⟩ · ⟨β⟩ = ⟨α · β⟩

(For proof see p.92 [1])

Intuitively, if there’s a hole inside a loop, then it is not in the same equivalence class
with the point, if two loops are around different holes, they’re not in the same class.

Definition 6. The group constructed in Theorem 5 is called the fundamental group
of X (based at point p) and denoted π1(X, p). [1]

It turns out that for any path-connected space X, the fundamental group is indepen-
dent of base point, and so we simply write the fundamental group of X as π1(X) (in-
stead of π1(X, p).) Furthermore, it happens to be a topological invariant which makes
it very important. Intuitively, the fundamental group of a space describes all the differ-
ent kinds of loops you can have on a space which can’t be continuously deformed into
each other. In figure 2 we see an example of the fundamental group of S1. We can
see how the fundamental group here comes from winding number with orientation.

Figure 2. π1(S1) = Z

It is not difficult to see that π1(S2) is trivial. We also know π1(RP2) = Z/2Z. This
makes sense if you think about RP2 as in (b) from Proposition 2. We can go around
the sphere and end up at either our base point p or −p. These correspond to the 2
different homotopy classes.

Manifolds and Embedding in Euclidean Space

Since in topology the shape and distance of objects (usually) don’t preserve, so the
thing called manifolds are more usual. But since manifolds vary a lot, it’s hard for us to
directly study on then. Therefore, by embedding the manifolds to Rn, we can use tools
in Rn on manifolds, which is very helpful (and so important) in our study to manifolds.

Definition 7. A Manifold of dimension n (n-manifold for short) is a second-countable
Hausdorff space, each point of which has a neighbourhood homeomorphic to Rn (n
dimensional Euclidean space). [1]

One can accept it roughly as a locally Euclidean smooth space.

Definition 8. If f : X → Y is a one-one map, and if f : X → f (X) is a homeomor-
phism when we given f (X) the induced topology from Y , we call f an embedding of
X in Y . [1]

Embedding the RP2 and Klein Bottle in R4 [2]

Embedding a manifold M to Rn means the same as "a subset of Rn is homeo-
morphic to M ". So one way to prove embedding is to explicitly construct a smooth
function in Rn and prove that it has the same identification as M , and we’ll do this
to two examples in the next section.
Embedding Real Projective Plane in R4

Proposition 9. There’s a homeomorphism from real projective plane RP2 to a sub-
space of R4.

Proof. Let S2 = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1}, and construct the function
f : S2 → R4 as

f (x, y, z) = (x2 − y2, xy, yz, zx)

detailed proof in omitted here, but one can check that f is an identification map
results in the same identification space to RP2 we discussed on the left! (refer to
the detail proof in page 164 of [2])

Embedding Klein Bottle in R4

We’ve seen the picture of Klein Bottle in the part of quotient topology, and there’s
some fancy models of Klein bottles. However, all of these are just Klein Bottle
"immersed" in R3, which means it is roughly embedded but has self-intersections.[2]
In fact, it cannot be embedded in R3:

Proposition 10. Klein Bottle can’t be embedded in R3.

Proof. We prove this not rigorously here by argue about the orientability of Klein
bottle. There is a theorem states that all smooth hypersurface(it means a n − 1-
manifold in a Rn, one can perceive it as a similar thing to a surface as in R3,
but in a higher dimension perspective) with no boundary in Rn is orientable, and
Klein bottle, however, as a non-orientable 2-manifolds, which means it cannot be
embedded in R3.

And on the other hand, it can be embedded in R4:

Proposition 11. The Klein Bottle can be embedded in R4.

Proof. We write X = [0, 2π]× [0, π], then let f : X → R4 defined as

(x, y) 7→ ((2 + cosx) cos y, (1 + cosx) sin y, sinx cos y, sinx sin y)

Detailed proof is also omitted here,but one can check that f is an identification map
results in the same identification space to Klein Bottle as we discussed on the left.
(Refer to the detail proof in page 165 of [2]).

