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Traditional Cryptography

Symmetric encryption
1. Caesar Shift (50 BCE)

2. Vigenère (1553)

3. Enigma Machine (1920)
Asymmetric encryption

1. Rivest–Shamir–Adleman (1977)

2. Elliptic-Curve Cryptography (1985)

Hidden Subgroup Problem (HSP)

Suppose there is a known group G and a function f : G → S where S is some finite set.
Suppose f has the property that there exists a subgroup H ≤ G such that f is constant within each coset, and distinct on
different cosets: f (g) = f (g′) ⇐⇒ gH = g′H . This condition says f is well-defined on the set of left cosets G/H . Since H
may be large, “finding H” typically means finding a generating set for H .

Discrete logarithm
Given a generator γ (people often use a prime number) of a cyclic multiplicative group C of size N .
This means that C = {γa|a ∈ {0, ..., N − 1}}, and A ∈ C, can we find the unique a ∈ {0, 1, ..., N − 1} such that γa = A?

Classical computers need a lot of time to compute a from A (need time roughly exponential in logN). Take G = ZN × ZN
and define f : G → C by f (x, y) = γxA−y. For group elements g1 = (x1, y1), g2 = (x2, y2) ∈ G we have

f (g1) = f (g2) ⇐⇒ γx1−ay1 = γx2−ay2 ⇐⇒ (x1 − x2) = a(y1 − y2) ⇐⇒ g1 − g2 ∈ ⟨(a, 1)⟩

Let H be the subgroup of G generated by the element (a, 1), then finding the generator of the hidden subgroup H gives us a.

The Abelian Case
If G is Abelian, the QFT operator shown on the right helps compute a generating set L for the period lattice

L = {(x1, ..., xn)|
n∑
i=1

g
xi
i ∈ H}

Bloch Sphere Illustration

A geometric representation of a qubit

Quantum Fourier Transformation
(QFT)

Suppose we have a group G, a set generating G,
{g1, ..., gn}, a periodic function f on Zn where there
exists a normal subgroup H of G (GHG−1 = H), and an
injective function g on the quotient group G/H such that

f (x1, ..., xn) = g(

n∑
i=1

g
xi
i mod H)

The HSP then asks us to present a generating set of
the largest such H and the relations between its ele-
ments. Define a 2n dimensional Hilbert space as follows:
Hn = H⊗ · · · ⊗ H = C⊕ C⊗ · · · ⊗ C⊕ C. The QFT
operator is then defined on an interval of length N = 2n

below:

QFTn : Hn −→ Hn : |x⟩ −→ 2
−N
2

N−1∑
y=0

e
2πixy
N |y⟩

RSA Illustration

1. Pick two prime numbers p = 2 and q = 7 and multiply them to get the modulus 14
2. Compute L = lcm(p − 1, q − 1) = 6 and choose the integer (public key) e = 5 such
that 1 < e < L and gcd(e, L) = 1
3. Solve the private key d = 11 such that d · e = 1(mod L)

RSA Algorithm

Step One (Key Generation): Choose two secret prime numbers, p and q (typically, p and q are
very large to ensure your message is secure). Then, multiply them together to obtain n, the modulus
for encryption/decryption. n is a part of the publicly available key.

Then, compute L(n)=lcm(L(p), L(q))=lcm(p-1, q-1), and keep L(n) a secret. We then choose
a number e such that 1 < e < L(n) and gcd(e, L(n))=1 (i.e. e and L(n) are relatively prime). The
integer e is then released as part of the public key. Note the size and length of e will determine how
fast and secure the encryption is.

Finally, solve for d (the modular multiplicative inverse of e modulo L(n) in d ≡ e−1(mod L(n)).
We know such an inverse exists since e and L(n) are coprime. This d will work as our private key
component.

Step Two (Key Distribution): Suppose Alice is sending a message to Bob. Alice must know Bob’s
public key (n, e) to encrypt the message, and Bob must use his private key (d) to decrypt the message.

Step Three (Encryption): After Alice obtains Bob’s public key, she can send a message M by
converting it into an integer from plain text such that (0 ≤ M ≤ n), M ∈ Z. She computes the
cipher text (c) by c ≡ Me mod n. Alice then sends c to Bob.

Step Four (Decryption): Once Bob receives the cipher text, he can compute Alice’s message M by

solving cd ≡ (Me)d ≡ Med ≡ Mk(L(n))+1 ≡ M(Mk(L(n)) ≡ M(1) ≡ M mod n.

QFT Illustration

Implementation of the discrete Fourier transform on 2n amplitudes into a quantum circuit consisting of

only
n(n+1)

2 Hadamard gates H (the gate that creates an equal superposition of the two basis states:

|0⟩ −→ |0⟩+|1⟩√
2

, |1⟩ −→ |0⟩−|1⟩√
2

, so H = 1√
2

[
1 1
1 −1

]
) and controlled phase shift gates, Rm=

[
1 0

0 e
2πi
2m

]
,

that modify the phase of the quantum state. Note n is the number of qubits.

Related Topics

• Elliptic Curve Cryptography (Pollard’s p-1 and Lenstra’s Factorization Algorithms)

• Classical Cryptosystems Not Yet Broken by the Quantum Algorithm (McEliece, NTRU, and Lattice-Based public key encryptions)

• Special Cases of the HSP (Pell’s Equation, Non-abelian Groups, etc)

• Extended Euclidean Algorithm & Bezout’s Identity
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The Bernstein Problem
Xingzhe Li, Graduate Mentor: Junrong Yan

INTRODUCTION
In minimal surface theory, the celebrated Bernstein problem is as follows: if the
graph of a function on Rn−1 is a minimal surface in Rn, does this imply that the
function is linear? This is proven to be true in dimensions at most 8 but false in
dimensions at least 9. Bernstein solved n = 3 case at the beginning of 20th cen-
tury. In 1962, Fleming gave a new proof by deducing it from the fact that all area-
minimizing hypercones in R3 are flat. A few years later, De Giorgi solved n = 4 case
and Almgren solved n = 5 case. In 1968, Simons showed that all area-minimizing
hypercones in R7 are flat, thus extending the Bernstein theorem to dimension 8.
Moreover, he gave examples of locally stable cones in R8, which were proven to be
area-minimizing by Bombieri, De Giorgi, and Giusti in 1969. They also showed that
there exists complete minimal graphs that are not hyperplanes for n ≥ 9. Combined
with the result of Simons, this gives a complete solution to Bernstein problem in Rn.

THE SECOND VARIATION FORMULA

Let Σk ⊂ Mn be a minimal submanifold and let F : Σ× (−ϵ, ϵ) → M be a variation
of Σ with compact support and fixed boundary. In terms of local coordinates, we
have the pullback metric gij(t) = g(Fxi

, Fxj
), the measure ν(t) =

√
det(gij(t)) ·√

det(gij(0)), and the area formula

Vol(F (Σ, t)) =

∫
ν(t)

√
det(gij(0)).

Since
d2

dt2

∣∣∣∣
t=0

Vol(F (Σ, t)) =

∫
ν′′(0)

√
det(gij(0)),

it suffices to derive a formula for ν′′(0) at some x ∈ Σ. Choose the normal
coordinate system at x. By differentiating the first variation formula 2ν′(t) =
Tr(g′ij(t)g

lm(t))ν(t), we obtain that

2ν′′(0) =
d

dt

∣∣∣∣
t=0

(Tr(g′ij(t)g
lm(t))ν(t))

=
d

dt

∣∣∣∣
t=0

(Tr(g′ij(t)g
lm(t))) + Tr(g′ij(0)g

lm(0)) · 1
2
Tr(g′ij(0)g

lm(0))

=
1

2
[Tr(g′ij(0))]

2 +Tr(g′′ij(0))− Tr(g′ij(0)g
′
lm(0)).

At the point x, we have

|g′(0)|2 = 4|⟨A(·, ·), Ft⟩|2;
Tr(g′′(0)) = 2|⟨A(·, ·), Ft⟩|2 + 2|∇N

ΣFt|2 + 2Tr⟨RM (·, Ft)Ft, ·⟩+ 2divΣ(Ftt).

Substituting |g′(0)|2 and Tr(g′′(0)) inside yields that

ν′′(0) = −|⟨A(·, ·), Ft⟩|2 + |∇N
ΣFt|2 − TrΣ⟨RM (·, Ft)·, Ft⟩+ divΣ(Ftt) and

d2

dt2

∣∣∣∣
t=0

Vol(F (Σ, t)) = −
∫
Σ

|⟨A(·, ·), Ft⟩|2 +
∫
Σ

|∇N
ΣFt|2 −

∫
Σ

TrΣ⟨RM (·, Ft)·, Ft⟩

= −
∫
Σ

⟨Ft, LFt⟩,

where L is the stability operator introduced below.

MINIMAL SUBMANIFOLDS
Let (Mn, g) be a Riemannian manifold with Levi-Civita connection ∇ and let Σ be
a k-dimensional submanifold of M . If X ∈ X(Σ), then let XT and XN denote the
tangential and normal components, respectively. For X,Y ∈ TxΣ, the vector-valued
bilinear form A on Σ is given by

A(X,Y ) = (∇XY )N .

In literature, A is called the second fundamental form, and the trace of A at x is the
mean curvature vector

H =
k∑

i=1

A(Ei, Ei),

where Ei is an orthonormal basis for TxΣ. The normed squared of the second fun-
damental form at x is

|A|2 =
k∑

i,j=1

|A(Ei, Ej)|2.

An immersed submanifold Σk ⊂ Mn is said to be minimal if the mean curvature H
vanishes everywhere. This is equivalent to Σk being the critical point for the area
functional. In particular, if Σ ⊂ R3 is a graph of C2 function u : Ω ⊂ R2 → R, then
Σ satisfies the minimal surface equation

div(
∇u√

1 + |∇u|2
) = (1 + u2

y)uxx + (1 + u2
x)uyy − 2uxuyuxy = 0.

Examples of embedded minimal surfaces in R3 include the helicoid H =
{(t cos s, t sin s, s)|t, s ∈ R} and the catenoid C = {(x1, x2, x3)|x2

1 + x2
2 = (coshx3)

2}.
By viewing H as the graph of function u(x, y) = arctan (y/x), one can check that the
minimal surface equation holds.

Figure 1: The Helicoid Figure 2: The Catenoid

THE STABILITY INEQUALITY
Suppose that Σ has a trivial normal bundle. By identifying a normal vector field
X = ηN with η, we define the stability operator L as

Lη = ∆Ση + |A|2η +RicM (N,N)η.

In particular, if M = Rn, then the Ricci tensor vanishes everywhere and

Lη = ∆Ση + |A|2η.

We say that a minimal submanifold Σk ⊂ Mn is stable if for all variations F with
boundary fixed,

d

dt2

∣∣∣∣
t=0

Vol(F (Σ, t)) = −
∫
Σ

⟨Ft, LFt⟩ ≥ 0.

Intuitively, being stable means that the second derivative is positive and the graph is
convex. Substituting the formula for L inside and applying the divergence theorem
yield the stability inequality∫

Σ

(inf
M

RicM +|A|2)η2 ≤
∫
Σ

|∇Ση|2,

where Σn−1 ⊂ Mn is a stable minimal hypersurface with trivial normal bundle. In
particular, if M = Rn, then the stability inequality reduces to∫

Σ

|A|2η2 ≤
∫
Σ

|∇Ση|2.

THE BERNSTEIN THEOREMS

The Bernstein theorem says that if u : Rn−1 → R is an entire solution to the minimal
surface equation and n ≤ 8, then u is a linear function.

To see why it’s true for n ≤ 6, we make use of the Lp bound of |A|2 for stable
hypersurfaces along with the area bound. Let Σn−1 ⊂ Rn be an orientable sta-
ble minimal hypersurface. For all p ∈ [2, 2 +

√
2/(n− 1)] and every nonnegative

Lipschitz function ϕ with compact support, we have the estimate∫
Σ

|A|2pϕ2p ≤ C(n, p)

∫
Σ

|∇ϕ|2p.

The proof is just a computation involving the stability inequality, the Cauchy-
Schwarz inequality, the absorbing inequality 2xy ≤ ϵx2 + y2/ϵ, and the Simons’
inequality

|A|∆|A|+ |A|4 ≥ 2

n− 1
|∇|A||2.

Suppose in addition that Σ is complete and

sup
R>0

Vol(BR ∩ Σ)

Rn−1
≤ V

for some V < ∞.

If we consider 2p = 4 +
√

7/5 < 4 +
√

8/(n− 1), then the above Lp bound of |A|2
for the cutoff function

ϕ(x) =


1, if |x| ≤ r

0, if |x| ≥ 2r

− 1
r |x|+ 2, otherwise

implies that∫
Br∩Σ

|A|4+
√

7/5 ≤ C(n, p)r−4−
√

7/5 Vol(B2r ∩ Σ)

≤ C(n, p)2n−1V rn−5−
√

7/5 → 0 as r → ∞.

It follows that |A|2 vanishes everywhere and Σ is flat.

Now, if u : Rn−1 → R solves the minimal surface equation entirely, then the area-
minimizing property of a minimal graph (deduced from the monotonicity formula
along with the calibration argument) gives an area bound and the previous argu-
ment shows that Σ is a hyperplane. Hence, u is a linear function and the Bernstein
theorem holds for n ≤ 6. For 6 < n ≤ 8, the proof relies on the fact that the hyper-
planes are the only area-minimizing hypercones in Rn for 3 ≤ n ≤ 7, which will be
explained below.

MINIMAL CONES

Let Nk−1 be a submanifold of Sn−1 ⊂ Rn. The cone over N is a smooth k-
dimensional submanifold away from the origin

C(N) = {x ∈ Rn|x/|x| ∈ N}.

It’s immediate from definition that a cone is invariant under dilations about the ori-
gin. An example is given by the cone over the equator of S2, which is just the hor-
izontal plane. More generally, if Sk−1 is a totally geodesic (k − 1)-sphere in Sn−1,
then C(Sk−1) is a k-dimensional plane through the origin in Rn.

We mention two consequences of Nk−1 ⊂ Sn−1 being a minimal submanifold.
Let ∆x = (∆x1, . . . ,∆xn) denote the metric Laplacian on N . Since a submanifold
Nk−1 ⊂ Sn−1 is minimal if and only if ∆x is normal to Sn−1 ⊂ Rn, we have ∆x = xf
for some function f . As |x|2 = 1, a simple calculation yields that

0 = ∆|x|2 = 2⟨x,∆x⟩+ 2|∇x|2 = 2f + 2(k − 1).

Hence, f = 1 − k and the coordinate functions are eigenfunctions with eigenvalue
k − 1. To obtain the other consequence, we observe that ∆N and ∆C(N) are related
by the formula at x ̸= 0:

∆C(N)u =
1

r2
∆Nu(

1

r
x) + (k − 1)

1

r

∂

∂r
u+

∂2

∂r2
u,

where r = |x|. Given xi a coordinate function on C(N), we may write it as xi = rui

with xi and ui agreeing on N ⊂ Sn. By the chain rule, we know that

∆C(N)xi =
1

r
∆Nui + ui(k − 1)

1

r

∂

∂r
r + ui

∂2

∂r2
r

= −(k − 1)
1

r
ui + (k − 1)

1

r
ui = 0.

Hence, every coordinate function is harmonic on C(N) and C(N) ⊂ Rn is minimal.

Now, consider the Bernstein theorem for n ≤ 8. Let Σu be the minimal graph of
u and assume x0 ∈ Σu. The monotonicity formula at x0 yields that

Vol(BR(x0) ∩ Σu)

Rn−1
− Vol(Br(x0) ∩ Σu)

rn−1
=

∫
(BR(x0)\Br(x0))∩Σu

|(x− x0)
N |2

|x− x0|n+1
.

Let the density at infinity be

Θ∞(x0) = lim
r→∞

Θr(x0) = lim
r→∞

Vol(Br(x0) ∩ Σu)

ωn−1rn−1
,

whose existence is guaranteed by the nondecreasing of Θr(x0) as r → ∞. Moreover,
since Θ0(x0) ≥ 1, we have Θ∞(x0) ≥ 1. If Θ∞(x0) = 1, then Θ0(x0) = 1 and the
monotonicity formula implies that

lim
r→0
R→∞

∫
(BR(x0)\Br(x0))∩Σu

|(x− x0)
N |2

|x− x0|n+1
= Θ∞(x0)−Θ0(x0) = 1− 1 = 0.

Hence, x ∈ Tx0Σu for all x ∈ Σu and we obtain Σu as a cone. Blowing up Σu at x0

gives

Σu = lim
rn→0

1

rn
Σu = Tx0Σu,

which implies that Σu is flat.

To prove the Bernstein theorem, we suppose that Σu is not a hyperplane. Then
we have Θ∞ > 1. Blowing down Σu at 0 gives

Σ∞ = lim
rn→0

rnΣu.

Based on the fact that

ΘΣ∞
r (x0) = lim

n→∞

Vol(rnΣu ∩Br(x0))

ωn−1rn−1
= lim

n→∞

Vol(Σu ∩Br/rn(x0))

ωn−1(r/rn)n−1
= Θ∞(x0),

we have ΘΣ∞
r = Θ∞ for every r > 0. Since rjΣj is area-minimizing for every j,

by stationary varifold theory or integral current theory, we deduce that Σ∞ is also
area-minimizing. As Σ∞ has constant density, the monotonicity formula implies
that Σ∞ is a cone. However, by the splitting theorem of De Giorgi, there exists an
area-minimizing hypercone with an isolated singularity, which contradicts with the
fact that all area-minimizing hypercones in Rn for 3 ≤ n ≤ 7 are flat.

The Bernstein problem is false for n ≥ 9. In fact, there exists a singular area-
minimizing cone in R8,

C4 = {(x1, . . . , x8)|x2
1 + · · ·+ x2

4 = x2
5 + · · ·+ x2

8}.

More generally, for m ≥ 4, the cones

C2m = {(x1, . . . , x2m)|x2
1 + · · ·+ x2

m = x2
m+1 + · · ·+ x2

2m}

are singular area-minimizing. Then, Fleming’s result implies that there exists a non-
linear entire solution to the minimal surface equation.
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What is Block Chain?

Block chain is a public data structure used by crypto-currency networks, such as
Bitcoin, to perform peer-to-peer transactions and decentralized governance. The
block chain has the following four characteristics: it is a decentralized network, a
tamperproof ledger, displays transparent transactions, and is trustless but has se-
cure trading [1].

Fig. 1: Simple visualization of Bitcoin blockchain

Since any individual can join the public system and participate in the block chain,
popular crypto-currencies, such as Bitcoin, employ a proof of work mechanism in
order to secure all transactions and avoid potential attacks from hackers. Proof of
work is performed by analyzing the exerting computing power made by participants
when utilizing the block chain. When an individual (also known as a miner) has
proven that they have exerted enough resources to the chain, they are then allowed
to create a new block and are compensated with newly minted crypto-currency.

What are Mining Pools?

As for single miners, it may take an extremely long period to generate a new block
because of the difficulty of the proof of work’s protocol. Therefore, to decrease
the uncertainty and make the revenue more predictable, miners form mining pools
where all miners mine concurrently and share rewards with the whole mining pool
when someone generates a new block.

Fig. 2: Example of a Bitcoin system with 3 pools and 1 solo miner [1]

Mining pools are typically implemented as a pool manager and a group of miners,
and the pool manager representing the whole pool joins the proof of work as a single
miner[1]. The pool manager estimates the miners’ power by accepting partial proof
of work and allocates the revenue to miners according to the power they provided.

Game Theory and Nash Equilibrium

Game theory is a study of mathematical models of strategic interactions among
rational players. In block chain, we can consider mining pools as rational players,
since they always want to maximize their revenue. Through the game, each player
will perform their own optimal strategy to maximize the profit, and strategies for min-
ing pools will be discussed in the next section. A non-cooperative game is formed
if players cannot collaborate or form alliance voluntarily.

One important concept of game theory is Nash equilibrium where the optimal out-
come of a game is where there is no incentive to deviate from the initial strategy
of each player. Therefore, Nash equilibrium is the most common way to define the
solution of a non-cooperative game.

Pool Game

One of the classical attacks between mining pools is pool block withholding attack,
where the attacking pool infiltrates other pools with attacking miners. Registered as
miners in attacked pools, attacking miners only send partial proof of work and discards
the full proof of work. Thus, the attacking miners can share the revenue obtained
by other honest miners without contributing, which reduces the total revenue of the
attacked pool. In addition, the total effective mining power in the block chain system
will be reduced, decreasing the difficulty of the proof of work protocol.

Since a pool can potentially increase its revenue by attacking other pools, the strate-
gies for each mining pool are to either attack other pools or mine honestly. The in-
teraction between pools give rise to the pool game [1]. Since mining pools do not
cooperate with other pools in our pool game model, the pool game is considered a
non-cooperative game.

Attack between Two Pools

Fig. 3: Two pools attacking each other by infiltrating attacking miners [1]

We will begin the analysis with the case of two pools, pool 1 and 2. Let m1 and m2
denote the number of miners inside each pool and x1,2 and x2,1 denote the number of
miners used by pool 1 to infiltrate pool 2 and the number of miners used by pool 2 to
infiltrate pool 1 respectively. Then, the direct mining power of each pool is m1 − x1,2
and m2−x2,1, and the effective mining power of the whole block chain is m−x1,2−x2,1
where m denotes all miners of the block chain.

Now, we define Ri as the direct mining rate of pool i which is the ratio between the
direct mining power of pool i and the total effective mining power of the block chain.
Therefore, the direct mining rate of two pools are:

R1 =
m1 − x1,2

m− x1,2 − x2,1
, R2 =

m2 − x2,1
m− x1,2 − x2,1

Then, we define ri as the revenue density [2] of pool i which indicates the average
revenue a miner can obtain inside pool i. We can obtain r1 and r2, based on the
infiltration rate, by dividing the pool’s revenue among all miners inside the pool:

r1(x1,2, x2,1) =
m2R1 + x1,2(R1 +R2)

m1m2 +m1x1,2 +m2x2,1
, r2(x2,1, x1,1) =

m1R2 + x2,1(R1 +R2)

m1m2 +m1x1,2 +m2x2,1

Since each pool will choose the optimal infiltration rate x1,2 and x2,1 that maximizes its
revenue density, r1 and r2 will be maximized at single points in the range 0 ≤ x1,2 ≤
m1 and 0 ≤ x2,1 ≤ m2. We denote the optimal infiltration rate by x̄i,j = argmaxxi,j ri
and the corresponding revenue density r̄i [1], where i ̸= j, i, j ∈ {1, 2} in this case.