Now, one might want to ask: wait, but more generally, what would happen for other
2-manifolds? Can they also be embedded in R4? The answers is: yes!

Theorem 12. All 2-manifolds can be embedded in R4.

And if keep asking, this road will leads us to the final theorem:

Theorem 13. (Strong Whitney Embedding Theorem) Any smooth real m-
manifolds can be smoothly embedded in R2m.
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Gaussian and Eisenstein Integers

The Gaussian integers, denoted Z[i], is the collection of complex numbers x + yi where
x and y are integers. For example, 1 + 2i and 5i are Gaussian integers, but 2 + πi is not.
The Gaussian units are ±1 and ±i.

The Eisenstein integers is the collection of complex numbers x + yω where x and y are

integers, and ω = e2πi/3. For example, −1 + ω and ω2 = −1 − ω are Eisenstein integers,

but 1/2 + ω is not. The Eisenstein units are ±1, ±ω, and ±ω2.

We abbreviate the collection of Gaussian/Eisenstein integers as G/E integers. A non-

unit G/E integer q is prime if the only divisors of q in the G/E integers are units.

For example, 2 is an Eisenstein prime, but not a Gaussian prime since 2 = (1 + i)(1 − i).

Categorizing G/E Primes

The primagon of a Gaussian integer z is the 4-gon with vertices ±z, ±iz. Likewise, the
primagon of an Eisenstein integer z is the 6-gonwith vertices ±z, ±ωz, ±ω2z. All vertices
of a primagon have the same absolute value.

Using the primagon, one can classify the G/E integers into three types:

Type I: The primagon has integer vertices and coincides with its complex conjugate.

Type R: The primagon coincides with its complex conjugate, but does not have

integer vertices.

Type S: The primagon does not coincide with its complex conjugate.

Automatically Classifying G/E integers

Given any G/E integer, we automatically classify the integer and plot the primagon as

follows:

1. Input G/E integer Specify whether the input is a Gaussian or Eisenstein integer by

typing ’G’ or ’E’. The user is then prompted to input integers a and b to form the

Gaussian integer a + bi or the Eisenstein integer a + bω.

2. Find the primagon Let z = a + bi or z = a + bω be the inputted integer. Find three

(five) new vertices by rotating z by π
2 (π3 ) about the origin. Connect the four (six)

vertices to obtain the primagon of z. Compute the primagon’s conjugate (blue) by

conjugating each vertex individually and connecting the new vertices.

3. Classify If the primagon (plotted in red) doesn’t coincide with its conjugate (plotted

in blue), then z is type S. Otherwise, determine whether the primagon has integer

vertices by computing |z|2 = z · z. If z · z is a perfect square, then z is type I. If not,

then z is type R.

Visualizing Gaussian and Eisenstein integers

Some examples of G/E primes of type I/R/S:

Kissing Fractions

Let Q be the collection of rational numbers. An element a
b ∈ Q is a fraction if gcd (a, b) =

1. Two fractions a
b and

c
d are kissing if

ad − bc = ±1.
a

b
♥c

d

The mediant of a
b and

c
d is

a

b
∨ c

d
= a + c

b + d
.

Note that a
b ∨ c

d kisses both a
b and

c
d.

If a
b is a fraction, its Ford circle is the circle centered at

(a
b , 0

)
of diameter 1

b2. Then, the

fractions a
b and

c
d are kissing if the Ford circle of a

b is tangent to the Ford circle of c
d.

Figure 1. Ford circles of fractions and their mediants

Computing Kissing Fractions

Suppose a
b be a fraction and consider the matrix

[
a b
c d

]
. Then, c

d is kissing
a
b if da−bc = ±1.

That is, by setting a value for c, we obtain two values of d that guarantee c
d is kissing a

b .