Therefore, equilibrium can be achieved by finding pairs x′1,2 and x′2,1 such that{
argmaxx1,2 r1(x1,2, x

′
2,1) = x′1,2

argmaxx2,1 r2(x
′
1,2, x2,1) = x′2,1

under the constraints 0 < x′1,2 < m1 and 0 < x′2,1 < m2.

Two Pools Numerical Analysis and Equilibrium

Nash Equilibrium exists for x1,2, x2,1 when
δr1(x1,2,x2,1)

δx1,2
= 0

δr2(x2,1,x1,2)
δx2,1

= 0

which is shown in the figure [1] below:

Fig. 4: Infiltration Rate and Revenue Graphs for 2 pools

We observe that only in extreme cases a pool does not attack its counterpart.
Specifically, at equilibrium, a pool will refrain from attacking only if the other pool is
larger than around 80% of the total mining power. Furthermore, we observe that a
pool improves its revenue compared to the no-pool-attacks scenario only when it
controls a strict majority of the total mining power. Thus, we see that the dominant
strategy is to attack, regardless of what the other pool decides. The table below
shows the Prisoner’s Dilemma [1] for the Two Pools:

Pool 1 \ Pool 2 No Attack Attack
No Attack (r1 = 1, r2 = 1) (r1 > 1, r2 = r̃2 < 1)

Attack (r1 = r̃1 < 1, r2 > 1) (r̃1 < r1 < 1, r̃2 < r2 < 1)

Practicalities

Although the model presented is simplistic, there are many factors that can perturb
our model due to the assumptions we have made. For instance, we assume that the
infiltrating miners are loyal to the attacker. However, some of the pool’s members
may be disloyal infiltrators. To avoid such a risk, a pool needs a sufficient number of
verified miners — miners that it knows to be loyal. In general, the optimal infiltration
rate may be as high as 60% of the pool size, but this is only in extreme cases when
pools are large [1]. For practical pool sizes, a pool may need up to 25% of its mining
power for infiltration [1].
Furthermore, a pool may engage in an attack against another pool not to increase
its absolute revenue, but to attract miners by temporarily increasing its revenue
relative to a competing pool. Such sabotage attack does not transfer revenue from
victim to attacker, and migrating miners will switch to less attacked pools, changing
pool sizes and hence revenues until convergence. Thus, many requirements must
be satisfied for our model to be accurate in practice.
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Representation Theory

Representaধon Theory is a branch of mathemaধcs that allows us to take intricate objects and

”represent” them with simpler objects. Moreover, these simpler objects correspond and link to

elements of Linear Algebra and Abstract Algebra. This area of math studies these algebraic struc-

tures, specifically finite dimensional algebra. One of the most recognized class of algebras is the

gentle algebras. To understand this class of algebras, it would be helpful to become familiar with

several definiধons.

Definitions

Throughout, K is a field. We will first talk about quivers and then move towards algebras. Quivers

are important because every finite dimensional algebra can be associatedwith a quiver and quivers

give us a visual way of represenধng complex aspects of algebras.

Quiver - A quiver Q = (Q0, Q1, s, t) is a quadruple consisধng of two sets: Q0 (whose elements

are called verধces) and Q1 (whose elements are called arrows), and two maps s, t : Q1 →Q0
which associate to each arrow α ∈ Q1 its source s(α) ∈ Q0 and its target t(α) ∈ Q0, respecধvely.

Figure 1. Example quiver Q, with Q0 = {v1, v2, v3} and Q1 = {a1, a2, a3, a4, a5}

AdjacencyMatrix - A square n×n matrix M which represents a quiver of n elements. The entry

Mij represents the number of arrows from vertex i to vertex j. If Mij = 0, then there are no

arrows from vertex i to vertex j. A non-zero entry on the diagonal of the matrix M (ie. Mii > 0)
represents an arrow(s) from vertex i to itself, and this is called a loop.

1 0 1
1 0 1
0 1 0


Figure 2. Adjacency matrix for the quiver Q

K-Algebra - A K-algebra is a ring with idenধty, A, such that A has a K-vector space structure

compaধble with the mulধplicaধon of the ring. We say A is finite dimensional if the dimension

of the K-vector space A is finite.

Path Algebra - Let Q be a quiver. The path algebra KQ of Q is the K-algebra whose underlying

K-vector space has as its basis the set of all paths of length l ≥ 0 in Q and such that the

product of two paths α1...αl and β1...βk is equal to zero if t(αl) 6= s(β1) and is equal to the

composed path α1...αlβ1...βk if t(αl) = s(β1).

Relaࣅons - Let Q be a quiver. A relaধon in Q with coefficients in K is a K-linear combinaধon

of paths of length at least two having the same source and target. Given a set of relaধons, let

I be the ideal generated by these. Then KQ/I is the algebra bound by these relaধons.

Goal

A gentle algebra is a finite dimensional algebra

A = KQ/I

where Q is a quiver, KQ is a path algebra, and I is an ideal generated by paths of length 2 and

saধsfies:

1) At most 2 arrows enter and 2 leave each vertex of the quiver Q.

2) For each arrow β ∈ Q1, there is at most one arrow γ ∈ Q1 and at most one arrow α ∈ Q1 such
that γβ and βα are relaধons contained in I and at most one arrow γ′ ∈ Q1 and at most one

arrow α′ ∈ Q1 such that γ′β and βα′ are relaধons not contained in I .

The goal for our team was to develop an algorithmic code that enables the generaধon of gentle

algebras. Adhering to the condiধons for this class algebra were hard and generaধng them while

maintaining their relaধons was even harder. Gentle algebras in Representaধon Theory are an

interesধng, preħy well-known type of algebra, and were considered to be a good challenge to

test out examples.

Introducing GAP and QPA

Evidently, translaধng theoreধcal models into a coding language can prove to be a difficult feat,

especially since for our project data inputs and outputs were both considered and desired re-

specĤully. Thus, we used the programming language Groups, Algorithms, Programming (GAP)

to construct our random generator for gentle algebras. Moreover, GAP has large data libraries

that house many packages that contain funcধons implemenধng algebraic models wriħen into the

preceding programming language. The most frequented package used in GAP for our project was

the Quivers and Path Algebras (QPA) package, which contains data structures for quivers and

finite dimensional algebras.

Algorithms Mind-Map

Figure 3. Example Algorithm for a Random 4 Verধces Quiver

Algorithm Explanations

Our approach to generate gentle algebra relaধons consists of three funcধons, allocated in ”Gen-

tleMatrix.g”, ”FiniteDimensionalAlgebraRelaধon.g”, and ”GentleRelaধon.g”. Due to the limitaধon

of space, we have included our actual code works in the QR code below. Please scan it for de-

tailed informaধon.

(a) (b) (c) (d)

Figure 4. (a)-(b) GentleMatrix.g (c) FiniteDimensionalAlgebraRelaধon.g (d) GentleRelaধon.g

GentleMatrix.g

In this file, we are trying to generate an adjacency matrix that can be used to construct a gentle

quiver which has at most two arrows entering and 2 leaving each vertex. The primary funcধon

in this file will take an integer n, which represents the number of verধces, as its input. To make

the resulted adjacency matrix as random as possible, we uধlize the built-in funcধon Random()

in GAP to create randomness. Moreover, to ensure our matrix can generate a special biserial

quiver, we control the sum of entries in each row and column with an upper limit of 2.

FiniteDimensionalAlgebraRelaধon.g

In this file, we created a funcধon called FiniteDimensionalAlgebraRelaধon() that takes a path

algebra created by the adjacency matrix generated by the GentleMatrix() as its input and out-

puts a list of relaধons that can make this inpuħed path algebra finite dimensional. As said by

the definiধon, every gentle algebra is finite dimensional, so the existence of this funcধon helps

us filter out all the relaধons that wouldn’t make our path algebra finite. This funcধon takes

advantage of a built-in funcধon called IsFiniteDimensional() in GAP’s QPA package.

GentleRelaধon.g

In this file, we created a funcধon called GentleRelaধon() that takes the path algebra created by

the adjacency matrix generated by the GentleMatrix() as its input and outputs a list of relaধon

that can make this inpuħed path algebra finite dimensional. In our algorithm, we employ the

FiniteDimensionalAlgebraRelaধon() defined above and the built-in funcধon IsGentleAlgebra()

to filter out relaধons that can make the path algebra gentle.
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Why Public Key Cryptographic systems?

Consider the following situation: A message needs to be sent to someone over a
public channel. As the channel is not secure, anyone can look at whatever you
send to the other party. The question is, how do you send a message to the
other party that without compromising the information contained in the message.
This is the crux of the field of cryptography. Public Key systems come into play
when there is no way to transmit a key safely. The solution is creating a system
where all the necessary information to encrypt a message is available publicly,
but decrypting the message is very difficult without some sort of key.

An Introduction To Number Theory

Modular Arithmetic
One of the most basic ideas in number theory is modular arithmetic, which is a
system of arithmetic that centers around the remainder after repeated subtraction.

Consider a 12-hour clock. Suppose the hour hand points at
12 when no time has elapsed. When 3 hours pass, the hour
hand will point at the 3. When 19 hours elapse, the hand
will point at the 7 because the hand will cycle through the 12
hours and then restart its cycle to reach 7. Similarly when 25
hours elapse, the hand will point at the 1. We can represent
this using the symbol for congruence ≡ as follows:

3 ≡ 3 mod(12) 19 ≡ 7 mod(12) 25 ≡ 1 mod(12)

So a ≡ b mod (n) if and only if there exists an integer k such that (a− b) = nk.[3]

Modular Exponentiation
Suppose you were asked to find the smallest x such that x ≡ 3173 mod(11). We
could multiply 3 by itself 173 times and then subtract 11 until we were left with
a remainder between 0 and 11 but that would take too long and we’re feeling a
little lazy today. Luckily for us there is a very simple process we could employ to
help us that relies on modular arithmetic: modular exponentiation. The process
is relatively simple. First we find a few other congruences.

31 ≡ 3 mod 11

32 ≡ 9 ≡ 9 mod 11

34 ≡ 92 ≡ 4 mod 11

38 ≡ 42 ≡ 5 mod 11

316 ≡ 52 ≡ 3 mod 11

332 ≡ 32 ≡ 9 mod 11

364 ≡ 92 ≡ 4 mod 11

3128 ≡ 42 ≡ 5 mod 11

Now we can use smaller powers to get to larger powers based on the fact that
xm · xn = xm+n. So, 3173 ≡ 3(1+2+2+8+32+128) ≡ 3 · 9 · 9 · 9 · 5 ≡ 1 mod 11.

Chinese Remainder Theorem
Suppose gcd(m,n) = 1. Given integers a and b, there exists exactly one solution
x mod (mn) to the simultaneous congruences: x ≡ a mod (m) and x ≡ b mod
(n). [3]

Fermat’s Little Theorem
If p is a prime and p does not divide a, then ap−1 ≡ 1 mod (p). [3]

Intuition for RSA

Using the classic example in cryptography, suppose Bob wants to send a secret message
over an unsecure channel to Alice such that if Eve (the eavesdropper) who is listening in
on the channel isn’t able to understand the message. Alice would create a lock and a key
that only she possesses. She would send the unlocked lock to Bob who would use it to lock
his message and send it back to Alice. Finally Alice would unlock the lock with her private
key and read the message. Eve would only have information about the unlocked and locked
lock and therefore theoretically would not be able to read the message.

RSA

RSA works by first choosing two large prime numbers, p and q, then multiplying them to
make N, that is:

pq = N

This is the value that will serve as the modulus for encryption and decryption. At this point
a message can be given a numeric representation, M , such that 0 ≤ M ≤ N − 1. We now
choose some e with the following property

gcd(e, (p− 1)(q − 1)) = 1

We now choose value d such that ed ≡ 1 mod (p − 1)(q − 1). The setup is now complete,
and (n, e) are released as the public key. A message is encrypted by taking a ≡ Me

mod N , and decrypted by taking M = ad mod N . [3].

Example [2]
Alice:

1. Chooses two primes: p = 7 and q = 19.

2. Calculates the product: N = 7 · 19 = 133.

3. Calculates the totient: ϕ(N) = (p− 1)(q − 1) = 6 · 18 = 108.

4. Selects a public key: e = 29

5. Selects a private key: d = 41

6. Sends the public key: (N, e) = (133, 29)

Bob:

1. Chooses a message: mo = 99.

2. Encrypts the message: me = 9929 mod 133 = 92.

3. Sends the encrypted message.

Alice:

1. Decrypts the message: mo = 9241 mod 133 = 99

Note: The efficiency of RSA lies in the fact that it is significantly faster to multiply two
numbers than it is to factor a number of the same size as their product. This means that
even if an eavesdropper is able to read a message in its encrypted state, they are unable
to understand its content because finding the value of d is difficult. Factoring can be made
arbitrarily difficult by choosing sufficiently large numbers. For simplicity’s sake, we used very
small numbers in our example. However to make the encryption feasible and secure, the
primes used are typically 1024 to 2048 bits long, approximately 300 to 600 digits long.

Attacks On RSA

Timing Attack
It was demonstrated in 1995 that by timing the process of decrypting multiple
messages a malicious party is able to determine the key. This attack is worth
mentioning because it does not attack the fundamental process of encryption[3].
Its more akin to having a storefront tightly locked up, and instead of picking the
locks a thief throws a rock through the front window [3].

Fermat Attack
If the primes chosen for encryption are too close to each other then it has been
demonstrated that an algorithm can factor N very efficiently. Using the fact that
N = a2 − b2 = (a − b)(a + b) we can tell that if we find a, b then (a − b) = p
and (a + b) = q. This is accomplished by taking ⌈

√
N⌉ = a, and determining

if b2 = a2 − N is an integer. If not, then increment a by one and try again until
either a value of b is found, or until 100 or so values of a have been tried [1].

Shor’s Algorithm
Shor’s Algorithm is a quantum computing algorithm that shatters the security of
RSA. It does this taking a ’bad’ guess for two numbers that factor some given
integer, and spitting out a ’good’ guess [3].

Additional Applications of RSA

By coming up with a clever way to express some message many different forms
of media can be transmitted via RSA, for instance:
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HILBERT POLYNOMIAL
A graded ring is a ring that decomposes into direct sum of its
subrings. The Hilbert function is defined on a graded ring
R = R0 ⊕R1 ⊕R2...⊕Rm by:

m −→ dimRm

Let V ⊂ Pn be a projective variety, whose coordinate ring is
clearly a graded ring. In this way we can define the Hilbert
function of a projective variety.
For large m Hilbert function agrees with a polynomial, called
the Hilbert polynomial:

P (m) = e0m
d + ...+ ed−1m+ ed

with degree d = dimV and e0 = degV
d! . degV is the degree

of V , which is defined to be the largest possible number of
intersections between V and a codimension dimV linear sub-
variety of Pn.

ALGEBRAIC VARIETIES
An affine algebraic variety is the common zero set of a collec-
tion {Fi}i∈I of complex polynomials. In particular, the zero
sets of homogeneous polynomials can be viewed as a pro-
jective variety in a quotient of Cn+1 known as the projective
space Pn. These varieties form Zariski topology, where the
open sets are the complement of the varieties. These varieties
are completely determined by their coordinate rings, defined
as C[V ] = C[x1, ..., xn]/I(V ), and conversey every reduced,
finite type C-algebra gives an affine/projective variety. The
passage from a C-algebra to its variety is denoted by Spec,
which consists of all the prime ideals of the algebra.

VERONESE MAP
One useful relationship between projective spaces is the fol-
llowing: All homogeneous degree d polynomial in the poly-
nomial ring C[x0, ..., xn] form a finite dimensional C−vector
space with the basis consisting of

(
d+n
d

)
monomials: xd0

0 ...xdn
n

with
∑

di = d. This motivates the Veronese embedding of
the projective space Pn into Pm(m =

(
d+n
d

)
− 1), which is the

morphism:

[x0 : ... : xn]
νd−→ [xd

0 : xd−1
0 x1 : ... : xd

n]

FIVE POINTS DETERMINE A CONIC

A conic in projective space P2 is the zero set of the polynomial:

F (x, y, z) = ax2 + by2 + cz2 + dxy + exz + fyz

where the coefficients are not all 0. Hence each line through
C6, denoted by [a : b : c : d : e : f ] uniquely determines
a conic. Therefore we can identify sets of conics in P2 with
points in P5, and we say that P5 parameterizes conics in P2.
This is an example of a solution to a moduli problem, which I
will talk about later.
Now consider a fixed point [x0 : y0 : z0] in P2, F (x0, y0, z0) = 0
now defines a linear equation satisfied by a, b, c, d, e, f . Hence
each point in P2 defines a hyperplane in P5 through F ! There-
fore five points(we require there can be no more than three
collinear points) p1, p2, p3, p4, p5 ∈ P2 determines five hyper-
planes H1, ...,H5 ⊂ P5. The intersection of five linearly inde-
pendent hyperplanes is nothing but a point in P5, since inter-
secting once reduce the dimension by one. So there is exactly
one conic passing through five fixed point.

THE HILBERT SCHEME
Fixing an arbitrary polynomial P , the set of all subvarieties
with P as its Hilbert polynomial naturally forms a variety, or
more precicely, a scheme(a generalization of a variety) in its
own right. We call this the Hilbert scheme. To contruct the
Hilbert scheme, note that any projective variety V ∈ Pn is
uniquely defined by a homogeneous radical ideal I = I(V ) ⊂
C[x0, ..., xn]. Grothendieck showed that for any P , there exists
a positive integer r(depending on P ) such that for all ideals I
defining a variety with Hilbert polynomial P , I is the radical
of the subideal generated by its elements of degree r. Hence,
to every Hilbert Polynomial P , one can associate a vector sub-
space Ir ⊂ Sr, where Sr is the vector space of all homogeneous
polynomials of degree r. One can compute the dimension of
the vector subspace Ir by:

dr = dim Ir = dimSr − dimSr/Ir =

(
r + n

r

)
− P (r)

In this way, a Hilbert polynomial, together with r, uniquely
specifies a Grassmannian G(

(
r+n
r

)
, dr), which consists of all

the dr-dimensional vector subspaces of a
(
r+n
r

)
-dimensional

vector space Sr. And a variety uniquely determines a single
point in the Grassmannian. Therefore, the Hilbert scheme is
a very good way to classify and parameterize subvarieties(or
more generally, subschemes) of projective space.

CATEGORY, NATURAL TRANSFORMATION AND THE YONEDA LEMMA

If F,G are functors between categories A,B, then a natural
transformation η : F =⇒ G is a set of morphisms that satis-
fies:

• The natural transformation must associate a morphism
ηA : F (A) −→ G(A) to every object A ∈ A. This mor-
phism is called a component of A.

• For every morphism f : A1 −→ A2, we have:

ηA2 ◦ F (f) = G(f) ◦ ηA1

In other words, the following diagram must commute:

In category theory, one of the most important results regard-
ing natural transformation is called the Yoneda lemma. Given
a fixed category A, each object X ∈ A naturally gives a functor
hX defined by:

hX = Hom(−, X)

Hence for any objects Y ∈ A, hX(Y ) = Hom(Y,X), which
is the set of all morphisms from Y to X . The Yoneda lemma
states that the set of natural transformation between hX and
hY is isomorphic to the set of morphisms from Y to X . In other
words:

Hom(hx, hy) ∼= Hom(Y,X)

The Yoneda lemma allows us to completely determine any ob-
ject by looking at the morphisms that maps into it. This is very
powerful in the context of moduli problem, where the struc-
ture of the moduli space is not obvious.

HILBERT FUNCTOR AND MODULI SPACE

In a more categorical term, the Hilbert scheme is a representa-
tion of a functor that sends topological spaces to sets. Hilbert
Functor It can be defined as:

HilbdX : Top −→ Sets

HilbdX(Y ) =

{
Z ⊂ X × Y :

Z
πY−→ Y is finite and

locally free of rank d

}
In particular, πy is analogous to a finite and locally free cover-
ing map:

To give a more concrete example, let X be a topological space.
Consider the Hilbert functor Hilb1X . It sends any topological
space Y to the set where the elements are topological sub-
spaces Z ⊂ X × Y such that the projection from the Z to Y
is a homeomorphism. Interestingly enough, Hilb1X is in fact
naturally isomorphic to the functor hX and the components
of the natural transformation map the set Z to the function

πX ◦ π−1
Y . If you let X be R, then Hilb1X simply sends any

function g : R −→ R to its graph.
Another example concerns the previously mentioned process
of five points determining a conic.The Hilbert functor corre-
sponding to a Hilbert polynomial P (m) and subvarieties of Pn

is denoted by: Hilb
P (m)
Pn . Conics in P2 has Hilbert polynomial

2m+ 1 and degree 2. The veronese map of degree d associates
the set of all degree d hypersurfaces in Pn with the set of all lin-
ear hyperplanes in PM (M =

(
d+n
d

)
−1), which is isomorphic to

PM . Hence we have:

Hilb2m+1
P2

∼= hP5

We say P5 represents the Hilbert functor Hilb2m+1
Pn .

These are the simple examples of moduli spaces, whose
points represent algebraic subvarieties, or more generally sub-
schemes, up to isomorphisms. In the language of moduli
spaces, one can parameterize different classes of interesting ge-
ometric objects. More often than not, the moduli spaces them-
selves can have interesting structures beyond merely being a
set of points representing classes of objects. And the Yoneda
lemma is presicely the tool to study abstract objects like mod-
uli spaces: one can probe the structure of moduli spaces by
looking at how other topological spaces map into them. For
instance, the map from A1 into any moduli spaces can give
us information about their path connectedness. Hence, solv-
ing moduli problems not only helps one classify interesting
objects, but give insight into how these classes relate to each
other. This makes the study of moduli spaces a very active
area in mathematics and physics.
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Abstract

In essence, this poster is a brief exploraধon into ideas from Sheaf Theory, specifically focusing

on the Čech Cohomology. Firstly, we introduce the definiধon of a sheaf, as well as ways to

construct sheaves. We then explore the Čech Cohomology, a powerful tool centered around

intersecধons and open covers of a Topological Space.

What is a sheaf

We first must introduce some technical machinery before we discuss further topics.

Sheaves!

Let X be a topological space. A sheaf of abelian groups on X consists of:

(a) a funcࣅon x → Fx, assigning each x ∈ X to some Abelian group Fx.

(b) a topology on the set F , the sum of the sets Fx.

If f is an element of Fx, we put π(f ) = x; we call the mapping of π the projecࣅon of F onto

X ; the family in F × F consisধng of pairs (f, g) such that π(f ) = π(g) is denoted by F + F .

Furthermore, we impose two axioms on (a) and (b).

(I) for all f ∈ F there exist open neighborhoods of V of f and U of π(f ) to V is a homeomorphism

of V and U .

(II) the mapping f → −f is a conࣅnuous mapping from F to F , and the mapping (f, g) → f + g is

a conࣅnuous mapping from F + F to F .

Secধons!

Let F be a sheaf, and let open U ⊆ X . We define a secধon of F over U as a conধnuous

mapping s : U → F such that π ◦ s coincides with the idenধty on U . The set of secধons of F
over U is denoted as Γ(U, F) and is an abelian group.

Construcধon of Sheaves!

Suppose for all open U ⊂ X , we have an abelian group FU , and for all pairs of open subsets

U ⊆ V a homomorphism φV
U : FV → FU , saধsfying the transiধvity condiধon φV

U ◦ φW
U = φW

U .

With these condiধons, we can define Fx = lim FU as the inducধve limit of the system of open

neighborhoods of x. Furthermore, let t ∈ FU and denote [t, U ] as the set of φU
x (t) for x running

over U . Now, we give F the topology generated by [t, U ]. This guarantees that the system

(Γ(U, F), ρV
U) is a sheaf, but it doesn’t guarantee that it is isomorphic to F .

Observe that x → φU
x (t) is a secধon of F over U , which allows us to define the canonical

morphism ι : FU → Γ(U, F).
Proposiধon 1: ι : FV → Γ(U, F) is injecধve if and only if the following condiধon holds:

If an element t ∈ FU is such that there exists an open covering {Ui} of U with φU
Ui

= 0.

Proposiধon 2: Let U be an open subset of X , and let ι : FV → Γ(U, F) be injecধve for all open
V ⊂ U . Then ι is surjecধve if and only if the following condiধon is saধsfied:

For all open coverings {Ui} of U , and all systems {ti}, ti ∈ FUi
such that

φUi

Ui∩Uj
(ti) = φ

Uj

Ui∩Uj
(tj) for all pairs (i, j), there exists a t ∈ FU with φU

Ui
(t) = ti for all i.

Proposiধon 3: If F is a sheaf of abelian groups on X , the sheaf defined by the system

(Γ(U, F), ρV
U) (with proposiধons 1,2) is canonically isomorphic with F .

Some examples of sheaves

The definiধon of sheaves is undoubtedly daunধng, but there are several examples that are

relaধvely easy to grasp. Consider the following examples,

Let X be some topological space. Let G be an abelian group, and set Fx = G for all

x ∈ X . Now, our sheaf F can be idenধfied as the X × G with the product topology of

X and G, equipped with the discrete topology. This construcধon can be verified to be

a sheaf, and is known as the constant sheaf.

Let X be some topological space. Let x ∈ X , and let G be some abelian group. Let U
be an open subset of X , we define F(U) as

F(U) :=
{

G if x ∈ U

0 if x /∈ U

Indeed, we can construct a sheaf from F(U) and is known as the skyscraper sheaf.

There are also more concrete examples we can talk about! For instance, we consider

the topological space C. Let U ⊂ C be an open subset of C. We associate each U with

the set of holomorphic funcধons F(U) := C(U). Under a system of inclusion maps, it’s

easy to see that we in fact do yield a rather visual sheaf!

The Čech Cohomology

With some tools in our inventory, we can begin to talk about the Čech Cohomology! The

full construcধon of the Čech Cohomology is quite long and technical, and the curious reader

should turn their aħenধon to Coherent Algebraic Sheaves.

Let U = {Ui}i∈I be an open cover of X . If s = (i0, . . . , ip) is a finite sequence of elements

in I , we put Us = Ui0 ∩ . . . Uip
. A p-cochain of U is a funcধon f assigning every sequence s

of p + 1 elements of I to a secধon of F over Us. Note that the p-cochains form an abelian

group, denoted by Cp(U , F).
Let S(I) be the simplex with I as its verধces. Let Kp(I) be the free group with the set of

simplexes of dimension p of S(I) as its base. Now, we are beginning to delve into familiar

territory. We define our boundary map ∂ : Kp+1(I) → Kp(I) in the usual way,

∂(i0, . . . , ip+1) =
p+1∑
j=0

(−1)j(i0, . . . , îj, . . . , ip+1).

Now, we define the coboundary operator t∂ : Cp+1(U , F) → Cp(U , F) as

(t∂f )(i0,...,ip+1) =
p+1∑
j=0

(−1)jρj(fi0,...,̂ij,...,ip+1
).

where ρj : Γ(Ui0,...,̂ij,...,ip+1
, F) → Γ(Ui0,...,ip+1, F) denotes the restricধon homomorphism.

With this, we can finally define the q-th cohomology group of the complex C(U , F) as

Hq(U , F) := Ker (t∂q)/Im (t∂q−1). However, this is not enough to define the Čech Coho-

mology on X as our cohomology groups generally depend on our choice of U . To combat

this issue, we consider finer open covers of X .

A cover U is said to be finer than V if there exists a mapping τ : I → J , such that Ui ⊂ Vτ (i)
for all i ∈ I . If U is finer than V , there exists a canonical mapping σ(U , V) from Hq(V , F) to
Hq(U , F).
Finally, we are ready to define the Čech Cohomology on X . Under refinement, the covers

of X form a directed set, which allows us to set Hq(X, F) := lim Hq(V , F).

Čech Cohomology Isomorphic?

The construcধon of the Čech Cohomology is quite undeniably complicated.

This begs the quesধon, why exactly do we care about the Čech Cohomology?

What exactly does Čech Cohomology bring to the table?

Firstly, the Čech Cohomology has many applicaধons in Algebraic Geometry,

which is a beauধful field in its own right. The curious reader should once again

turn their aħenধon towards the reference secধon.

In our construcধon of the Čech Cohomology, we are reminded of the con-

strucধon of other Cohomologies. In some sense, the Čech Cohomology can

be thought of as a generalizaধon of both the Singular Cohomology and the de

Rham Cohomology. While in general, the Čech Cohomology groups for an ar-

bitrary space X is not isomorphic to either Cohomology groups, we can impose

certain condiধons such that they always coincide.

Proposiধon 4.

Let X be a paracompact topological space, and F = A a constant sheaf. Then

the following is true,

Ȟ(X, F) ∼= HSing.(X, A).

Furthermore, since CW-complexes are paracompact, if X is homotopic equiv-

alent to a CW-complex, then our two cohomology groups coincide.

Proposiধon 5.

Let X be a differenধal manifold, and F = R. Then the following holds,

Ȟ(X, F) ∼= Hde Rham(X,R).

The proofs can be found in the references [2][3] respecࣅvely.
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Introduction

As humans, we naturally aim to find the most efficient way to do things. Optimal Transport, as can be
deduced by its name, is an area of study dedicated to finding the most efficient way to transport units
from one location to another. Its origins can be traced back to French mathematician Gaspard Monge
who, in the 1780s, considered a simple problem whereby a worker moves one pile of sand to create a new
pile of a specific shape in another location. To do this while also using the least amount of effort, one
must consider the local cost of moving each grain of sand from the original pile to the targeted pile and
use this to find the minimum global cost. For the sake of simplicity, we will consider discrete optimal
transport problems.

Figure 1. An example of the Monge problem - sand being moved from one location to another. Source: Matthew Thorpe,
University of Cambridge.

Assignment Problem

A special case of the Monge Problem is the assignment problem.
Suppose we have equal masses contained in locations xi that we wish to transfer to locations yj. In this
case, suppose that all the mass from any xi must be transported to only one yj.

x1
x2
...

xn

σ−−−−−−−→
permutation

y1
y2

...
yn

The cost of transporting something from xk to yj is Ck,σ(k). The optimal transport cost is

min
σ∈Perm(n)

n∑
k=1

Ck,σ(k).

There are two points of concern in this problem. Firstly, it does not allow the splitting of mass to
transport multiple locations. Secondly, it does not have a unique solution, as you can see in Figure 1.

Figure 2. Notice that the cost of transporting mass from x1 to y1 and x1 to y2 is the same. Similarly, the cost of
transporting mass from x2 to y1 and x2 to y2 is the same. Source: Gabriel Peyré.

Kantorovich Problem

In the 1940s, Soviet mathematician, Leonid Kantorovich, revisited Monge’s problem but allowed for the
splitting of mass, and admits a dual formulation. This problem also does not have a unique solution.
Similar to the Monge problem, we wish to transfer mass from location x to location y.

x1
x2
...

xn

σ−−−−→

y1
y2

...
ym

Here, it is possible for m 6= n, since it possible to send mass from one location to multiple destinations.
Let

∑
n denote a collection of n nonnegative numbers that add up to 1. We define a set of matrices

U(a, b) def= {P ∈ Rn,m
+ : P1m = a and PT

1n = b}
where

P1m =
∑

j

(Pi,j)i ∈ Rn and P1n =
∑

i

(Pi,j)j ∈ Rm.

Then the most efficient cost of transport in this case is

LC(a,b)
def= min

P∈U(a,b)
〈C, P〉 def=

∑
i,j

Ci,jPi,j,

which is attained for transport plan P ∗.
Lemma. The Kantorovich problem is more efficient than the Monge problem.

LC(1n/n, 1n/n) ≤ min
σ∈Perm(n)

〈C, Pσ〉

Theorem. If m = n and a = b = 1n
n , then there exists an optimal solution for the Kantorovich problem

Pσ∗, which is a permutation matrix associated to an optimal permutation σ ∈ Perm(n).

Coffee Break!

To illustrate the Kantorovich problem, it helps to think of n warehouses that store coffee beans required
by m coffee shops. Suppose each warehouse is indexed with an integer i and contains ai units of the
resource, while the coffee shops are indexed with integer j and require bj units of the resource. To
transport the raw materials, the warehouse manager can hire a transportation company that charges
Ci,j to transport one unit from i to j. In order to get the most ideal deal, the manager must solve
the Kantorovich problem to obtain a transportation plan P∗. The total amount they would have to
pay the transportation company would then be 〈P∗, C〉.

Kantorovich Dual Problem

Theorem. The Kantorovich problem admits the dual
LC(a, b) = max

(f ,g)∈R(C)
〈f , a〉 + 〈g, b〉

where the set of admissible dual variables is

R(C) def= {(f , g) ∈ Rn × Rm : ∀(i, j) ∈ [n] × [m], f ⊕ g ≤ C}.

The Kantorovich problem is a linear minimization problem with convex constraints. Therefore, it admits
a dual problem. Looking at the same example of warehouses and coffee, suppose the manager outsources
the problem of solving for the ideal transportation plan to a third party. The third party vendor will
suggest a price of

〈f, g〉 + 〈a, b〉

where fi is the cost to collect a unit of resource at each warehouse i, gj is the cost to deliver a unit of

resource to factory j. ai is the total number of units at warehouse i and bj is units required factory j.
The vendor will try to make f and g as high as possible. The warehouse manager should check the
recommended price by checking if fi + gj ≤ Ci,j. If this inequality fails, then the manager should
reject the vendor’s offer. The manager’s own transport plans would be too expensive∑

i,j

Pi,jCi,j ≥
∑
i,j

Pi,j(fi + gj) = (
∑

i

fi
∑

j

Pi,j) + (
∑

j

gj

∑
i

Pi,j) = 〈f , a + g, b〉.

So, the manager should accept the vendor’s offer while the vendor should seek prices f , g that
maximize 〈f , a〉 + 〈g, b〉 but also satisfy fi + gj ≤ Ci,j.

The Auction Algorithm

One algorithm to solve the optimal assignment problem is the auction algorithm. Suppose you have
an equal number of buyers and goods. The algorithm consists of distributing the goods in a way such
that the maximum amount of satisfaction is reached by the buyers. Here, individual satisfaction isn’t
the goal. We instead aim to find the maximum satisfaction of the group as a whole.
Let aij denote the ”happiness” person i receives from good j, let j = σ(i) denote the good, where
σ is some permutation of the goods among all of the buyers, and let pj be the price of good j. All
buyers are content with their purchases if the following condition is satisfied:

aiσ(i) − pσ(i) = max
j=1,...,N

{aij − pj}.

The way the algorithm works is we begin with a random injective map of buyers and goods. Then, we
select a specific buyer such that the above condition does not hold, and we exchange the good they
have with a good that brings them more satisfaction. Continue this process until we reach a point
where buyers are indifferent with the good they possess and the second best option. The auction
algorithm can be extended to solve optimal transport problems. It applies mostly to linear optimal
transport problems such as network optimization, shortest path and max-flow problems.

Figure 3. The Auction Algorithm. aij represents the satisfaction buyer i receives from good j.
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Introduction
Representation theory is the study of how groups can act on vector spaces.

Definitions
A representation of a finite group G on a finite-dimensional vector space V is a

homomorphism ρ : G → GL(V ). We often refer to V as the representation and omit

ρ.

A G-linear map between two representations V and W is a map ϕ : V → W where

for all g ∈ G, ρW (g) ◦ ϕ = ϕ ◦ ρV (g)

Two representations are isomorphic if they are isomorphic as vector spaces by a G-

linear isomorphism.

A subrepresentation W of V is a subspace W of V that is invariant under G.

An irreducible representation is a representation with no proper nonzero subspace

invariant under G.

The direct sum V ⊕ W of two representations is a representation formed by taking

the direct sums of their vector spaces with a group action defined by

g · (v ⊕ w) = (g · v) ⊕ (g · w)

The tensor product V ⊗ W of two representations is a representation formed by

taking tensor products of their vector spaces with a group action defined by

g · (v ⊗ w) = (g · v, g · w)

Properties of vector spaces such as U ⊗ (V ⊕ W ) = (U ⊗ V ) ⊕ (U ⊗ W ) are also true

for representations.

The permutation representation associated to a left action of G on a finite set X is a

vector space with basis {eg : g ∈ G} with the left action

g ·
∑
x∈G

axex =
∑
x∈G

axegx

The regular representation of G is the permutation associated to the left action of G
on itself.

Representations of S3

Example (Trivial representation)

The trivial representation is the one-dimensional representation where the action of

any group element is the identity.

Example (Alternating representation)

The alternating representation is the one-dimensional representation where the

action of any permutation of even parity is the identity and the action of any

permutation of odd parity is negation.

Example (Permutation representation on {1, 2, 3})
This is the representation on a three dimensional vector space where the left action

of g ∈ S3 on the vector (z1, z2, z3) is g · (z1, z2, z3) = (zg−1(1), zg−1(2), zg−1(3))

Example (Standard representation)

The permutation representation of S3 acting on {1, 2, 3} is not irreducible since it

has an invariant subspace {(z1, z2, z3) ∈ C3 : z1 + z2 + z3 = 0} The representation on

this subspace is called the standard representation of S3, and is irreducible.

The permutation representation on {1, 2, 3} is the direct sum of the trivial represen-

tation and the standard representation. The trivial representation and standard rep-

resentation are subrepresentations of the permutation representation on {1, 2, 3}.

Example (Regular representation of S3)

This is the representation on a six-dimensional vector space with basis {eh : h ∈ S3}
where the left action of g ∈ S3 is

g
∑
h∈S3

aheh =
∑
h∈G

ahegh

Complete reducibility
If W is a subrepresentation of V , then there is a subspace W ′ of V invariant under G
such that V = W ⊕W ′. This can be shown by taking any projection ontoW , averaging

over all group elements, and looking at the kernel.

This means any representation can be recursively decomposed into a direct sum of

irreducible representations. This means that if we find all irreducible representations

of G, then any other representation can be written as a direct sum of those.

This decomposition is in some sense unique. Every representation V of G has a

unique factorization V = ⊕iV
⊕ai
i where the Vi are irreducible representations of G.

Each V
⊕ai
i is uniquely determined, but the decomposition of V

⊕ai
i into copies of Vi

is not. A simple counterexample would be decomposing a 2-dimensional representa-

tion of the trivial group into 2 copies of the trivial representation.

Showing uniqueness requires the following lemma.

Theorem (Schur’s lemma)
If ϕ : V → W is a G-module homomorphism between irreducible representations,

Either ϕ is an isomorphism or ϕ = 0
If V = W , then ϕ is scalar multiplication by a constant.

A consequence of Schur’s lemma is that all irreducible representations of abelian

groups are 1-dimensional.

Characters
A character of a representation V is a map χV : G → C defined by χV (g) = Tr(ρ(g)).

χV is a class function, i.e. it is constant on conjugacy classes.

The character has the following nice properties, which make it convenient for com-

putations:

χV ⊕W = χV + χW

χV ⊗W = χV · χW

χV ∗ = χV

We can define an inner product on characters

〈α, β〉 = 1
|G|

∑
g∈G

α(g)β(g)

The characters of irreducible representations are orthonormal under this inner prod-

uct.

The number of irreducible representations equals the number of conjugacy classes of

G.

In other words, the characters of irreducible representations form an orthonormal

basis on the space of class functions.

An irreducible representation Vi appears in V 〈χV , χVi
〉 times.

Since a representation is determined up to isomorphism by the number of copies

of each irreducible representations it contains, this means a representation is deter-

mined up to isomorphism by its character.

Ifwe know the character of a representation, it is very easy to check if it is irreducible:

a representation is irreducible iff 〈χV , χV 〉 = 1.

Character tables
If we know all of a group’s irreducible representations, we can decompose any rep-

resentation with a known character into irreducible representations by taking inner

products. It is convenient to summarize all this information about the group into a

character table.

Since characters are constant on conjugacy classes, we only need its value on each

conjugacy class. We also label each conjugacy class with how many elements it con-

tains, since this is needed during inner product calculations. Character tables always

have the same number of rows as columns.

Example (Character table for S3)

1 3 2
S3 1 (1 2) (1 2 3)

trivial U 1 1 1
alternating U ′ 1 −1 0
standard V 2 0 −1

We can check that these representations are irreducible because their inner product

with themselves is 1. We know there are no other irreducible representations

because S3 only has three conjugacy classes.

Fixed-point formula
If V is a permutation representation of G acting on X , then χV (g) is the number of

elements ofX fixed by g. This is because ifwewrite ρ(g) as a matrix, the only nonzero

diagonal entries are 1s where g fixes an element of X .

Example (Permutation representation of S3 on {1, 2, 3})
Let W be the permutation representation of S3 on {1, 2, 3}.
The identity leaves all 3 elements fixed. A cycle of length 2 leaves 1 element fixed. A

cycle of length 3 leaves no elements fixed.

χW (1) = 3

χW ((1 2)) = 1

χW ((1 2 3)) = 0

Now that we know the character, we can take inner products with irreducible

representations to determine how many times each one occurs in W .

〈χW , χU〉 = 1
6
(1(3)(1) + 3(1)(1) + 2(0)(1)) = 1

〈χW , χU ′〉 = 1
6
(1(3)(1) + 3(1)(−1) + 2(0)(1)) = 0

〈χW , χV 〉 = 1
6
(1(3)(2) + 3(1)(0) + 2(0)(−1)) = 1

Hence, W = U ⊕ V .

Irreducible representations of S4
We can use the properties of characters to find all irreducible representations of S4.
Since S4 has 5 conjugacy classes, it must have 5 irreducible represenations.

First, like S3, S4 has the trivial representation U , alternating representation U ′, and
standard representation V . If we tensor the standard representation with the alter-

nating representation, we get a distinct irreducible representation V ′. We can verify

this by computing its character bymultiplying the characters forU ′ and V , and check-

ing it is irreducible by taking its inner product with itself. The character of the remain-

ing irreducible representation W must be orthogonal to all the other ones, and have

inner product with itself equal to 1. The sign is determined since χW (1) = dim W > 0.

1 6 8 6 3
S4 1 (12) (123) (1234) (12)(34)
U 1 1 1 1 1
U ′ 1 −1 1 −1 1
V 3 1 0 −1 −1
V ′ 3 −1 0 1 −1
W 2 0 −1 0 2
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Introduction

Quantum compuধng is an emerging field and technology that uses the properধes and behaviors

of quantum mechanics to create more efficient computers. The main differenধaধon between

classical and quantum compuধng is the possibility that quantum compuধng can challenge the

weak church turing thesis. In classical compuধng all informaধon exists in a simple ”off” or ”on”

state, such as 0 or 1, state called ”bits”. Qubits do not have these restricধons and can exist in any

probabilty of being 1 or 0. This means that the amount of informaধon a systems can hold stored

grows exponenধally with addiধonal qubits being added.

Mathematical Primer

Hilbert Spaces - Hilbert spaces are special vector spaces denoted H that are necessary for

the formulaধon of the notaধon of quantum compuধng. The Hilbert spaces that are relevant

are finite-dimensional complex and will typically have a dimension 2n.
Dirac Notaধon - A quantum mechanic systems of vectors to represent the state of a qubit.

Row vectors are named kets and are represented as |ψ〉 with ψ being the idenধfier of the ket.

In a similar system column vectors are called bras and are represented as 〈φ|.

〈ψ| =
[
a1 a2 . . . an

]
|φ〉 =


b1
b2
...

bn


Orthonormal Basis - Consider a Hilbert space H of dimension 2n. A set of 2n vectors
B = {|bm〉} ⊆ H is called an orthonormal basis for H if

〈bn|bm〉 = δn,m ∀bm, bn ∈ B

and every |ψ〉 ∈ H can be wriħen as

|ψ〉 =
∑
bn∈B

ψn |bn〉 for some ψn ∈ C

The set {〈bn|} is the orthonormal basis for H∗ called the dual space.