Now consider the fraction 1
2. For each c ∈ {±1, ±2, ±3, ±4, ±5} we obtain two possible

values for d. After eliminating any c
d that are not fractions, we obtain a list of fractions

that are kissing 1
2: (−5, 11), (−5, 9), (−4, 9), (−4, 7), (−3, 7), (−3, 5),

(−2, 5)(−2, 3), (−1, 3), (−1, 1), (1, −1), (1, −3),
(2, −3), (2, −5), (3, −5), (3, −7), (4, −7), (4, −9)


Kissing Fraction Results

Proposition: Let a
b be a fraction. Then

a
b kisses infinitely many fractions.

Proposition: If b > 1, then there are exactly two fractions kissing a
b with denominator

smaller than b. These two fractions kiss each other and have mediant a
b .

Visualizing Kissing Fractions

def kiss(a,b,n):

for c in range(-n,n):

d = (1-b*c)/a

e = (-1-b*c)/a

if d is integer and greatest common divisor of c and d = 1 and c 6=0:
add (c,d) to the kissing fractions list

if e is integer and greatest common divisor of c and e = 1 and e 6=0:
add (e,d) to the kissing fractions list

return the kissing fractions list
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Background

There are countless different unique patterns one can use to make
a wallpaper. Despite this if we categorize them by their symmetries
there are in fact only 17 different kinds. To properly discuss these
kinds we will be considering wallpaper groups. Each of the 17 dif-
ferent wallpaper groups has different group actions which account
for its unique symmetries.

The specific type of group action that we will need is called an
isometry. An isometry is a distance preserving mapping from a
metric space onto itself. Isometries of euclidean space are the
euclidian group E2. These isometries are translations, rotations,
reflections and glide reflections. Any of these isometries can be
denoted with an ordered pair (v,M) with v ∈ R2 and M ∈ O2 Where
O2 is the group of orthogonal isometries. These are rotations about
the origin or reflections over lines through the origin.

With this understanding of isometry we can now identify for any sub-
group of isometries both the translation subgroup, which are the
translations of the origin, and the point group, which is the group of
all M .

Definition of Wallpaper Group

A Wallpaper group is defined as a subgroup G of E2 with a transla-
tion subgroup H generated by two independent translations and a
finite point group J .

The Lattice

The Lattice of the wallpaper group is L the orbit of the origin under
the wallpaper group. Let a ∈ G be of minimum length and b ∈ G
be linearly independent with a and of minimum length. a and b span
L. Different relationships between | a |, | b |, | a − b | and | a + b |
establish five distinct types of lattice. These are oblique, rectangular,
centered rectangular, square and hexagonal.

Notation for Wallpaper Groups

A common notation used to describe wallpaper groups is called crystallo-
graphic notation. It is named this because the same notation is used in
crystallography to describe the 230 different space groups which are three
dimensional analogues to wallpaper groups. The notation for each wallpa-
per group will have first either a p or a c. This denotes the type of cell either
primitive or centered. Next there will be a number denoting the highest order
or rotational symmetry. If the order is 1 it is often omitted. Finally there will
be some number of m’s and/or g’s if the group contains reflections or glide
reflections respectively.
As an example the wallpaper group p4m has primitive cells, rotational sym-
metry of highest degree 4 and mirror symmetries.

Flowchart for Classifying Wallpaper Groups

Examples of Wallpaper Patterns
Generated With Wallpaper Groups

Wallpaper Group pm

The point group of this group consists of order 1 rotations and 1
axis of mirror reflections. The transnational subgroups is deter-
mined by the lattice and this example has a rectangular lattice.

Wallpaper Group p4m

The point group of this group consists of order 1,2 and 4 rota-
tions and 2 axes of mirror reflections. The lattice in this example is
square.

Wallpaper Group p6

The point group of this group consists of order 1,2 and 6 rotations.
The lattice for the wallpaper group p6 must be hexagonal.
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