Operators - An operator on a vector space H is a linear transformaধon T : H → H. It is

useful to note that by construcধng an orthonormal basis B = {|bm〉} for a vector space H.

Then every linear operator T on H can be wriħen as

T =
∑

bn,bm∈B
Tn,m |bn〉 〈bm|

where Tn,m = 〈bn| T |bm〉 are matrix elements. Addiধonally, |bn〉 〈bm| is the outer product.
Tensor Products - The tensor product is a way of combining spaces, vectors, or operators

together. Suppose H1 and H2 are Hilbert spaces of dimension n and m respecধvely. Then the

tensor product space H1 ⊗ H2 is a new, larger Hilbert space of dimension n×m. Very ođen

the ⊗ symbol is leđ out of the tensor product notaধon and |ψ〉 ⊗ |φ〉 becomes |ψ〉 |φ〉 or |ψφ〉.
Unitary - An operator U is unitary if

U† = U−1

Hermitean - An operator T is Hermitean (or self-adjoint) if

T† = T

Schmidt Decomposition Theorem

If |ψ〉 is a vector in a tensor product space HA ⊗ HB, then there exists an orthonormal basis

{|φAi 〉} for HA , and an orthonormal basis {|φBi 〉} for HB, and non-negaধve real numbers {pi}
so that

|φ〉 =
∑
i

√
pi |φAi 〉 |φBi 〉

Quantum Physics

Imagine that a beam of light is shot through a polished glass and two photon detectors are placed

in the path of the reflect photons. Ađer running the experiment on the leđ we observe that

50% of photons land in the path above and 50% of photons travel through to the right. This

result is easily explained by classical mechanics as the polished glass randomly with a coin-flip to

transmit or reflect the photons. On the right is the same setup with a few modificaধons to allow

for an addiধonal polished glass. Using our previous analysis we should expect that both photon

sensors receive an equal distribuধon of photons. However, when performed the experiment on

the right shows that 100% of photons travel to the right sensor. This non-intuiধve behaviour

occurs because of a unique property of quantum mechanics called superposiࣅon.

Superposition

A qubit |Ψ〉 on the Bloch sphere

Quantum bits exist in a superposiধon of states associated with

weighted probabiliধes corresponding to the root of the likeli-

hood of being observed in that state. A useful example quantum

compuধng chooses is complex unit vector |Ψ〉 in a 2-dimensional

Hilbert space.

|Ψ〉 = cos(θ
2
) |0〉 + eiΦ sin(θ

2
) |1〉

Where eiΦ is a global phase factor and the kets |0〉 and |1〉 are the
basis. When the qubit is measured such as the photon sensors

in the experiment the superposiধon will ”collapse” into the state

|0〉 or |1〉. The state which the qubit collapses is determined by

the state probabiliধes of |0〉 and |1〉 .

Composite Systems and Measurements

The state space of the combined physical system is the tensor product space H1 ⊗ H2 of the

state spaces of the component subsystems. If the first system is in the state |ψ1〉 and the second

system is in the state |ψ2〉, then the state of the combined system is

|ψ1〉 ⊗ |ψ2〉 .
Importantly, qubits that can not be wriħen as such are referred to as entangled.

For a given orthonormal basis B = {|ϕi〉} of a state spaceHA for a system A, it is possible to perform

a Von Neumman measurement on system HA with respect to the basis B, given a state

|ψ〉 =
∑
i

αi |ϕi〉 ,

outputs a label i with a probability |αi|2 and leaves the system in state |ϕi〉. Furthermore, given

a state |ψ〉 =
∑
iαi |ϕi〉 |γi〉 fromm a biparধte state space HA ⊗ HB (the ϕi are orthonormal;

the γi have a un it norm but are not necessarily orthogonal), then performing a Von Neumann

measurement on system A will yield outcome i with a probability |αi|2 and leave the biparধte

system in state |ϕi〉 |γi〉.

Quantum Circuits and Bell Basis

Quantum compuধng is performed on circuits that apply operators on a set of input qubits. The

operators are called ”gates” and are represented with a box spanning the qubits the operator

acts on.

X =
[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
H = 1√

2

[
1 1
1 −1

]
The X,Y,Z gates are fundamental operators that correspond to a rotaধon of a qubit on one

of the axis. Using them in combinaধon can translate a qubit to any point on the Bloch sphere

so they are referred to as a set of universal gates. The H gate is useful because it can take any

qubit already collapsed and turn it into a superposiধon.

The Bell Basis is a constructed 2-qubit set of superposiধons {|β00〉 , |β01〉 , |β10〉 , |β11〉} that are

necessary to generate many of the significant applicaধons of quantum compuধng.

|β00〉 = 1√
2
(|00〉 + |11〉) |β01〉 = 1√

2
(|01〉 + |10〉)

|β10〉 = 1√
2
(|00〉 − |11〉) |β11〉 = 1√

2
(|01〉 − |10〉)

Superdense Coding and Quantum Teleportation

Superdense coding allows for a qubit to send two classical pieces of informaধon through a channel

with only one qubit. The setup required is both ends of the channel to have the same iniধal |β00〉
state. This is done through applying a combinaধon of Z and X gates.

To send Transformaধon

00 I ⊗ I: |β00〉 = 1√
2(|00〉 + |11〉) 7→ 1√

2(|00〉 + |11〉) = |β00〉
01 X ⊗ I: |β00〉 = 1√

2(|00〉 + |11〉) 7→ 1√
2(|01〉 + |10〉) = |β01〉

10 Z ⊗ I: |β00〉 = 1√
2(|00〉 + |11〉) 7→ 1√

2(|00〉 − |11〉) = |β10〉
11 Z · X ⊗ I: |β00〉 = 1√

2(|00〉 + |11〉) 7→ 1√
2(|01〉 − |10〉) = |β11〉

Quantum teleportaধon allows the abilty to send one qubit of informaধon using only two bits of

informaধon.

Crucially, this is possible with neither party of the exchange knowing their own state.
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What is Hyperbolic Geometry?

Hyperbolic geometry is a geometry in which Euclid’s parallel postulate is rejected.
Two-dimensional hyperbolic geometry can be modeled in two ways, the open half-
plane and the disk model. We can define the open half-plane as follows:

H2 = {(x, y) ∈ R2; y > 0} = {z ∈ C : Im(z) > 0}

Fig. 1: An example of the half-plane model.

The vertical line here represents the imaginary axis, z. Each arc of Fig. 1 rep-
resents a geodesic, which can be defined as the curve which is the shortest
distance between two points.

The disk model is represented by a disk of radius 1. It has a circle at infinity,
such that as you get closer to the outer circle, you approach infinity. This model is
additionally popular in mathematically-inspired art, as can be seen below in artist
M.C. Escher’s piece Circle Limit 1.

Fig. 2: M.C. Escher’s Circle Limit 1.

The below definition will be useful in the following columns:
An isometry is a distance-preserving transformation between metric spaces
(which includes both the euclidean and hyperbolic planes).

Tessellating

A tessellation of a surface (such as the euclidean or hyperbolic plane) is a family of tiles
Xn, n ∈ N, such that:
1. each tile Xm is a connected polygon on the surface.
2. any two Xm, Xn are isometric.
3. the Xm cover the whole surface, in the sense that their union is equal to this space.
4. the intersection of any two distinct tiles Xm and Xn consists only of vertices and edges
of Xm, which are also vertices and edges of Xn.

Fig. 3: A tessellation of the euclidean plane with isometric quadrilaterals.

The above diagram is classified as a p6m tessellation (primitive cell, 6-fold rotation, and
mirrored), which is one of 17 wallpaper groups.

Tessellations of the hyperbolic plane follow the same rules. Isometries of the hyperbolic
plane are not as immediately visible, but the diagram below does in fact satisfy point 2 from
above.

Fig. 4: An order-8 octagon tiling of the hyperbolic plane, resulting in a tessellation of the surface.

Farey Circle Packing

For every rational number p
q ∈ Q with p, q coprime and q > 0, draw in the plane

R2 and the circle Cp
q

of diameter 1
q2

that is tangent to the x-axis at (pq , 0) and lies

above this axis. These circles Cp
q

fit together to form a pattern of tangent circles

with disjoint interiors as seen below.

Fig. 5: Farey circle packing.

The Farey Tessellation

Suppose we erase the circles Cp
q

from the diagram, and instead connect the

points (pq , 0) and (p
′

q′, 0) with a semi-circle centered on the x-axis where the circles
Cp

q
and Cp′

q′
are tangent. The resulting set of hyperbolic geodesics form the Farey

Tessellation.

Fig. 6: The Farey tessellation of the hyperbolic plane.
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Categories

A category C consists of the following data:
• a collection Ob(C) called the objects of C,
• for each A,B ∈ Ob(C), a collection HomC(A,B), called the mor-
phisms from A to B,

• a morphism 1A ∈ HomC(A,A) for each A ∈ Ob(A)

• for each A,B,C ∈ Ob(C), a function called composition,

◦ : HomC(A,B)× HomC(B,C) −→ HomC(A,C)

f, g 7−→ g ◦ f.
with the axioms that composition is associative, and for each mor-
phism f ∈ HomC(A,B), idB ◦f = f = f ◦ idA.

Example. We give three examples of categories.

• “Set”has sets as objects and set functions as morphisms.

• Let R be a ring. “R−Mod” has left R-modules as objects and R-
module homomorphisms as morphisms.

• The category“Top”has topological spaces as objects and continuous
maps as morphisms. “Haus” is the subcategory of“Top”consisting of
Hausdorff spaces.

We give two more definitions—special types of morphism that generalize
injective/surjective functions respectively.

• A monomorphism (mono) is a morphism f : B ↪→ C such that
whenever morphisms g, h : A → B satisfy f ◦ g = f ◦h, then g = h.

• An epimorphism (epi) is a morphism f : A ↠ B such that whenever
morphisms g, h : B → C satisfy g ◦ f = h ◦ f , then g = h.

Example. In the categories “Set” and “R−Mod”, monos and epis are
exactly injections and surjections. In “Haus”, monos are still injections,
but epis need not be surjective—they only need to have dense image.

Universal Properties

All objects live inside a category C.
• An initial object is an object I such that for any object C, there
exists a unique morphism f : I → C.

• A terminal object is an object T such that for any object C, there
exists a unique morphism g : C → T .

• A zero object is an object 0 which is both initial and terminal.

• A product of a family {Aλ}λ∈Λ is a pair (A, {πλ}λ∈Λ) of an object
A and morphisms πλ : A → Aλ (called projection morphisms) such
that for any object T and morphisms {fλ : T → Aλ}λ∈Λ, there exists
a unique f : T → A such that Figure 1 commutes (for each λ ∈ Λ).

• A coproduct of a family {Bλ}λ∈Λ is a pair (B, {ιλ}λ∈Λ) of an object
B and morphisms ιλ : Bλ → B (called inclusion morphisms) such
that for any object T and morphisms {gλ : Bλ → T}λ∈Λ, there exists
a unique g : B → T such that Figure 2 commutes (for each λ ∈ Λ).

T

Aλ A

fλ
f

πλ

Fig. 1: Product

Bλ B

T

ιλ

gλ
g

Fig. 2: Coproduct

Remark. In an arbitrary category objects satisfying
these universal properties may not exist, but when they
do exist, they are unique up to unique isomorphism.

Example. In“Set” (“Top” is similar),

• ∅ is initial.

• {∗} is terminal.

• There is no zero object.

• The product of {Aλ}λ∈Λ is the usual Cartesian
product

∏
λ∈ΛAλ with componentwise projections.

• The coproduct of {Bλ}λ∈Λ is the disjoint union⊔
λ∈ΛBλ with inclusions.

Example. In“R−Mod”,

• 0 is zero.

• The (finite) product and coproduct of A1, . . . , An

is A1 ⊕ · · · ⊕ An with componentwise projections
and inclusions.

Kernels and Cokernels

Let C be a category with zero object 0. We say a
morphism g : A → B is 0 if g is the composition of
the unique morphisms A → 0 and 0 → B.

• A kernel of a morphism f : A → B is a pair (K, k)
of an object K and a morphism k : K → A such
that f ◦k = 0 and for any object K ′ and morphism
k′ : K ′ → A such that f ◦ k′ = 0, there exists a
unique morphism u : K ′ → K such that Figure 3
commutes.

• A cokernel of a morphism f : B → A is a pair
(Q, q) of an object Q and a morphism q : A → Q
such that q ◦ f = 0 and for any object Q′ and
morphism q′ : A → Q′ such that q′ ◦ f = 0, there
exists a unique morphism u : Q → Q′ such that
Figure 4 commutes.

A B

K

K ′

f

k 0

u
k′ 0

Fig. 3: Kernel

A B

Q

Q′

f

q 0

u

q′ 0

Fig. 4: Cokernel

• An image of a morphism f : A → B is a kernel
of the cokernel of f .

• A coimage of a morphism f : A → B is a cokernel
of the kernel of f .

Example. In the category R−Mod, a kernel of
f : A → B is just (ker f, ι), where ι is the inclu-
sion of ker f ↪→ A. A cokernel of f : A → B
is just (B/ im f, π), where π is the quotient map
B → B/ im f .

Abelian Categories

• A preadditive category is a category C where all collec-
tions HomC(A,B) are endowed with an abelian group struc-
ture, and all morphisms f, g, h ∈ HomC(A,B) satisfy

∗ f ◦ (g + h) = (f ◦ g) + (f ◦ h)
∗ (f + g) ◦ h = (f ◦ h) + (g ◦ h).
i.e., ◦ is biadditive.

• An additive category is a preadditive category that has all
finite products and a zero object. In an additive category,
all finite products are also coproducts.

• An abelian category is an additive category where

∗ every morphism f : A → B has a kernel and cokernel.

∗ every monomorphism is a kernel, and every epimorphism
is a cokernel.

• An exact sequence is a sequence

· · · → Xi−1
fi−1−−→ Xi

fi−→ Xi+1 → · · ·
of objects and morphisms in an abelian category A such
that im fi = ker fi+1 for all i. In particular, fi+1 ◦ fi = 0.

Example. “R−Mod” is an abelian category. “Set” and “Top”
are not abelian (they do not even have a zero object).

Proposition. Let f : A → B in an abelian categoryA. Then,
f is a mono iff ker f = 0, and f is an epi iff coker f = 0.

The Five Lemma

Theorem. (The Five Lemma) Let A be an abelian category.
Consider the commutative diagram (Figure 5) of objects and
morphisms in A.

V X Y Z W

V ′ X ′ Y ′ Z ′ W ′

f1

φ1

f2

φ2

f3

φ3

f4

φ4 φ5

g1 g2 g3 g4

Fig. 5: The Five Lemma

Suppose both rows of the diagram are exact sequences.
Additionally, suppose that φ2 and φ4 are isomorphisms (both
an epimorphism and a monomorphism), φ1 is an epimorphism,
and φ5 is a monomorphism. Then φ3 must be an isomorphism.

Proof. For simplicity, we shall assume A is the category of R-
modules. To prove that φ3 is an isomorphism, it suffices to
show that φ3 is both injective and surjective.

v x y f3(y)

V X Y Z W

V ′ X ′ Y ′ Z ′ W ′

v′ φ2(x) 0 0

f1

φ1

f2

φ2

f3

φ3

f4

φ4 φ5

g1 g2 g3 g4

Fig. 6: Proof of Injectivity

To show injectivity of φ3, we prove that ker(φ3) = {0}.
Let y ∈ ker(φ3), so that φ3(y) = 0 ∈ Y ′. Then g3(φ3(y)) =
g3(0) = 0. Since the diagram commutes, φ4(f3(y)) =
g3(φ3(y)) = 0. Since φ4 is injective, ker(φ4) = {0}. Thus
f3(y) = 0, so y ∈ ker(f3). Exactness of the first row tells us
that im(f2) = ker(f3), so there exists an x ∈ X such that
f2(x) = y. Now by commutativity of the diagram, we have

g2(φ2(x)) = φ3(f2(x)) = φ3(y) = 0.

Thus φ2(x) ∈ ker(g2) = im(g1), so there exists v′ ∈ V ′ such
that g1(v

′) = φ2(x). Surjectivity of φ1 implies that there exists
a v ∈ V such that φ1(v) = v′. Then,

φ2(f1(v)) = g1(φ1(v)) = g1(v
′) = φ2(x).

By injectivity of φ2, f1(v) = x, so f2(f1(v)) = f (x) = y. By
exactness, f2 ◦ f1 is zero, so y = 0. Thus ker(φ3) = {0}, so
φ3 is injective.

y z f4(z)

x y + f2(x)

V X Y Z W

V ′ X ′ Y ′ Z ′ W ′

y′ g3(y
′) 0

x′ y′ − φ3(y) 0

f1

φ1

f2

φ2

f3

φ3

f4

φ4 φ5

g1 g2 g3 g4

Fig. 7: Proof of Surjectivity

To prove φ3 is surjective, let y
′ ∈ Y ′. By surjectivity of

φ4 there exists z ∈ Z such that φ4(z) = g3(y
′). By exactness

of the bottom row, g4 ◦ g3 is zero. Then, by commutativity of
the diagram,

0 = g4(g3(y
′)) = g4(φ4(z)) = φ5(f4(z)).

Thus f4(z) ∈ ker(φ5). Since φ5 is injective, f4(z) = 0. Thus,
z ∈ ker(f4) = im(f3), so there exists y ∈ Y such that f3(y) =
z. Then,

g3(φ3(y)) = φ4(f3(y)) = φ4(z) = g3(y
′).

Thus g3(y
′−φ3(y)) = 0 because g3 is a homomorphism. Then

y′−φ3(y) ∈ ker(g3) = im(g2) so there exists x
′ ∈ X ′ such that

g2(x
′) = y′−φ3(y). Since φ2 is surjective, there exists x ∈ X

such that φ2(x) = x′. Then φ3(f2(x)) = g2(φ2(x)) = g2(x
′) =

y′ − φ3(y). Therefore, φ3(f2(x) + y) = φ3(f2(x)) + φ3(y) =
y′ − φ3(y) + φ3(y) = y′. Thus, every element of Y ′ has a
nonempty preimage in Y, and therefore φ3 is surjective.

□
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Abstract

For this year’s Directed Reading Program, we studied elliptic curves and
methods for finding all their rational solutions. The three theorems about
to be mentioned all tell us that the abelian group over E(Q) has a rich
group structure. Using this knowledge, we tackle the specific case of
n = 4 of Fermat’s Last Theorem.

Preliminary Information

Definition: An elliptic curve over Q is a smooth cubic projective curve E
defined over Q, with at least one rational point O ∈ E(Q) that we call the
origin.
We will focus on elliptic curves of Weierstrass Form:

y2 = x3 + Ax +B where A,B ∈ Z

Defining P + Q

The operator for E(Q) shall be defined as follows:

For P,Q ∈ E(Q), where P ̸= Q, we find the secant line which intersects
both P and Q, Y : y = ax + b. Solving for the third point of intersection
of Y with our curve E, labelled R, we see that P + Q is the reflection of
R over the x-axis.

For the case where P = Q, we consider the tangent line rather than the
secant and a similar procedure follows to find 2P . Note that every point
has an inverse and our identity is the point at infinity, O. Thus, we see
that for this defined + operator, we generate an abelian group on E(Q).

Important Theorems

Mordell-Weil draws further conclusions about the previously created
abelian group structure, stated below:

E(Q) is a finitely generated abelian group. In other words, there are
points P1, ..., Pn such that any other point Q ∈ E(Q) can be expressed
as a linear combination

Q = a1P1 + ... + anPn

for some ai ∈ Z

From this theorem, and facts we know concerning finitely generated
abelian groups, we find that:

E(Q) ∼= E(Q)torsion ⊕ ZRE

Continuing on, we will refer to RE as the rank. We can reach further con-
clusions about the group structure created over E(Q)torsion with Mazur’s
theorem stated in [1] as Thm 2.4.2.

Finding Rational Solutions

The natural continuation of the process of finding rational solutions for
E is to next explore methods to calculate E(Q)torsion and ZRE.

Specifically for calculating E(Q)torsion, we have a theorem from Nagell-
Lutz:

Let E/Q be an elliptic curve with Weierstrass equation y2 = x3+Ax+B
where A,B ∈ Z Then, every torsion point P ̸= O of E satisfies:

(1) The coordinates of P are integers, i.e. x(P ), y(P ) ∈ Z.
(2) If P is a point of order n ≥ 3 then 4A3 + 27B2 is divisible by y(P )2.
(3) If P is of order 2 then y(P ) = 0 and x(P )3 + Ax(P ) +B = 0.

We have come up with two methods from our readings for trying to cal-
culate the rank. The first uses Theorem 2.6.4 in [1]. And the other
possible solution is found in section 2.9 of [1].

Scan the following QR code to be taken to our algorithm that will find the
torsion points of assorted elliptic curves:

Example of Finding Rational Solutions

Let us consider the elliptic curve E : y2 = x3 − x. Applying our
code to E, we see that (0, 0), (1, 0), (−1, 0) and the point at infinity
make up E(Q)torsion, where each non-identity element has order
2. We find that the discriminant ∆E = 64. Thus, the only prime
of bad reduction to consider is p = 2. We determine that 2 is of
multiplicative bad reduction. Thus, by Thm. 2.6.4 in [1], we see
that

RE ≤ m + 2a− 1 = 0

Thus, E(Q) ∼= Z2 × Z2.

Fermat’s Last Theorem (n = 4)

Problem Statement: Let n = 4. Are there any solutions to
an + bn = cn where a, b, c ∈ Z with abc ̸= 0?

Solution: We claim that there are no non-trivial solutions. We
are given the equation a4 + b4 = c4, when
x = 2(b2+c2)

a2 and y = 4b(b2+c2)
a3 are substituted in, we get the elliptic

curve E : y2 = x3 − 4x.

Applying our given algorithm to this elliptic curve, we find that
E(Q)torsion = {(0, 0), (2, 0), (−2, 0),O}. Note that these torsion
points correspond to trivial solutions of a4 + b4 = c4.

For the free part, an attempt to bound the rank proves insufficient
as the prime of bad reduction is additive. Thus, we move onto
use of the algorithm in 2.9 of [1] which tells us that the rank is 0.
Thus, E(Q) ∼= E(Q)torsion.
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Introduction

What is a knot? Simply speaking, a knot is a
closed curve in space that does not intersect it-
self in any way. Knots have many applications to
other fields of science and are fun for mathemati-
cians to study. One of the main questions posed
when studying knots is how to tell whether or
not two different projections are the same knot.
A tool that has developed as a way to distinguish
two knots from each other is representing knots as
polynomials. In this poster we will focus on one
of the three major polynomial representations of
knots, the Alexander polynomial.

Definitions

• Projection: A two-dimensional picture
representation of a knot.

• Orientation: A direction in which you travel
around the knot.

• Crossing number: The least number of
crossings that occur in any projection of a
particular knot.

• Link: A set of knotted loops tangled up together.
• Unknot: The unknot is also known as the

trivial knot, and it looks as follows:

(a) Hi, I’m an oriented
unknot!

(b) Hi, I’m an oriented
trefoil!

(c) Hi, I’m a link! (d) Hi, I’m a crossing!

The Alexander Polynomial

The Alexander polynomial was a method invented in 1928 as a way to represent knots and links as polynomial
equations. It is an invariant for all representations of knots and links up to the same orientation. The Alexander
polynomial is dependent on the orientation of the knot or link being assessed. The formula to compute the
Alexander polynomial was refined by John Conway in 1969, and is now based on the following two rules:

L+ L− L0

∆(⃝) = 1
∆(L+) − ∆(L−) + (t

1
2 − t−1

2)∆(L0) = 0

(1)

(2)

The main tool used to compute the Alexander polynomial is called the resolving tree. The resolving tree
is an easy way to break a knot down into a series of unknots and trivial links. In order to create the resolving
tree, you choose one crossing of the knot, and determine whether it is an L+, L−, or L0 crossing. From there,
the chosen crossing is broken down into two new knots. These new knots are dependent on what type of
crossing the original one is.

Resolving Tree of the Figure-Eight Knot

Alexander Polynomial of the Figure-Eight Knot

∆(L+) − ∆(L−) + (t
1
2 − t−1

2)∆(L0) = 0
∆(L+) = ∆(⃝) = 1

∆(L0) = ∆(⃝ ∪ ⃝) − (t
1
2 − t−1

2)∆(⃝) = −(t
1
2 − t−1

2)
⇒ ∆(L−) = ∆(L+) + (t

1
2 − t−1

2)∆(L0) = 1 + (t
1
2 − t−1

2)(−t
1
2 + t−1

2)
= 3 − t − t−1

Since 3 − t − t−1 ̸= 1 we know that the figure-eight knot is not a projection of the unknot.

Other Polynomial Representations

The other polynomial representations we looked at
were the Jones polynomial and the HOMFLY poly-
nomial. The Jones polynomial, V (t), is derived us-
ing three rules, and the base variable t

1
2. All prime

knots with 9 or fewer crossings have a distinct Jones
polynomial. The HOMFLY polynomial, unlike the
other two, is multivariable. However, it does main-
tain a similar structure to that of the Alexander
polynomial, using L+, L−, and L0. Knots under
both the HOMFLY and Jones polynomials are not
affected by orientation, however, when computing
the HOMFLY of a link, orientation between the two
links does affect the result.

Consider the rules of the HOMFLY polynomial:
P (⃝) = 1 (1)

αP (L+) − α−1P (L−) = zP (L0) (2)

The Alexander and Jones polynomials can be de-
rived from the HOMFLY rules as follows:

∆(t) = P (α = 1, z = t−1
2 − t

1
2)

V (t) = P (α = t−1, z = t
1
2 − t−1

2)

Conclusion

Each polynomial representation of knots has its own
benefits and drawbacks. While the HOMFLY poly-
nomial comes the closest to distinguishing between
all knots and links, there is not currently any poly-
nomial representation of knots that can completely
distinguish all knots and links. Knots are the best!
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Introduction

In this poster, we will overview the fundamentals of Algebraic Number Theory,
focusing on the basic definitions of rings and fields, algebraic numbers, and alge-
braic integers.

Rings and Fields

As the most fundamental concept of Algebraic Number Theory, rings and fields
are algebraic structures that contain two binary operations (addition and multipli-
cation) with properties similar to those for integers Z. In [1], we can define a ring
as a non-empty set R with addition and multiplication. Assuming R is a ring, we
mean it has the following characteristics:

• a set closed under addition a + b ∈ R and multiplication ab ∈ R

• commutative under addition a + b = b + a

• associative under addition a+ (b+ c) = (a+ b) + c and multiplication a(bc) =
(ab)c

• contains the additive identity a + 0 = a,∀a ∈ R,for some 0 ∈ R

• contains additive inverses: ∀a ∈ R, ∃s ∈ R such that a + s = 0

• contains the multiplicative identity 1 ∗ a = a ∗ 1 = a,∀a ∈ R, for some 1 ∈ R

Example of Rings: Z, Q, R, C, Z[
√
2], Z[i]

An element of the ring Z[
√
2] is a + b

√
2 where a, b ∈ Z.

An element of the ring Z[i] is a + bi where a, b ∈ Z.
An example of the ring’s addition and multiplication properties is:
(1 +

√
2) + (2 +

√
2) = 3 + 2

√
2, and

(1 +
√
2) ∗ (2 +

√
2) = 2 + 2

√
2 +

√
2 + 2 = 4 + 3

√
2

Similar to rings, fields not only contain the same properties as a ring, but also
contain multiplicative inverses (in addition to additive inverses) and is commuta-
tive under multiplication. In other words, a field F is a unique configuration of a
commutative ring that contains at least two elements such that every non-zero
element in F is both commutative under addition and multiplication. Furthermore,
a field contains a multiplicative inverse.

Example of Fields: Zn where n is a prime and positive integer, Q, Q(
√
2), Q(i)

An element of the field Q(
√
2) is a + b

√
2 where a, b ∈ Q.

An element of the field Q(i) is a + bi where a, b ∈ Q.

Algebraic Numbers and Minimal Polynomials

Diving deeper into our understanding of fields and rings, it is imperative we first
overview an essential element to utilizing Algebraic Number Theory: Algebraic
Numbers. According to [2], we can say that a complex number α is algebraic if
it is the root of a polynomial with specifically integer coefficients, and transcen-
dental if it is not. Furthermore, in the following proof, we can conclusively prove
that there are only a countably large amount of Algebraic Numbers.
Given any polynomial with integer coefficients:

p(X) = C0X
d + C1X

d−1 + · · · + Cd = 0.

with Ci ∈ Z and C0 ̸= 0, we can define the "height" H(p) as:

H(p) = d + |C0| + · · · + |Cd| ∈ Z

Such that given any n ∈ Z, there are only finitely many such polynomials whose
heights are ≤ n. So, every polynomial with integer coefficients (which corre-
sponds to an algebraic number) can thus be controlled by an integer, but Z is
countably infinite—proving that Transcendental Numbers not only exist, but are
also more prevalent than their Algebraic counterparts as C is uncountable.
Note: From the aforementioned properties, we can conclude that every rational
m
n , where m,n ∈ Z, is algebraic, since it is always a root of nX −m = 0

With our definition of Algebraic Numbers established, we are able to quickly per-
ceive the definition of the Minimal Polynomial of an algebraic number α. The
minimal polynomial of α is a (unique) polynomial that consist of the following at-
tributes: (1) coefficients are in Q, (2) leading coefficient is 1 (monic), (3) smallest
possible degree, and (4) α is a root.

Example of Minimal Polynomials: If α =
√
2, then f (x) = x2 − 2 is the minimal polynomial

of
√
2, because all the coefficients in f (x) are ∈ Q, it is monic as the leading coefficient is

1, of the smallest degree (2), and α is a root. Similarly, the minimal polynomial of i is x2+1.

Field of Algebraic Numbers

Utilizing our newfound knowledge of Algebraic Numbers and Minimal Polynomials, we can
finally discuss the Field of Algebraic Numbers.

Let us define the set A of algebraic numbers. We actually know that set A is a field, but this
will be proven later using field extension. Because it is a field, we can infer that it has the
same properties as the ones we have mentioned in the "Rings and Fields" section. As such,
if α and β are algebraic numbers, then so are the following:
α + β, α− β, αβ, αβ where β ̸= 0.

This is important, because for example, assume we want to find the minimal polynomial of√
2 +

√
3 to check using definition whether it’s algebraic. This may be difficult to compute

at first glance, but using our knowledge of the field of algebraic numbers, we already know√
2 +

√
3 is an algebraic number. Even though we did not find the minimal polynomial, we

know this is algebraic, as both
√
2 and

√
3 are algebraic.

Field Extension

In our case, a field extension of Q can be defined as Q(α), denoted by Q(α)/Q, where Q(α)
is the smallest field containing Q and α (an algebraic number); there are a few examples in
the Rings and Fields section. An element of Q(α) is a polynomial with "variable" α (though
α is fixed), with coefficients in Q.

Note that we are able to combine two elements in Q(α) as they are both polynomials and
follow the usual rules for scalar multiplication and addition for polynomials. As such, Q(α) is
a vector space over Q. Furthermore, the degree of the field extension is defined to be the
dimension of the Q vector space Q(α). Referring to Q(

√
2), the dimension is 2, because we

have a basis {1,
√
2} that consists of 2 elements.

There exists a lemma that states α is algebraic if and only if the field extension Q(α)/Q has
a finite degree.

Using the aforementioned lemma, because α and β are algebraic, we know that [Q(α) : Q]
and [Q(β) : Q] are both finite. Thus, [Q(α, β) : Q] must also be finite. As we can infer that
α+ β ∈ Q(α, β), this implies Q(α+ β) ⊆ Q(α, β) and [Q(α+ β) : Q] is finite. We know from
the aforementioned lemma that α is algebraic if and only if the field extension Q(α)/Q has
a finite degree. Therefore, α + β must be algebraic. Note that in order to show algebraic
numbers make a field, we just need to show that they are closed under the operations, since
those axioms(say, associativity) are all inherited from C.
We can utilize this proof with α − β, αβ, α

β (where β ̸= 0), because they are all ∈ Q(α, β).
Hence, algebraic numbers form a field.

Example of Field Extension: The field extension Q(
√
2) = {a + b

√
2|a, b ∈ Q} and the

degree is 2, and
√
2 is algebraic. We can test that u+ v and uv are still in the form a+ b

√
2

where a, b ∈ Q when u, v are.

• (a1 +1 b
√
2) + (a2 + b2

√
2) = (a1 + a2) + (b1 + b2)

√
2

• (a1 + b1
√
2)(a2 + b2

√
2) = (a1a2 + 2b1b2) + (a1b2 + a2b1)

√
2

We define a number field K as an extension of Q of finite degree.

Integrality and the Ring of All Algebraic Integers

The ring of all algebraic integers I can be defined as an algebraic number α where the
minimal polynomial of α over Q has coefficients in Z. Thus, it is a subset of algebraic
numbers, and in the following sections, we will prove that it forms a ring.

First and foremost, suppose α is a root of xn+an−1x
n−1+ · · ·+a1x+a0 = 0 where ai ∈ Q.

Then, we have d = common multiple of denominators of ai, then dn(αn + an−1α
n−1 + · · ·+

a1α + a0) = 0. Thus:

dn(αn + an−1α
n−1 + · · · + a1α + a0) = 0

=> (dα)n + dαn−1(dα)
n−1 + · · · + dn−1a1(dα) + dna0 = 0

Because dα is a root of the new equation, xn + dan−1x
n−1 + · · · + dn−1a1x +

dna0 = 0. This means that dai ∈ Z, because we multiply ai by its common
denominator multiple and ai ∈ Q. Thus, all the coefficients are integers and dα
is an algebraic integer.

Therefore, ∀α ∈ A, ∃d ∈ Z st dα ∈ I,i.e., dα is an algebraic integer.

This means that every algebraic number α is an algebraic integer divided by an
integer, which is analogous to a rational. Namely,

algebraic numbers = algebraic integers
integers

We define Z[α] as the smallest ring containing Z and α, which is analogous to
Q(α). Similar to the lemma in the field extension, α is an algebraic integer if and
only if Z[α] is a finitely generated Z module. Now we are trying to prove that this
a ring using this lemma.

Here R is a finitely generated Z module means every element in R can be writ-
ten uniquely as a linear combination of fixed n elements. For example, every
element in Z[i] is in the form a+ bi where a, b ∈ Z. We will be able to show every
element in Z[α] is the root of a monic polynomial with coefficients ∈ Z, i.e., they
are all algebraic integers.

Analogous to the lemma in Field Extension, because α and β are algebraic
integers, we know that Z[α] is finitely generated and Z[β] is finitely generated.
Thus, Z[α, β] is finitely generated. Our previous proofs suggest that α + β ∈
Z[α, β], which means Z[α + β] ⊆ Z[α, β] and Z[α + β] is finitely generated.
Therefore, α + β must be algebraic.
We can utilize this proof with α− β, αβ, because they are all in Z[α, β]

Therefore, the set of all algebraic integers forms a ring.

Again, is
√
2+

√
3 an algebraic integer? We know the answer is yes, despite the

fact that we didn’t even compute it’s minimal polynomial!

Integers in Number Fields

As a consequence, let us look at the integers in a number field K, which is by
definition, K ∩ I(namely, algebraic integers that are in K):

If we take α, β ∈ K ∩ I (integers in K, as we just defined), then we can prove
that their sum α + β ∈ K ∩ I.

Because they are in the intersections of K and I, α, β ∈ K and α, β ∈ I.
Furthermore, since I is a ring as proven above, α+ β ∈ I. Similarly, K is a field
(closed under addition), so α + β ∈ K.

Therefore, α+β ∈ K ∩ I. This is similar to α−β and α∗β, as both are in K ∩ I.
In conclusion, K ∩ I forms a ring.

Example:
The integers in Q(

√
2) is Z[

√
2]

The integers in Q(i) is Z[i]

Further Applications

With all these definitions, we could study number theory, say the theory of prime
numbers, in a much broader context. Some familiar results about Z are still true
in this new setting, but some are not (as an example, unique factorization of an
integer into primes fail in general). These discoveries lead us to the modern
algebraic number theory...
And yes, we are also able to show that the integers in a number field are always
finitely generated—just as all the existing examples suggest.
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What is an Elliptic Curve?

Definition 1 An elliptic curve over a field K is defined by an equation

E : y2 = x3 + ax + b (1)

where a, b ∈ K and ∆ ̸= 0 where ∆ is the discriminant of E and is defined as

∆ = −16(4a3 + 27b2).

Note: There is a more general form of the equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

However, if the characteristic of K ̸= 2 or 3, then the equation can be expressed
as in (1). This assumption applies to all elliptic curves used in cryptography, and
thus equation (1) is sufficient for us.

Definition 2 Let K be a field over which an elliptic curve is defined. Then the
K-rational points, denoted E(K), are all points on E with coordinates in K, along
with the point at infinity denoted ∞. The order of the curve, #E(K), is the total
number of points on the curve.

Elliptic curves can be defined over infinite fields such as R or Q, or they can be
defined over finite fields such as Z/pZ or Fq. Consider the following graphs of
various elliptic curves:

Fig. 1: Elliptic Curves over R. [1]

Fig. 2: Elliptic Curve over finite field F29. [2]

Group Law

There is a convenient way of defining an addition operation for two points in E(K) to give a
third point in E(K). With this operation, the set of points in E(K) forms an abelian group,
where ∞ serves as the identity. The addition operation has a clear geometric interpretation.
First, notice that any line will intersect an elliptic curve E at most 3 times. Given any two
distinct points, P = (x1, y1) and Q = (x2, y2), on E, then P + Q = R = (x3, y3) is found by
drawing a line through P and Q, find the third point this line intersects E. Then to obtain R
reflect this point about the x-axis. Doubling a point P is the same, though the tangent line
at the point P is used. Note: P −Q is performed by taking −Q = (x2,−y2) ∈ E(K).

Fig. 3: Point Addition and Point Doubling. [1]

From this abelian group comes the basis for the scheme of elliptic curve cryptography.

What is Elliptic Curve Cryptography?

Elliptic Curve Cryptography (ECC) is a modern public-key cryptography technique based on
the mathematics of elliptic curves over finite fields. ECC relies on the difficulty of solving the
Elliptic Curve Discrete Logarithm Problem.

Definition 3 The elliptic curve discrete logarithm problem (ECDLP) is: given an elliptic curve
E defined over a finite field Fq , a point P ∈ E(Fq) of order n, and a point Q ∈ ⟨P ⟩, find the
integer l ∈ [0, n− 1] such that Q = lP . The integer l is called the discrete logarithm of Q to
the base P , denoted l = logP Q.

Simply put, the ECDLP is the problem of finding an integer n such that Q = nP . It exploits
the fact that, as shown above, it is rather easy to double a point P ∈ E(K) together, but
it is thought to be very difficult to figure out how many times the point was doubled. The
essential pieces of a secure ECC scheme are:

1. Elliptic Curve E(Fp) over finite field Fp, p prime
2. P : generator - P ∈ E(Fp) is a generator
3. d : private key - d ∈ Z is selected uniformly at random from the interval [1,n-1]
4. Q : public key - a point Q = dP ∈ E(Fp)
5. k : random integer - used to increase security of encryption scheme

In the ECC scheme, a sender’s message is represented as a point M , and encrypted by
adding it to kQ, where Q = dP is the intended recipient’s public key. The sender transmits
the points C1 = kP,C2 = M + kQ to the recipient who uses their private key d to compute

dC1 = d(kP ) = k(dP ) = kQ

and can then easily recover M = C2 − kQ. An attacker would have to find kQ, which is
computationally infeasible using the public information.

Example

Note: It is possible to turn the geometric interpretation of point addition and point
doubling into algebraic formulas by solving the cubic equations.
Let K = F97 and take

E : y2 = x3 + 2x + 3.

Consider P = (3, 6), one can calculate the multiples of P using the mentioned
algebraic formulas to obtain:

0P = ∞ 1P = (3, 6) 2P = (80, 10) 3P = (80, 87) 4P = (3, 91)
5P = ∞ 6P = (3, 6) 7P = (80, 10) 8P = (80, 87) 9P = (3, 91)

This pattern continues, so we see that 5P = ∞ =⇒ P is a generator of order
n = 5, and forms the cyclic subgroup

⟨P ⟩ = {∞, P, 2P, 3P, 4P}.

Now, consider the following problem. Let

P = (3, 6), d = 3, Q = dP = 3P = (80, 87), k = 9

and suppose the encoded message is M = (24, 2). Using the algebraic formu-
las, one can calculate C1 and C2,

C1 = kP = 9(3, 6) = (3, 91)

C2 = M + kQ = (24, 2) + 9(80, 87) = (24, 2) + (80, 10) = (92, 16).

The recipient receives C1 and C2, and then computes

dC1 = d(kP ) = k(dP ) = kQ = (80, 10)

so
M = C2 − kQ = (92, 16)− (80, 10).

Notice that −kQ = −(80, 10) = (80,−10) where −10 ≡ 87 (mod 97) hence
−kQ = (80, 87). So we get

M = (92, 16) + (80, 87) = (24, 2)

as desired. An attacker wishing to recover M would likely know
E(F97), P, n,Q,C1 and C2. However, even with this information it is computa-
tionally infeasible to compute kQ due to the cyclic nature of ⟨P ⟩ and assuming k
is sufficiently random.

Why ECC?

ECC is often preferred over RSA schemes because of the security and perfor-
mance it offers using smaller key sizes. A common ECC key size of 256-bits is
equivalent to a 3072-bit RSA key.
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Motivations

It is known that a prime p can be written in the form p = x2+y2 with x, y ∈ Z if and
only if p ≡ 1 mod 4. Since we can factorize such p in Z[i] as p = (x+ iy)(x− iy),
it is natural to think of the prime elements in Z[i]. We then want to relate the field
Q(i) to Z[i], and a proposition was found that illustrates such relationship.
Proposition 1.

Z[i] = {x ∈ Q(i) : x2 + ax + b = 0 for some a, b ∈ Z}

This proposition can be seen as a motivation to study the properties of algebraic
integers of an algebraic number field.

Introduction

We first establish some basic principles of algebraic number theory.

Definition 2. An algebraic number field K is a finite extension of Q. A element
α ∈ K is called an algebraic integer if f (α) = 0 for some monic polynomial
f (x) ∈ Z[x].

Definition 3. Let A ⊆ B be a ring extension. Then, b ∈ B is integral over A if
f (b) = 0 for some monic polynomial f (x) ∈ A[x]. We then define the integral
closure to be the set A = {b ∈ B : b integral over A}. A is then called integrally
closed if A = A.

As in linear algebra, traces and norms play an important role in algebraic number
theory. We thus give their definition.

Definition 4. For a finite field extension L|K. The trace of an element α ∈ L
is the trace of the endomorphism ψ : L → L, ψ(x) = αx where L is seen as a
K-vector space. The norm pf α is then the determinant of ψ, that is:

TrL|K(α) = Tr(ψ), NL|K(α) = det(ψ)

There is an extra property in of traces and norms in a separable extension L|K
that uses field embeddings from L into an algebraic closure K of K.

Proposition 5. Let L|K be a separable extension, and define the set Σ = {σ :
L→ K a field embedding }. Then we have:

TrL|K(α) =
∑
σ∈Σ

σ(α)

NL|K(α) =
∏
σ∈Σ

σ(α)

We then give the definition of a Dedekind domain, which is the main object that
algebraic number theory studies.

Definition 6. A Dedekind domain is a neotherian, integrally closed integral do-
main in which every nonzero prime ideal is maximal.

The product and sum of ideals defined such that

a + b = {a + b : a ∈ a, b ∈ b}

ab = {
∑
i∈I

aibi : ai ∈ a, bi ∈ b,∀i ∈ I}

The importance of Dedekind domain is due to the fact that it gives unique prime
factorization of prime ideals.

Dedekind domain

In this section, we denote OK to be the ring of integers of an algebraic number field K.
Such a ring has the following main properties:

Theorem 7.OK is a neotherian ring. It is integrally closed and every nontrivial prime ideal
of OK is a maximal ideal.

Theorem 8. Every ideal of a of a Dedekind domain O that is nonzero and not the a ̸= O
admits a factorization in to nonzero prime ideal of O:

a = p1 · · · pn

This factorization is unique up to reordering.

We see that this is similar to a unique factorization domain in which every element admits a
factorization into a product of a unit and irreducible elements which is unique up to associ-
ation and reordering.
Then we can thus look at the properties of the extensions of Dedekind domains.
Let o be a Dedekind domain with field of fraction K, let L|K be a field extension with integral
closure O. Then we can decompose prime ideals of o in O

Theorem 9. Let p be a prime ideal of o, then

pO = P
e1
1 · · ·P

en
n

with fi = [O/Pi : o/p], we have the fundamental identity:
n∑
i=1

fiei = [L : K]

P-adic numbers

Now we introduce another topic, which are the p-adic numbers. We give two definitions of
the p-adic integers Zp.

Definition 10. Zp can be defined as the projective limit of if the rings Z/pnZ, and thus

Zp = lim
n←

Z/pnZ = {(xn)n ∈
∞∏
n=1

Z/pnZ : xn+1 ≡ xn mod pn}

We could also define Zp through Cauchy sequences.
Define the p-adic absolute value ||p as follows:
Let a = b

c, b, c ∈ Z, we can find some integer n such that a = pnb
′
c′ where (b′c′, p) = 1. Then

we have |a|p = 1
pn. We can thus define a metric using ||p just like what we did using the

normal absolute value ||. Thus, we can define the p-adic numbers using Cauchy sequence
with respect to the metric ||p. The induced metric on Zp is d(x, y) = |x− y|p for x, y ∈ Zp.

Definition 11. Let R be the ring of Cauchy Sequence with respect to ||p, and m be the ideal
of nullsequence, that is, the Cauchy sequences that converges to zero. Then we define the
p-adic numbers Qp as

Qp = R/m

Then, define the p-adic integers as

Zp = {x ∈ Qp : |x|p ≤ 1}

The Unit theorem

From Minkowski Theory, we derive the Dirichlet’s Unit Theorem by studying the
exact sequence:

1→ µ(K)→ O∗K → Γ→ 0

Where O∗K is the group of units and µ(K) is the roots of unity that lie in K, and
Γ is the image λ(O∗K) defined by

λ(a) = (log|τ (a)|)τ ∈ [
∏
τ

R]+

Where τ run over the complex embeddings τ : K → C.

Theorem 12. The group of units O∗K of OK is the direct product of the finite
group µ(K), which is the group of roots of unity are in K, and a free abelian
group of rank r + s − 1. Where r is the number of real embeddings σ : K → R
and s is the number of pairs of complex conjugate embeddings σ, σ : K → C.

This theorem give us a way to express any units u in OK uniquely in the form

u = ξu
i1
1 u

i2
2 · · ·u

ir+s−1
r+s−1

where ξ is a root of unity and u1, u2 · · · are units of OK that can be seen as a
basis of the free abelian group mentioned above.

Applications

One of the applications of the Dirichlet’s Unit Theorem is the solution of Pell’s
equations.

Corollary 13. There exists infinily many pairs of solutions x, y ∈ Z to the equa-
tion

x2 + ny2 = 1

with n < 0 not a perfect square and n ∈ Z.

This is a direct application of the Dirichlet’s Unit Theorem on the quadratic ex-
tension K|Q, where K = Q(

√
−n), and we use the fact that r = 2, s = 0, thus

r + s− 1 = 1.
An application of the p-adic numbers is the following proposition:

Proposition 14. Let f (x1, · · · , xn) be a polynomial with coefficients in integer.
Then we have the equivalence:

f (x1, · · · , xn) ≡ 0 mod pn is solvable for all n ≥ 1

⇐⇒ f (x1, · · · , xn) = 0 is solvable in p-adic integers

Thus, the application of p-adic number also gives a way to solve problems in
elementary number theory.
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Introduction
We will prove Brouwer’s Fixed Point Theorem by using

fundamental groups. Then, we will show the application of
Brouwer’s Fixed Point Theorem to the game theory, namely
the Nash Equilibrium.

Brouwer’s Fixed Point Theorem in R
Theorem (Brouwer’s Fixed Point Theorem). Given that set
K ⊂ Rn is compact and convex, and that function f : K →
K is continuous, then there exists c ∈ K such that f (c) = c.

This is generalized statement of Brouwer’s Fixed Point
Theorem in R. In this poster, we will explore the proof of a
simple case, D2 ⊂ R2. D2 is homeomorphic to any closed
and bounded compact subset of R2. But we will use the
generalized version of this theorem to prove the existence
of Nash equilibrium.

Algebraic Topology Preliminaries
We establish our theory from homotopy, an important

equivalence relationship in topology,
Definition (Homotopy). [3] Two continuous maps f0, f1 :
X → Y are said to be homotopic if there is a continu-
ous map F : X × I → Y such that F (x, 0) = f0(x) and
F (x, 1) = f1(x). Then, we say f1(x) ≃ f0(x)

Definition (Homotopic Relative). Suppose that A is a sub-
set of X and that f0 and f1 are two continuous functions
from X to Y . We say f0 and f1 are homotopic relative to A
if there is a homotopy F : X × I → Y between f0 and f1
such that F(a, t) does not depend on t for a ∈ A.

Homotopy type, also known as homotopy equivalence,
following from homotopy, is an important tool to classify
topological space.
Definition (Homotopy Equivalence). Two spaces X and Y
are homotopic equivalent if there exists continuous maps
f : X → Y and g : Y → X such that

g ◦ f ≃ Id : X → X

f ◦ g ≃ Id : Y → Y

The maps f and g are then called homotopy equivalences.

Spaces that are homotopy equivalent to a point are given
a special name. The identity function of this space is homo-
topic to the constant map.
Definition (Contractible). A space X is said to be con-
tractible if it is homotopy equivalent to a point.

By using constant map and inclusion map, the following
result can be easily derived.
Remark.Dn is contractible and any convex subset of Rn is
contractible.

Consider that the cylinder, C and the circle S are a pair
of homotopy equivalent spaces. Define i : S → C as the
inclusion. This motivates the following definition.
Definition (Retraction). A subset A of a topological space
X is called a retract of X if there is a continuous map
r : X → A such that r ◦ i = Id : A → A, where i : A → X
is the inclusion map. The map r is called a retraction.

Before we step into the definition of the fundamental
group, we want to give the definition of some related con-
cepts.
Definition (Path). A continuous mapping f : [0, 1] → X is
called a path in X.
Definition (Path Equivalent). Two path f, g in X are said to
be equivalent if f and g are homotopic relative to {0, 1}. We
write f ∼ g

Definition (Loop). A path is said to be closed if f (0) = f (1).
If f (0) = f (1) = x then we say that f is based at x.

Now, we have the definition of the fundamental group.
Definition (Fundamental Group). [1] The fundamental
group of a space X will be defined so that its elements are
loops in X starting and ending at a fixed basepoint x ∈ X
but two such loops are regarded as determining the same
element of the fundamental group if one loop is homotopy
equivalent to the other in space X. We denote this group
as π(X, x).

We will explore the effect of continuous map between
topological spaces ψ : X → Y has upon fundamental
groups. Consider ψ∗ : π(X, x) → π(Y, ψ(x)) where ψ∗[f ] =
[ψf ], f is a path in X.

Lemma. ψ∗ is a homomorphism of groups.
Proof. ψ∗([f ][g]) = ψ∗([f ∗ g] = [ψ(f ∗ g)] = [ψf ∗ ψg] =
[ψf ][ψg] = ψ∗[f ]ψ∗[g].

By proving this lemma, we can give ψ∗ a name.
Definition (Induced Homomorphism). The homomorphism
ψ∗ : π(X, x) → π(Y, ψ(x)) defined by ψ∗[f ] = [ψf ], where
ψ : X → Y is a continuous map, is called the induced ho-
momorphism.

What if we have ψ as a homeomorphism?
Corollary. If ψ : X → Y is a homeomorphism then ψ∗ :
π(X, x) → π(Y, ψ(x)) is an isomorphism.

The last piece of the puzzle is the fundamental group of
the circle S1, which turns out to be Z. Let’s consider a map
e

R → S1

t→ e2πit

Note that e−1(1) = Z ⊂ R. If we are given f : I → S with
f (0) = f (1) = 1, there is a unique map f̃ : I → R with
f̃ (0) = 0 and ef̃ = f . f̃ is the lifting map of f . The integer
f̃ (1) ∈ e−1(1) = Z is defined to be degree of f . If f0 and f1
are equivalent paths in S1, then f̃0(1) = f̃1(1). As a result,
the function π(S1, 1) → Z, where [f ] 7→ degree(f ), is isomor-
phism, which means the fundamental group of the circle is
the set of integers.

Algebraic Proof for the Main Theorem
Proof. Suppose to the contrary that x ̸= f (x) for all x ∈ D2.
Then, we may define a function ψ : D2 → S1 by setting ψ(x)
to be the point on S1 obtained from the intersection of the
line segment from f (x) to x extended to meet S1. We want
to show ψ is continuous. Let’s write ψ explicitely in coordi-
nates, y = ψ(x). The condition the ray meets the boundary
is

|y + t(x− y)|2 = 1.

It is a quadratic equation with the solution in

t± =
−2(x− y)y ±

√
4((x− y)y)2 − 4|x− y|2(|y|2 − 1)

2|x− y|2

We only interested in the solution y + t+(x− y). Therefore,
ϕ is continuous. Define i : S1 → D2, denote the inclu-
sion, then ψi = Id and we have the commutative diagram.

S1 S1

D2

i

Id

ψ

This leads to another commutative diagram,

π(S1, 1) π(S1, 1)

π(D2, 1)

i∗

Id

ψ∗

where ψ∗ and i∗ denote induced homomorphism. But
π(D2, 1) = 0 since D2 is contractible, and so we get an-
other commutative diagram due to isomorphism.

Z Z

0

i∗

Id

ψ∗

This is impossible. Therefore, we prove the Brouwer’s Fixed
Point Theorem in two dimension.

Game Theory Preliminaries
Now we move on to application to the game theory.

We want to introduce the abstract notion of a normal form
game, the following definitions are from [2]. We will use
prisoner’s dilemma to illustrate those definitions. In pris-
oner’s dilemma, two prisoners are interrogated separately.
If both of them confess, they get sentence for 3 years. If one
confess, the other does not, the people who confess gets 1
years of sentence, the other gets 10 year. If both of them do
not confess, they are innocent.
Definition (Normal-form game). A (finite, n-person) normal-
form game is a tuple (N,A,O, µ, u), where
•N is a finite set of n players, indexed by i.
•A = (A1, . . . , An), where Ai is a finite set of actions (or
pure strategies; we will use the terms interchangeably)
available to player i. Each vector a = (a1, . . . , an) ∈ A is
called an action profile (or pure strategy profile);

•O is a set of outcomes;
• µ : A → O determines the outcomes as a function of the
action profile; and

• u = (u1, . . . , un) where ui : O → R is a real valued utility
function for player i
In prisoner’s dilemma, N = 2. A is confess or not con-

fess. O is what happens if both of prisoners confess, not
confess and etc. In this way, µ and u is easy to understand.
While players can select a single action to play, which is the
pure strategy, they can also follow another type of strategy:

randomizing over the set of available actions according to
some probability distribution. Such strategy is called mixed
strategy. We can define mixed strategy as follows. In pris-
oner’s dilemma, mixed strategy can be like one person has
50% chance confessing 50% chance not confessing.

Definition (Mixed Strategy). Let (N, (A1, . . . , An), O, µ, u) be
a normal form game, and for any set X let

∏
(X) be the set

of all probability distributions over X. Then, the set of mixed
strategies for player i is Si =

∏
(Ai).

Definition (Mixed Strategy Profile). The set of mixed strat-
egy profiles is simply the Cartesian product of the individual
mixed strategy sets, S1 × · · · × Sn.

By si(ai) we denote the probability that an action ai will
be played under mixed strategy si. The subset of actions
that are assigned positive probability by the mixed strategy
si is called the support of si.

Definition (Support). The support of a mixed strategy si for
a player i is the set of pure strategies {ai|si(ai) > 0}.

Now, we want to introduce the concept of expected utility,
a basic notion in decision theory,

Definition (Expected Utility of a Mixed Strategy). Given a
normal form game (N,A, u), the expected utility ui for player
i of the mixed strategy profile s = (s1, . . . , sn) is defined as

ui(s) =
∑
a∈A

ui(a)
n∏
j=1

sj(aj)

Then, we want to look at games from an individual
agent’s point of view. This is going to lead us to the
most influential concept in game theory, the Nash Equi-
librium. Assume an agent knew how others were go-
ing to play, his strategy becomes simple. Define s−i =
(s1, . . . , si−1, si+1, . . . , sn), a strategy profile s without i’s
strategy. We can write s = (si, s−i). If the agents other
than i were commit to play s−i, a utility-maximizing agent I
would face the problem of determining his best response.

Definition (Best Response). Player i’s best response to the
strategy profile s−i is a mixed strategy s∗i ∈ Si such that
ui(s

∗
i , s−1) ≥ ui(si, s−i) for all strategies si ∈ Si. Obviously,

in prison’s dilemma, confess is the best response.

Finally, we will go to the most important definition, the
Nah equilibrium. Its existence is one of the most well known
application of Brouwer’s Fixed Point Theorem.

Definition (Nash Equilibrium). A strategy profile s =
(s1, . . . , sn) is a Nash equilibrium if for all agents i, si is a
best response to s−i

When both prisoners confess, the game attain the Nash
equilibrium.

Existence of Nash Equilibrium

Theorem (Nash 1951). Every game with a finite number of
players and action profiles has at least one Nash equilib-
rium

Proof. Given a strategy profile s ∈ S, for all i ∈ N and
ai ∈ Ai we define

ψi,ai(s) = max{0, ui(ai.s−i)− ui(s)}

a function denoting the change of utility after each itera-
tion of strategy. We then define the function f : S → S by
f (s) = s′, where

s
′

i(ai) =
si(ai + ψi,ai(s))∑
bi∈A si(bi) + ψi,bi(s)

=
si(ai + ψi,ai(s))∑
bi∈Aψi,bi(s) + 1

Intuitively, this function maps a strategy profile s to a new
strategy profile s′ in which each agent’s actions that are bet-
ter responses to s receive increased probability mass.
The function f is continuous since each ψi,ai is continuous.
Since S is convex and compact and f : S → S, by Brouwer’s
Fixed Point Theorem, f must have at least one fixed point.
First if s is a Nash equilibrium then all ψ’s are 0, making s a
fixed point of f .
Conversely, consider an arbitrary fixed point of f, s. If s is
a fixed point, then s′(a′i) = s(a′i). It follows that ψi,bi(s) = 0,
which only happens when no player can enhance their util-
ity. Therefore, s′ = f (s) is the Nash equilibrium
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Introduction

The focus of fluid mechanics is the measurement of observables related to a fluid. Liquids and gases are

examples of fluids, and their observables include temperature, pressure and density, to name a few. To

approach this focus through first principles, the descripধon of fluids is idealised by the noধon of a conࣅnuum,

which neglects the microscopic structure of fluids as separate molecules. ”Infinitesimal” volume-elements of

the fluid (called fluid parcels) are then understood to be large enough to contain many molecules, but small

relaধve to the variaধon in the length-scale of the fluid properধes. In this way, observables are understood to

be averaged values over a fluid parcel. With this discussion, we are ready to form a mathemaধcal approach

to fluid theory.

To ”Think” Eulerian or Lagrangian

There are two natural methods for studying fluid properধes. In the Lagrangian approach, we follow a fluid

parcel as it moves and measure the observables along the moধon of the parcel. Suppose, at some iniধal

ধme t0, a fluid occupies an open set S0 of Rn. We could then label a fluid parࣅcle on the fluid (say with some

dye) at the posiধon a ∈ S0, and follow the parধcle over ধme. At some later ধme t, the fluid occupies the

set St, and the parধcle’s posiধon is given by X(a, t) ∈ St. The Lagrangian coordinate X(a, t) depends on the

ধme as well as on the iniধal posiধon to disধnguish between fluid parধcles.

In the Eulerian approach, we instead consider a fixed point x in space and measure the fluid properধes at

this point as funcধons of ধme (being careful to ensure that x remains in St – otherwise no fluid is at the

point!). An observable, q, is then a funcধon of posiধon and ধme: q = q(x, t).
Surely, there must be some relaধon between the two methods! In fact, the most obvious one is the concept

of velocity: we have
∂X
∂t

= u(X(a, t), t), (1)

where u is the flowvelocity in the Eulerian viewpoint at the Lagrangian coordinate X. This follows merely by

construcধon. But what about other observables? In the Lagrangian perspecধve, any observable aħached

to a fluid parcel just depends on the ধme explicitly. In the Eulerian viewpoint, however, the observables

depend on ধme explicitly and implicitly through the posiধon. By the Chain rule,

d q(X(a, t), t)
d t

= ∂q

∂t
+ ∂X

∂t
∇q = ∂tq + u · ∇q. (2)

The special operator
D
Dt

≡ ∂

∂t
+ u · ∇, (3)

is called the material derivaধve, and denotes the Lagrangian ধme derivaধve in Eulerian variables.

AUseful Identity: The Derivative of the Determinant of the Jacobian

One useful way to describe how fluid parcels transform is by the Jacobian J. (For simplicity, I will work in

three-dimensions, and I’ll make heavy use of indicial notaধon and Einstein summaধon convenধon.) Recall

in the Lagrangian viewpoint that a fluid moves from a set S0 to St, which can be understood to occur via

a map Mt : S0 → St. We now introduce the Jacobian of this map, whose elements are given by

Jij = ∂xi

∂aj

∣∣∣∣
t

. (4)

The determinant of the Jacobian can be wriħen succinctly using the completely anধsymmetric tensor, εijk,

as

J = εijkJ1iJ2jJ3k. (5)

With this, we can describe the deformaধon of a fluid parcel from S0 → St by∫
St

d3x =
∫

S0

J d3a. (6)

We might be interested in observing how volume integrals like (6) change over ধme. This raises an interim

problem: what is the material derivaধve of J? Well, by the product rule,

D J

D t
= εijk

(D J1i

D t
J2jJ3k + J1i

D J2j

D t
J3k + J1iJ2j

D J3k

D t

)
. (7)

Consider the derivaধve in the first term on (7):

D J1i

D t
= D

D t

(
∂x1

∂ai

)
= ∂

∂ai

D x1

D t
= ∂u1

∂ai
= ∂u1

∂xl

∂xl

∂ai
= ∂u1

∂xl
Jli. (8)

We interchange the derivaধves since the iniধal posiধon a is ধme-independent. The first term of (7) now

expands completely as

εijk
D J1i

D t
J2jJ3k = εijk

∂u1

∂xl
JliJ2jJ3k. (9)

For l 6= 1, εijk = 0 by definiধon since then i = j or i = k. An analogous approach can be made for the

other two terms of (7), admiষng one final term by virtue of index repeধধon. Thus, reducing (7) gives

D J

Dt
= εijkJ1iJ2jJ3k

(
∂ul

∂xl

)
= J(∇ · u). (10)

With this result, we can observe how a fluid property q(X(a, t), t) changes with ধme over a fluid parcel:

D
D t

∫
St

q(X(a, t), t) d3x = D
D t

∫
S0

qJ d3a =
∫

S0

(D q

D t
J + q

D J

D t

)
d3a (11)

=
∫

S0

(D q

D t
+ q∇ · u

)
J d3a =

∫
St

(D q

D t
+ q∇ · u

)
d3x (12)

=⇒ D
D t

∫
St

q(X(a, t), t) d3x =
∫

St

(D q

D t
+ q∇ · u

)
d3x. (13)

The result of equaধon (13) is known as the Reynolds Transport Theorem. When the observable q =
ρ(X(a, t), t), we have

D
D t

∫
St

ρ d3x =
∫

St

(D ρ

D t
+ ρ∇ · u

)
d3x. (14)

If we assume that mass is conserved, then (14) must be zero. The equaধon above must hold for all fluid

parcels, which is only true if the integrand itself is zero:

D ρ

D t
+ ρ∇ · u = 0. (15)

The Euler Equations of Motion

The result (15) is known as the conࣅnuity equaࣅon, and, together with conservaধon of momentum, we

can arrive at the so-called Euler equaধons. Newton’s second law relates the material derivaধve of the

momentum of a fluid to the net external force on the fluid. The net force per unit volume can be expressed

generally as

Fi = fi + ∂σij

∂xj
, (16)

where σij is the stress tensor and fi is some external body force. Assuming an ideal fluid, the stress tensor

is completely diagonal with σij = −pδij, so that ∇ · σ = −∇p, where p is the pressure exerted normal to

the surface of the fluid. Hence, by Newton’s second law,∫
St

ρ
D u
D t

d3x =
∫

St

f d3x +
∫

∂St

(σ · n̂) d2x. (17)

By the Divergence theorem, the far-right integral becomes
∫

St
(∇ · σ) d3x, so that∫

St

ρ
D u
D t

d3x =
∫

St

(f + ∇ · σ) d3x =
∫

St

(f − ∇p) d3x. (18)

Since this must hold for all such fluid parcels, we arrive at the second Euler equaধon:

ρ
D u
D t

= f − ∇p. (19)

The Navier-Stokes Equations of Motion for Viscous Fluids

The Euler equaধons assume stresses incident only normal to the surface of a fluid. Real fluids, however,

are hardly as ideal. We can correct the equaধons of moধon by modifying the stress tensor σij to contain

addiধonal stresses unrelated to pressure. By Cauchy’s Theorem (see [2]), one can prove that these non-

pressure forces, represented by the deviatoric tensor, act linearly on the normal vector. Then we can split up

the stress tensor into a sum of two terms: (i) the stresses normal to the surfaces of the fluid given by the

pressure; and (ii) the stresses acধng at arbitrary direcধons along the surface of the fluid. Mathemaধcally,

σij = −pδij +dij, where dij denotes the deviatoric tensor. The implementaধon of this stress tensor to obtain

the equaধons of moধon is analogous to the method in obtaining the Euler equaধons. But before that, we

need to first obtain the form of the deviatoric tensor.

Figure 1.

By a physical argument, we find that the deviatoric,

and hence the stress tensor, is symmetric. From Fig-

ure 1, one can see that the torque about the z-axis of
a cube centered at the origin is α3(σ21 − σ12), where
α is the side-length of the cube. From elementary

physics, we know that the moment of inerধa of such

a cube is of order α4, so that the angular acceleraধon

is proporধonal to α−1(σ21 − σ12). In the limit of a fluid

parcel α → 0, the angular acceleraধon remains finite

only if σ21 = σ12. A similar computaধon of the torque

about the other axes allows one to conclude that the

tensor is symmetric.

For momentum to be conserved, the force on the

fluid must be proporধonal to the gradient of the velocity. See the discussion on secধon 6.1 of [1]. As

a result, the deviatoric tensor is a linear funcধon of the deformaধon tensor Dij = (1/2)(∂ui/∂xj + ∂uj/∂xi).
This also means that dij and Dij are simultaneously diagonalisable. By permuধng the eigenvalues under

rotaধons, the requirement that dij be isotropic forces the deviatoric tensor to take the form

dij = λ(∇ · u)δij + µ

(
∂ui

∂xj
+ ∂uj

∂xi

)
. (20)

With the full form of the deviatoric tensor, we can derive the equaধons of moধon. By Newton’s second

law, we obtain (17) except now with our corrected stress tensor. The only new addiধon is the deviatoric

tensor term
∫

∂St
(d · n̂) d2x, which, by the Divergence theorem, becomes

∫
St

(∇ · d) d3x. Consider just one
component (using index notaধon and Einstein summaধon convenধon):

(∇ · d)i = ∂dij

∂xj
= λδij

∂

∂xj
(∇ · u) + µ

∂

∂xj

∂uj

∂xi
+ µ

∂2ui

∂x2
j

(21)

= λδij
∂

∂xj
(∇ · u) + µ

∂

∂xi

∂uj

∂xj
+ µ∇2ui (22)

= λ

(
δi1

∂

∂x1
+ δi2

∂

∂x2
+ δi3

∂

∂x3

)
(∇ · u) + µ

∂

∂xi
(∇ · u) + µ∇2ui (23)

Upon specifying the index i, the first and second terms of (23) are really the same thing, up to the viscosity

coefficients λ and µ. From this, we obtain that

∇ · d = (λ + µ)∇(∇ · u) + µ∇2u. (24)

Returning to Newton’s second law, we have∫
St

ρ
D u
D t

d3x =
∫

St

(
f − ∇p + (λ + µ)∇(∇ · u) + µ∇2u

)
d3x. (25)

Since (25) must hold for any volume, it follows that

ρ
D u
D t

= f − ∇p + (λ + µ)∇(∇ · u) + µ∇2u. (26)

And so, we arrive at the Navier-Stokes equaধons for a viscous fluid!
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Abstract and Background

Traditionally, the integral of a non-negative single valued function is defined to be the area under

the smooth curve of the function, from a start point a to an end point b on the real number line.

In undergraduate courses, this concept is formalized as the Riemman Integral. After proving nu-

merous results and theorems relating to Riemman Integration, as well as extending it to multiple

dimensions, it is shown that the Riemman Integral has some limitations: namely, there are severe

issues when dealing with point-wise limits, and integrating sequences. To resolve these issues,

the concept of the Lebesgue Measure and Lebesgue Integration is introduced at the end of un-

dergraduate and the beginning of graduate courses. For our project, we studied the Lebesgue

Measure and Lebesgue Integration from the textbook ”Real Analysis” by H. Royden and P. Fitz-

patrick.

Definitions

We first define several important terms:

Open, Non-Empty, and Bounded Sets A open set is a set such that, for any point in the set,

and any given distance, a point of the set can be found between the given point and distance.

A non-empty set is a set that has at least one element contained within it. A bounded set is a

set that is of a finite size.

Complement of a Set Let E be a set of points. The complement of E, denoted by Ec, is the set

of points that are not in E. We note that E ∩Ec, the intersection of E and it’s complement, is

the empty set ∅. Additionally, the union of E and Ec is all of the points U that are being

looked at.

Length

Consider the extended real number line, which spans R, the set of real numbers, combined with

−∞ and +∞. Let I be an interval on the extended real number line. We define the length of I
to be the difference of it’s endpoints if it is bounded, and to be ∞ if it is unbounded. We call the

length function a set function, which is a function that assigns an extended real number to each

set in a collection of sets.

Outer Measure

Before being able to define the Lebesgue Measure, we first have to define a separate measure,

called the outer measure. Let A be a set of real numbers. Consider the countable collections

{Ik}∞
k=1 of nonempty, open, bounded intervals that cover A. For each collection, consider the

sums of the lengths of the intervals within the collection. Since the lengths are forced to be

positive numbers, each sum is uniquely defined independently of the order of the terms. We can

then define the outer measure of A, m∗(A), to be the infimum of all types of sums:

m∗(A) = inf


∞∑
k=1

l(Ik)|A ⊆ ∪∞
k=1Ik

 (1)

Measurable Functions and the Lebesgue Measure

Let E be a set. We define E to be measurable if for any set A, we have the following to be true:

m∗(A) = m∗(A ∩ E) +m∗(A ∩ Ec) (2)

All sets that satisfy the above equation make up a Borel sigma algebra. Then, the Lebesgue

Measure is the restriction of the set function outer measure to this class of measurable sets. We

denote the Lebesgue measure by m, and write that m(E) = m∗(E). We note that the Lebesgue

measure is not defined on all subsets of R: only those that satisfy the above equation. (A proof

of why not all subsets of R are measurable comes from Vitali’s Theorem).

Properties of the Lebesgue Measure

There are several key properties that the LebesgueMeasure contains, whichwewill now describe:

The Measure of An Interval is it’s Length Let I be an arbitrary non-empty interval. Then, I is
Lebesgue Measurable and:

m(I) = l(I) (3)

where l is the ’set’ length function described earlier.

Lebesgue Measure is Translation Invariant Let E be a Lebesgue measurable set, and y be any

number. Then, the translation of E by y, E + y = {x + y|x ∈ E}, is also Lebesgue measurable

and:

m(E + y) = m(E) (4)

We display a picture to illustrate this property:

Figure 1. A picture displaying what translation invariance looks like. The picture comes from Wikipedia.

Lebesgue Measurable is Countably Additive Over Countable Disjoint Unions of Sets Let

{Ek}∞
k=1 be a countable disjoint collection of Lebesgue measurable sets. Then, we have that:

m(∪∞
k=1Ek) =

∞∑
k=1

m(Ek) (5)

We note that one of the key differences between the outer measure defined earlier and the

Lebesgue Measure is that in the equation above, the outer measure has sub-additive

property, which is less powerful than the additive property stated above.

Lebesgue Measurable Functions

An extended real-valued function defined on a set E is said to be Lebesgue measurable, provided

it’s domain E is measurable, and it satisfies one of the following two conditions:

For each real number c, the set {x ∈ E|f (x) > c} is measurable.

For each real number c, the set {x ∈ E|f (x) ≥ c} is measurable.

Characterizations and Properties of Measurable Functions

A function f is measurable if and only if for each open set O, the inverse image of O under f
is measurable.

A real valued function that is continuous on it’s measurable domain is measurable.

A monotone function that is defined on an interval is measurable.

Linear combinations, products, and compositions of finite measurable functions on the same

set E are also measurable on the set E.

A non-negative measurable function is the limit of a sequence of simple functions.

Lebesgue Integration

Characteristic Functions For any set A, we define the characteristic function of A on the real

numbers, denoted by χA, as:

χA(x) =

{
1, if x ∈ A

0, if x /∈ A
(6)

Simple Functions Let φ be a real valued function defined on a measurable set E. It is called a

simple function if it is measurable and takes a finite number of values. Any simple function can

be represented as a linear combination of characteristic functions:

ψ =
n∑
k=1

ck · χEk, Ek = {x ∈ E| ψ(x) = ck} (7)

Integration of Simple Functions For a simple function ψ defined on a set E where m(E) < ∞,

we defined the integral of ψ over E by:∫
E
ψ =

n∑
i=1

ai ·m(Ei) (8)

Lebesgue Integration For a bounded real-valued function f defined on a set E wherem(E) < ∞,

we define the lower and upper Lebesgue Integral, respectively, of f over E to be:

sup
{∫

E
ψ

∣∣∣∣ ψ simple, ψ ≤ f on E

}
and inf

{∫
E
φ

∣∣∣∣ φ simple, f ≤ φ on E

}
(9)

We say that f is Lebesgue Integrable over E when its lower and upper Lebesgue integrals over

E are equal. We call the common value the Lebesgue Integral of f over E, and denote it by:∫
E
f (10)

Advantages over the Riemman Integral

Monotone convergence Theorem Suppose we have a sequence of non-negative measurable

functions {fn} on ameasurable setX such that fn converges pointwise to f almost everywhere

and f1 ≤ f2 ≤ · · · ≤ fn. The Monotone Convergence Theorem gives us the following property

for Lebesgue integration:

lim
n→∞

∫
X
fn =

∫
X

lim
n→∞

fn =
∫
X
f (11)

Under the Riemman Integral, the ability to move the limit inside the integral requires uniform

convergence, while under the Lebesgue Intregral, we only require pointwise convergence. We

now give an example to illustrate the use of the Monotone Convergence Theorem. Let aij be
an non-negative real valued sequence of numbers. Then, we have that:

∞∑
i=0

∞∑
j=0

aij =
∞∑
j=0

∞∑
i=0

aij (12)
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Abstract

Recent successes in neural networks have greatly encouraged their use in solving classical prob-

lems in applied mathemaধcs, as the networks allow for rapid prototyping with usable esধmaধons.

This holds especially true in areas involving high dimensional parধal differenধal equaধons (PDEs),

such as quantum physics and fluid dynamics. Here, we present a neural network architecture, the

physics-informed neural network (PINN), and implement a specific method, the conধnuous ধme

approach.

Background

We describe the PINN approach for approximaধng the soluধon

u : [0, T ] × D → R (?)
of an evoluধon equaধon

∂tu(t, x) + N [u](t, x) = 0, (t, x) ∈ (0, T ] × D, (1a)

u(0, x) = u0(x), x ∈ D, (1b)

where N is a differenধal operator acধng on u, D ⊂ Rd a bounded domain, T denotes the final

ধme and u0 : D → R the prescribed iniধal data. Based on the literature review conducted, we

restrict our discussion to the Dirichlet case and define

u(t, x) = ub(t, x), (t, x) ∈ (0, T ] × ∂D, (1c)

where ∂D denotes the boundary of the domain D and ub : (0, T ] × ∂D → R the given boundary

data. The method constructs a neural network approximaধon uθ(t, x) ≈ u(t, x) of the soluধon of

(1), where uθ : [0, T ] × D → R denotes a funcধon realized by a neural network with parameters

θ.

Continuous Time Approach

Figure 1) Neural network architecture of the PINN approach

The (strong) residual of a given neural network approximaধon of (?) with respect to the PINN

approach above is

rθ(t, x) := ∂tuθ(t, x) + N [uθ] (t, x) (2)

These networks are composiধons of alternaধng affine linear W ` · +b` and nonlinear funcধons

σ`(·) called acধvaধons, i.e.,

uθ(z) := W LσL
(

W L−1σL−1
(

· · · σ1
(

W 0z + b0
)

· · ·
)

+ bL−1
)

+ bL,

where W ` and b` are weight matrices and bias vectors, and z = [t, x]T .

PINN Approach

For the soluধon of the PDE (1) now proceeds by minimizaধon of the loss funcধonal

φθ(X) := φr
θ (Xr) + φ0

θ

(
X0

)
+ φb

θ

(
Xb

)
, (3)

where X denotes the collecধon of training data and the loss funcধon φθ contains the following

terms:

The Mean Squared Residual

φr
θ (Xr) := 1

Nr

Nr∑
i=1

|rθ (tri , xr
i )|2

in a number of collocaধon points Xr :=
{(

tri , xr
i

)}Nr
i=1 ⊂ (0, T ] × D, where rθ is the physics-

informed neural network (2),

The Mean Squared Misfitw.r.t Initial and Boundary Conditions

φ0
θ

(
X0

)
:= 1

N0

N0∑
i=1

∣∣∣uθ

(
t0i , x0

i

)
− u0

(
x0

i

)∣∣∣2 and φb
θ

(
Xb

)
:= 1

Nb

Nb∑
i=1

∣∣∣uθ

(
tbi , xb

i

)
− ub

(
tbi , xb

i

)∣∣∣2
in a number of points X0 :=

{(
t0i , x0

i

)}N0
i=1 ⊂ {0} × D and Xb :=

{(
tbi , xb

i

)}Nb

i=1
⊂ (0, T ] × ∂D,

where uθ is the neural network approximaধon of the soluধon u : [0, T ] × D → R.

Example: Heat Equation

A classical problem in the domain of PDEs, the heat equaধon governs the temperature distribuধon

of a rod of length l :

ut = kuxx (t, x) ∈ R+ × (0, l)
u(t, 0) = u(t, l) = 0 t ≥ 0
u(0, x) = f (x) x ∈ (0, l).

If k, called the conducধvity is a constant the rod is isotropic; if k = k(x) it is anisotropic or

heterogeneous medium.

Application

With respect to the fiষng, we choose k = 1, l = π, and f (x) = sin(3x) for the demo of the PINN.

We assume that the collocaধon points Xr as well as the points for the iniধal ধme and boundary

data X0 and Xb are generated by random sampling from a uniform distribuধon.

Figure 2) Plot of the collocaধon points (N = 10, 000)

PINN Approximation and Evolution of Loss

(a) View 1 (b) View 2 (c) Loss

Figure 1. The same cup of coffee. Mulধple ধmes.Test

The chosen problem can be solved via separaধon of variables. The idea is to assume the soluধon

u = u(t, x) can be wriħen as

u(t, x) = F (t)G(x)

If we compute the corresponding parধal derivaধves and replace in the PDE, we get

F ′(t)
F (t)

= G′′(x)
G(x)

The only way this equality is true for all t and x is if

F ′(t) = λF (t) and G′′(x) = λG(x)
The boundary condiধon becomes

G(0) = G(π) = 0

We can easily solve these ordinary differenধal equaধons. By considering the cases λ > 0, λ = 0
and λ < 0, we conclude λ = −n2, n ∈ N and (up to constants)

F (t) = exp
(

−n2t
)

and G(x) = sin(nx)

Since the equaধon is linear, by the principle of superposiধon u(t, x) =
∞∑

n=1
cn exp

(
−n2t

)
sin(nx)

Finally, since u(0, x) = sin(3x) =
∞∑

n=1
cn sin(nx) with c3 = 1 and cn = 0 if n 6= 3. Hence,

u(t, x) = exp(−9t) sin(3x)

True Solution

(a) PINN (b) True Soluধon
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Parking Functions

Imagine living on a one-way street that dead-ends with n parking spots available.
You and your neighbors have n cars in total, and everyone has their preferred
spot to park. Without reversing, does there exist a solution that everyone can
park without collision? In mathematics, this real life dilemma is called the parking
problem. Consider this set up:

• There are n cars and n parking spots on a straight street (n is a positive
integer, n ∈ Z+; and i denotes the i-th spot, i ∈ {1, · · · , n})

• Ci is the i-th car to park, having preferred spot αi ∈ {1, · · · , n}. More than
one car can have the same preference.

• If the preferred spot had already been occupied, then the car will move for-
ward and park in the next available spot. No backward movement allowed.

If all n cars can be parked under these conditions, then the preference list α =
(α1, α2, · · · , αn) is a parking function.
Equivalently, an n-tuple of integers α = (α1, · · · , αn) is a parking function if and
only if βi ≤ i, where β = {β1, · · · , βn} is a reordering of α into weakly increasing
order. i.e. β1 ≤ · · · ≤ βn.
For n cars, how many parking functions are there?

Fig. 1: Visual Representation of H.Pollack’s Proof.

Regard the elements of the group G = Z/(n + 1)Z as being the integers
0, 1, · · · , n. Let H be the (cyclic) subgroup of order n + 1 of the group Gn gener-
ated by (1, 1, · · · , 1). Each coset of H contains exactly one parking function. Let
f (n) be the number of parking functions of length n, hence we have

Theorem 1 (Konheim and Weiss, 1966). The number of parking functions of
length n is

f (n) = (n + 1)n−1.

Primitive Parking Functions

A parking function is called a primitive parking function if it is already in a
weakly increasing order.
There is a well-known bijection between parking functions and labeled Dyke
paths, wherein each distinct labeling of the same Dyke path corresponds to a
permutation of the parking function. Thus, the primitive parking functions with
length n − 1 are in bijection with Dyke paths and can be enumerated by the n-th
Catalan number:

Cn =
1

n + 1

(
2n

n

)
.

Non-Crossing Partitions

A partition of a finite set S is a collection {B1, · · · , Bk} of nonempty subset Bi ⊆ S s.t. B1∪
· · · ∪Bk = S and Bi∩Bj = ∅ if i ̸= j. And in our research of primitive parking functions, we
especially care about a special one: the non-crossing partition. A non-crossing partition
of set {1, · · · , n} is a partition {B1, · · · , Bk} of {1, · · · , n} s.t. for a < b < c < d, a, c ∈ Bi,
and b, d ∈ Bj ⇒ i = j.

Fig. 2: Non-Crossing Partitions (Blue) & Crossing Partitions (Yellow) of {1, · · · , 11}.

A maximal chain of non-crossing partitions of {1, · · · , n + 1} is a sequence π0, · · · , πn of
noncrossing partitions s.t. πi is obtained from πi−1 by merging two blocks of πi−1 into a
single block.
A maximal chain of [n + 1] has n merging steps. If we pick a label for each step, there are
exactly n labels. Thus, it’s possible for us to connect parking function with maximal chains.

Theorem 2. There is a bijection between parking functions of length n and maximal chains
of NCn+1.

Here is the algorithm: Let A and B be the two blocks we’re going to merge at stage i, and
A contains the smallest element in the disjoint union A ∪ B. The label for this stage is the
largest element in A which is smaller than all elements in B.

Fig. 3: One of the Maximal Chain of {1, · · · , 5} and Its Associated Parking Function (1, 1, 3, 3).

(The top is 1 and the label goes in clockwise direction)

Every maximal chain is associating with a parking function, and only some of them are
associating with the primitive ones.

Fig. 4: Primitive Parking Functions with Length 4 (black) in the Maximal Chains of Noncrossing Partitions of {1, · · · , 5} (grey).

A New Proposition

For maximal chains corresponding to the primitive parking functions, do they
form a certain pattern?

Lemma 3. The chain starts by merging 1 with some other element.

This lemma is trivial as the primitive parking function is always starting with 1,
and only the merging between 1 and some other element gives the label 1.

Lemma 4. The primitive parking functions are always adding one single block to
the other block.

This proposition can be verified via figure 4. From these lemmas, we can prove:

Proposition 5. The subdiagram consisting only of nodes and edges from the
primitive parking functions inside the non-crossing partition lattice is a coarsen-
ing of the Boolean lattice of size equal to the length of these parking functions.

Fig. 6: Maximal Chains for Primitive Parking Functions of Length 4 (Up)

& Boolean Lattice of size 4 (Bottom).

In other words, maximal chains of primitive parking functions of length n are look
just like the Boolean lattice of the same size with some relations removed.
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What is a Network?

A network is a collection of nodes where pairs of nodes may be connected by edges.

Networks can be visualized by drawing their graph structure, but they are also commonly repre-

sented by their adjacency matrix. The adjacency matrix for a network consisting of n nodes is

an n x n matrix A with entries Aij = the number of edges connecting node i and j.

A =


0 1 1 0 1
1 0 1 1 0
1 1 0 0 0
0 1 0 0 0
1 0 0 0 0



Figure 1: The graph and adjacency matrix representations of the same network.

Edges can be weighted, where each edge is assigned a value that represents the "strength"

of the connection, as well as directed, where a connection from node i to j does not imply a

connection from j to i. Networks are also not limited to only one type of node; however, since

many of the forms of analysis change, we will not be discussing them.

Node Centrality

A natural question arising from the gathered network data is determining the importance, or

centrality, of each node. This can give us an idea of which nodes have more influence over a

network. The four main centrality measures are defined below:

Degree Centrality: This is perhaps the simplest measure of centrality, calculated by counting

the number of edges attached to the node in question. In terms of the adjacency matrix A,

the degree centrality of a node i can be defined as follows:

ki =
∑
j

Aij.

Eigenvector Centrality: Unlike degree centrality, eigenvector centrality is primarily

concerned with the quality of connections, not quantity. To measure centrality this way, the

centrality of a node i will be proportional to the centrality of its neighbors, and thus is

defined recursively like so:

xi = κ−1 ∑
j

Aijxj.

Rewritten in matrix notation, this equation becomes

x = κ−1Ax, or Ax = κx.

In this form, it is clear that x is an eigenvector of A; however, since there may be multiple

eigenvectors, we generally define x and κ to be the leading eigenvector and eigenvalue.

Closeness: This is a measure of the average distance from a node to other nodes. Suppose

that dij is the shortest distance from node i to node j. Then the average distance from i to
every other node is

`i = 1
n−1

∑
j

dij.

Since we want to consider nodes that are on average closer to all other nodes as being more

central, we define the closeness centrality as the inverse of `i so

Ci = 1
`i

= n−1(∑
j dij

).

Betweenness: This measures how often a given node lies on a shortest path between other

nodes. Let ni
st be the number of shortest paths from s to t that pass through i, and let gst be

the total number of shortest paths from s to t. We can then define the betweenness

centrality of a node i as follows:

xi = 1
n2

∑
st

ni
st

gst
.

A Social Network Example

Figure 2: A social network constructed from anonymized friendship data collected by surveying a high school

math classroom. The density of the network is 20.2% and the clustering coefficient is 37.2%. The largest core is a

4-core which includes all nodes except 14 and 25.

Network Analysis

Node Degree Eigenvector Closeness Betweenness Local Clustering

1 5 0.1049 0.4615 0.0209 0.2

2 6 0.2153 0.4347 0.0116 0.4666

3 7 0.2595 0.5454 0.0525 0.4285

4 4 0.0911 0.4347 0.0018 0.8333

5 10 0.3201 0.5084 0.0657 0.3777

6 7 0.2605 0.4477 0.0107 0.5714

7 11 0.3491 0.4838 0.0573 0.3818

8 6 0.1972 0.4918 0.0285 0.4

9 6 0.0967 0.4687 0.0671 0.2666

10 5 0.1390 0.4347 0.0131 0.5

11 5 0.1054 0.4687 0.0324 0.2

12 7 0.1116 0.4838 0.0767 0.2857

13 5 0.0918 0.4477 0.0169 0.6

14 2 0.0207 0.3370 0.0021 0

15 4 0.1432 0.4 0.0019 0.6666

16 6 0.1111 0.4761 0.0297 0.5333

17 13 0.2783 0.625 0.2732 0.1538

18 7 0.1537 0.5 0.0474 0.2380

19 5 0.1485 0.4225 0.0156 0.4

20 8 0.2040 0.5555 0.0926 0.1428

21 6 0.2093 0.4285 0.0125 0.5333

22 7 0.1516 0.5084 0.0817 0.1904

23 6 0.2025 0.5084 0.0603 0.3333

24 7 0.2372 0.5 0.0573 0.4285

25 4 0.0481 0.375 0.0135 0.5

26 4 0.0840 0.4615 0.0137 0.3333

27 4 0.0815 0.4411 0.0102 0

28 5 0.1052 0.4687 0.0316 0.3

29 7 0.2432 0.4687 0.0247 0.4761

30 5 0.1447 0.4687 0.0171 0.3

31 4 0.0742 0.4285 0.0065 0.5

Table 1: The centrality and clustering measures for each node in Figure 2. The largest and smallest values in each

column are bolded and the corresponding nodes are highlighted. Node 17 has the highest degree, closeness, and

betweenness centralities, however, node 7 has the highest eigenvector centrality due to the importance of its

neighbors (e.g., nodes 5 and 6). Node 4 has the highest clustering coefficient, indicating a tight-knit friend group,

but has a low betweenness centrality because it is somewhat redundant in the network. Node 14 is the most

isolated.

Why are Networks Useful?

Networks are a powerful analytical tool which are used across many different disciplines with a

multitude of applications. Networks are an elegant representation of almost any system which

consists of objects and connections between those objects, and when modeled this way, we can

perform well-defined and meaningful calculations to analyze its structure.

There are four primary categories in which we can sort networks: technological, information, so-

cial, and biological. Technological networks are physical networks which are typically responsible

for the transfer of data or materials, such as the Internet, waterlines, or commercial airline flights.

Information networks can model the interaction of ideas, and are used to represent structures

such as the World Wide Web or citation networks for academic papers. Social networks are

used to model people and their interactions, such as friendships in a workplace or followers on

social media. Even systems such as metabolic processes and food chains can be modeled by

biological networks.

Network Structure

Beyond simply ranking nodes in accordance to their centralities, it also often important to be able

to describe the overall structure of the network. Below are some basic, yet useful, measures of

network structure:

Density: In a simple network consisting of n nodes, we can calculate the maximum possible

number of edges by counting the number of pairs of nodes given by
(

n
2
)
. The density of a

network is the proportion of existing edges to the maximum possible edges.

k-cores: A k-core is a connected set of nodes where each node is connected to at least k
other nodes in the set.

Figure 3: The nodes 1-4 form a 3-core, and the nodes 1-5 form a 2-core.

k-components: A k-component is a set of nodes where each node is reachable from each of

the others by k node-independent paths.

Figure 4: This network forms a 2-component.

Local Clustering Coefficient: The local clustering coefficient is the proportion of the number

of neighbors of a node i that are neighbors themselves. Visually, this can be thought of as

the fraction of closed triangles out of all possible triangles with i as a vertex.

Figure 5: The local clustering coefficient of node 1 is 1/3.

Clustering Coefficient: This is a generalization of the local clustering coefficient to the whole

network. For the whole network, it is the proportion of connected triples that are also closed

triangles.
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Introduction

Differential manifolds are topological spaces that are locally
homeomorphic to a vector space so that one may perform calculus
on it, and a differential form allows one to define integrals over
such manifolds. This poster is meant to revisit the Maxwell’s
Equations using such languages

Smooth Manifolds and Tangent Map

▶ A topological space M is called an n-dimensional manifold if
∀p ∈ M there is a homeomorphism F : U → O such that U ⊂ Rn is
non-empty and open, and O ⊂ M is an open subset containing p.
Such an F is called a local parametrization around p

▶ An n-dimensional manifold is called an n-dimensional smooth
manifold if there is a collection of local parametrizations
Fα : Uα → Oα such that
▷ ∪Uα = M (such parametrizations cover all of M )
▷ Any transition map F−1

α ◦ Fβ is smooth on their domain

Figure 1:The stereographic projection of a sphere, which is a parametrization of
a sphere except at the north pole. The sphere is an example of a 2-dimensional
smooth manifold

▶ Given a smooth n-dimensional manifold M and a local
parametrization F : U → M , the tangent space at p is defined as
TpM = span{ ∂

∂u1
(p), ..., ∂

∂un
(p)}, with each ∂

∂ui
being the differential

operator with respect to F (u1, ..., un) at p
▶ For a vector space V , define its dual space V ∗ = {T |T : V → R}
▷ Moreover, V ∗ is a vector space itself. Given a basis of V as
{e1, ..., en}, a basis of V ∗ is {e1, ..., en} such that ei(ej) = δij

▷ One can define the cotangent space of M at p as T ∗
pM = (TpM)∗

and any v∗ ∈ T ∗
pM is called a cotangent vector of M at p. In the

same fashion, one can express T ∗
pM = span{du1, ..., dun} such

that dui[ ∂
∂uj

(p)] = δij

Tensor Product and Wedge Product

▶ For V,W being two vector spaces, T ∈ V ∗ and S ∈ W ∗, the tensor
product between T and S is defined as T ⊗ S : V ×W → R such
that (T ⊗ S)(X, Y ) = T (X)S(Y )

▶ In the same setup, the wedge product is defined as
T ∧ S = T ⊗ S − S ⊗ T
▷ One can see that a wedge product is alternating; T ∧ S = −S ∧ T
▷ Also noted that T ∧ T = 0

Differential Form

▶ Let M be a smooth manifold. The smooth differential k-form w on
M is defined as w : TpM × TpM × ...× TpM (k times)→ R such that
for any local parametrization F : U → M ,
w =

∑n
i1,...,ik=1

wi1i2...ikdu
i1 ∧ ... ∧ duik. The wi1i2...ik’s are scalar functions

locally defined in F (U) and are called the local components of w
▷ For example, in

∫ b

a f (x)dx the f (x)dx is a differential 1-form

Exterior Derivative

▶ Given a smooth differential k-form w, its exterior derivative is
defined as

dw =

n∑
i1,...,ik=1

dwi1i2...ik ∧ dui1 ∧ ... ∧ duik

=

n∑
i1,...,ik=1

n∑
j=1

∂wi1i2...ik

∂uj
duj ∧ dui1 ∧ ... ∧ duik

▶ Given smooth differential k-forms w, η on a smooth manifold M and
a smooth scalar function f ,
▷ d(w + η) = dw + dη
▷ d(fw) = df ∧ w + dη
▷ d2w = d(dw) = 0

▶ A connection between a differential form and exterior derivative in
R3 and usual multivariable calculus is shown below:

Differential Form on R3 Multivariable Calculus
f (x, y, z) f (x, y, z)

w = Pdx +Qdy +Rdz F = P î +Qĵ +Rk̂

β = Ady ∧ dz +Bdz ∧ dx + Cdx ∧ dy G = Aî +Bĵ + Ck̂
df ∇f
dw ∇× F
dβ ∇ ·G

d2f = 0 ∇×∇f = 0
d2w = 0 ∇ · (∇× F ) = 0

Revisit Maxwell’s Equations

▶ The Maxwell’s Equations can be written in differential equations as:

∇ · E =
ρ

ϵ0
∇ ·B = 0

∇× E = −∂B

∂t

∇×B = µ0j +
1

c2
∂E

∂t
▶ The first equation is the Gauss’s law on electric field, the second

equation is a statement that an magnetic monopole does not exist
(it has been predicted in several models but not yet verified), the
third equation is the law of electromagnetic induction, and the fourth
equation is the Ampere’s circuit law with Maxwell’s correction

▶ Denote (t, x, y, z) ∈ R4 as (x0, x1, x2, x3) and take w be a k-form on
R4 (here k = 0, 1, 2, 3 or 4). Define the Hodge-star map from a
k-form to (4-k)-form such that w ∧ ∗w = dt ∧ dx ∧ dy ∧ dz, or
−dt ∧ dx ∧ dy ∧ dz if w contains a dt term (this is known as the
volume form of the Minkowski spacetime)

▶ Express E,B,J as
E = Exdx + Eydy + Ezdz

B = Bxdy ∧ dz +Bydz ∧ dx +Bzdx ∧ dy

J = −(Jxdy + Jydz ∧ dx + Jzdx ∧ dy) ∧ dt + ρdx ∧ dy ∧ dz

Define F ≡ B + E ∧ dt. Together with the Hodge-star map, one can
rewrite the Maxwell’s equations as:

dF = 0

d(∗F) = J
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Multiplayer Feedforward Neural Networks

A neural network is the interconnection of unit models characterized by a thresh-
old value θ, a univariate activation function σ : R → R, and a vector of weights
w = w1, ..., wn. Here, the value of n is determined by the dimension of the input-
vector x = x1, ..., xn. When we feed x into a unit, it computes σ(w · x − θ) and
shoots the result to the next unit. A single hidden layer feedward neural network
represents a f : Rn → R function

f (x) =

k∑
j=1

βj · σ(wj · x− θj)

The most important application of neural networks is in machine learning, where
neural networks are “trained" to approximate a function. Thus, a fundamental
question for neural networks is whether they can approximate reasonable func-
tions to an arbitrary degree of accuracy. This depends on the activation function
σ and is the subject of many papers, including the paper studied for this project.

Nonpolynomial Activation Function

Leshno et al. proved in their paper “Multilayer Feedforward Networks With a Non-
polynomial Activation Function Can Approximate Any Function" [2] that, under
modest assumptions, a broad class of activation functions are suitable for build-
ing neural networks to approximate continuous functions. We studied this paper
to understand the mathematics underlying the result.

Definition (Notion of approximation). We say that a set F of functions in L∞
loc(R

n)
is dense in C(Rn) if for every function g ∈ C(Rn) and for every compact set
K ⊂ Rn, there exists a sequence of functions fj ∈ F such that

lim
j→∞

||g − fj||L∞(K) = 0

Colloquially,
{
fj
}

approximates g “arbitrarily well."

Definition. The admissible class of activation functions which Leshno et al.
denote by M is the set of locally bounded functions with a “small" number of
discontinuities: if σ ∈ M and K is the collection of discontinuities of σ, then K
has zero Lebesgue measure.

Neural networks arise from the collection,

Σn = span{σ(w · x + θ) : w ∈ Rn, θ ∈ R}

and the main result of the paper is that Σn is dense in C(Rn) if and only if σ is not an
algebraic polynomial. This is a novel conclusion since the condition is very simple.

Reduced Case

There are two directions to prove, one of which is not difficult: Σn is dense in C(Rn), then
σ is not a polynomial. The rest of the proof aims to show that if σ is not a polynomial, then
Σn is dense in C(Rn). The proof relies on some analysis tricks, which we summarize here.
Some common techniques to prove results like this are,

• Reduce the dimension of the space(s) considered.

• Prove the result for well-behaved functions first.

• Use a “smoothing" technique to deal with functions lacking regularity.

The complexity of the problem is reduced by showing first that if Σ1 = C(R), then
Σn = C(Rn). Then, Leshno et al. prove Σ1 = C(R) in the case that σ ∈ C∞.

To show Σ1 = C(R) when σ ∈ C∞, Leshno et al. show that Σ1 contains all polynomials.
The result follows then as a consequence of Weierstrass’s Theorem:

Theorem (Weierstrass’s Theorem[3]). If f is a continuous function on a compact set K, there
exists a sequence of polynomials Pn such that

lim
n→∞

Pn(x) = f (x)

uniformly on K.

It follows that Σ1 contains C(K), where all K ⊂ R. Hence, Σ1 is dense in C(R).

Generalized Case

From above steps, the "dense" argument can be easily achieved when σ is smooth. In
this section, the author generalizes the problem to the entire class of admissible activation
function by considering σ that is not smooth. The purpose of convolution σ ∗ φ is to deal
with the discontinuities and points where σ is not differentiable. In a way, the convolution
can overcome the limited differentiability of σ. We will discuss the merit of convolution in
the next section.

By convolving σ with functions φ ∈ C∞
0 , the general case follows as a consequence of the

work for the reduced case: Σ1 is dense in C(R) so long as σ ∗ φ is not a polynomial for
some test function φ. The authors deal with this caveat using advanced techniques.

Basically, Leshno et al. must knows what is the condition that makes σ ∗ φ a polynomial for
every test function φ. It turns out that this only occurs if σ is a polynomial almost everywhere,
which rules out any strange conditions where σ ∗ φ is a polynomial for some φ ∈ C∞

0 , yet
σ is not a polynomial. Their key argument is to show that if σ ∗ φ is a polynomial for every
test function φ, then the degree of σ ∗ φ is bounded by some m for every φ. From here,
they conclude that since σ ∗φ is a polynomial of degree at most m for every test function φ,
andσ itself must be (almost everywhere) a polynomial of degree at most m.

Convolution Applied to a Specific Example

To illustrate the utility of the convolution, let f (x) := 1− |x| when −1 ≤ x ≤ 1/2

and 0 otherwise. Let g(x) be a bump function, where g(x) = e−1/(1−x2) for
|x| ≤ 1 and 0 otherwise. The convolution: (f ∗ g)(x), is defined as,

(f ∗ g)(x) =
∫ ∞

−∞
f (x− y)g(y)dy =

∫ ∞

−∞
f (y)g(x− y)dy

The equality of the integrals above follows by a change of variables. Since f and
g are supported on a compact set, we will write the convolution as,

(f ∗ g)(x) =
∫ 1/2

−1
(1− |y|)e−1/(1−(x−y)2)dy

Then, we may use a numerical integrator to evaluate the convolution.
Here is a visual comparison between the discontinuous function f (x) and the
convolution of f (x) with g(x).

Remarks

In 1991, Hornik showed that the multilayer feed-ward architecture gives neural
networks the potential of being universal approximators[1]. Leshno et al. led the
study to a new dimension and discovered that a neural network does not need
a continuous activation function to approximate some real-world functions in an
arbitrary accuracy. This endows the neural network a biological interpretation
because a real neuron is unlikely to have a continuous activation function. Later
in the history, mathematicians extends the Universal Approximation Theorem
by studying discontinuous functions, noncompact domains, and so on.
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The Beginnings of Cryptography

Cryptography is the study of methods of sending messages in a
disguised form so that only the intended recipients can remove the
disguise and read the message.
At the most basic level, a cryptosystem is the process of converting
plaintext to a cyphertext using encryption and subsequently convert-
ing that cyphertext back to plaintext using decryption.
One of the earliest cryptosystems was created using digraphs,
which map two characters in a message to a number. Let us con-
sider the 27 letter alphabet which contains letters A-Z and a blank.
Then, given any message, the following digraph can be used as an
enciphering function where x and y are two characters which occur
in succession in the message:

27x + y = C

The deciphering function is given by:{
C mod 27 = x

C − x = y

Most early cryptosystems were based on a similar idea of using a
rule, or a key, to shift the letters in a message to a different location.
The idea was that only the person with the key would be able to
decipher the message.

Breaking a Cryptosystem

Cryptosystems were developed in order to help protect sensitive
information. In modern times, cryptography is widely used in the
field of cybersecurity to protect people’s
• passwords

• credit card information

• identity information

• other sensitive forms of data
In an increasingly digital world, cryptosystems have become ex-
tremely important in protecting this information.

Cryptanalysis is the science of "breaking" the code of cryptosys-
tems. People do this in order to gain access to data that is not
intended for them. This begs the question, "How does one break a
cryptosystem?". To do so, one needs two types of information

1. The general nature, or the structure of the system

2. The specific choice of certain parameters connected with the
given cryptosystem, like the shift parameter, also known as the
enciphering key

An Example in Python

Let us extend the idea of a digraph to a cryptosystem which enciphers a
message of length n from an alphabet of any size. Let N represent the size
of the alphabet. Then, the enciphering function will be represented by

Nn−1x1 +Nn−2x2 + · · · +Nxn−1 + xn−1 = C

The Python code for an enciphering transformation of this form is as follows:

The deciphering transformation will subtract C mod N from C n times and
update C after each iteration. The Python code for a deciphering transfor-
mation of this form is:

Primality and Factorization

Cryptosystems have evolved over time to prevent people from breaking
them.

• The easier it is to guess the enciphering key of a cryptosystem, the easier
it is to break the cryptosystem.

• So, methods of creating difficult to guess keys were developed

Public Key Cryptography: the enciphering and deciphering algorithms are
publicly known, but the enciphering and deciphering keys are concealed.
Gaining access to the keys allows you to break the system.

How do we create difficult to guess keys?

• Factoring primes is really difficult once we start dealing with very large
numbers. So, if we multiply two large primes together, factoring them be-
comes almost impossible without having access to a key.

• The discrete logarithm problem is an idea based on the fact that if we
know y = bx, it is extremely difficult to solve for

x = logb y

Fermat Factorization provides a way of "breaking" some public key cryp-
tosystems. If two primes are close enough together, this algorithm allows
one to efficiently calculate the two primes that have been multiplied together.
This form of factorization is used to break RSA cryptosystems.

The Foundations of Modern Cryptography:
Elliptic Curves

Elliptic Curve Cryptography

• An approach to public key cryptography which utilizes elliptic
curves over finite fields to create keys.

• It is essentially impossible to find the discrete logarithm of a ran-
dom element of an elliptic curve with respect to a publicly known
base point.

• The larger the elliptic curve, the more secure the cryptosystem is
since the discrete logarithm becomes more difficult to compute.

An Elliptic Curve Over the Real Numbers

• Elliptic curves over the reals form an abelian group. Thus, if we
perform operations on two elements of the curve, we will end up
with another element on the curve.

An Elliptic Curve Over the Complex Numbers

• Elliptic curves over the complex numbers form a torus.

• We can think of plotting elements of the curve over the integer
lattice and then connecting all of the edges together.
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Introduction

The classical isoperimetric problem is stated as follows: Among all closed curves in the

plane of fixed perimeter, which curve (if any) maximizes the area of its enclosed region?

This is equivalent to the problem: Among all closed curves in the plane enclosing a

fixed area, which curve (if any) minimizes the perimeter? The problem can be extended

to regions and surfaces in Rn. In this poster, we show that a sphere has the smallest

surface area with given volume by developing certain isoperimetric inequaliধes relaধng

to the Ln measure of a sets and its perimeter.

Definitions

(1) For a funcধon u ∈ L1(Ω,R), we define

Var(u, Ω) := sup{
∫

Ω
u div ϕ dx : ϕ ∈ C1

c (Ω,RN), ‖ϕ‖∞ ≤ 1}.

We say u has bounded variaধon in Ω if Var(u, Ω) < ∞.
Moreover, we let BV (Ω) denote the space of funcধons u ∈ L1(Ω) which have

bounded variaধon in Ω.
We also set

BVloc(Ω) := {u ∈ L1
loc(Ω) : Var(u, Ω′) < ∞ for every Ω′ ⊂⊂ Ω}.

(2) For a Lebesgue measurable subset E of RN . The perimeter of E in Ω is defined by

P (E, Ω) := Var(1E, Ω).
We say E has finite perimeter in Ω if 1E ∈ BV (Ω); E has locally finite perimeter in Ω
if 1E ∈ BVloc(Ω).

Examples

(1) The distribuধon funcধon

Fµ : R → R, Fµ(t) = µ((−∞, t])
of a probability measure µ on B(R) is a funcধon of bounded variaধon in R.

(2) Suppose Ω ⊂ RN is bounded and u ∈ C1(Ω). Then u ∈ BV (Ω) and

Var(u, Ω) =
∫

Ω
|∇u| dx.

(3) Let QN := [0, 1]N ⊂ RN . Then Q has finite perimeter in RN given by

P (QN) = 2N.

(4) Let E ⊂ RN be a bounded open set with C1-boundary. Then E has locally finite

perimeter in Ω given by

P (E, Ω) = volN−1(∂E ∩ Ω).

Gagliardo’s Lemma

Let N ≥ 2. For x ∈ RN , j = 1, . . . , N let x̂j := (x1, . . . , xj−1, xj+1, . . . , xN). Moreover,

let f1, . . . , fN ∈ LN−1(RN−1) be given, and let f : RN → R be defined by f (x) =
f1(x̂1) · · · fN(x̂N). Then

f ∈ L1(RN) and ‖f‖L1(RN) ≤
N∏

j=1
‖fj‖LN−1(RN−1) .

Non-optimal Isoperimetric Inequality

Let N ≥ 2. Then we have

P (E) ≥ 2
√

N |E|
N−1

N

for all measurable subsets E ⊂ RN with |E| < ∞.

Proof of the theorem

The inequality holds trivially if P (E) = ∞. Suppose P (E) < ∞. We claim that for

u ∈ BV (RN), N ≥ 2, we have

‖u‖
L

N
N−1(RN ) ≤ 1

2
√

N
Var(u,RN).

We obtain the inequality by applying this result to the funcধon 1E.

Proof of Claim: By standard approximaধon arguments, one can show that there exists

a sequence (un) such that un ∈ BV (RN) ∩ C1
c (RN) saধsfying

‖u − un‖1 → 0, Var(un,RN) → Var(u,RN).
Hence it suffices to consider u ∈ C1

c (RN). Integraধon parallel to the j-th coordinate axis
yields

|u(x)| ≤ 1
2

∫
R

|∂ju(x1, . . . , xj−1, t, xj+1, . . . , xN)| dt := vj(x̂j)

for x ∈ RN , j = 1, . . . , N .

We then apply the Gagliardo’s Lemma to v
1

N−1
j ∈ LN−1(RN−1) and obtain

∫
RN

|u(x)|
N

N−1 dx ≤
∫
RN

N∏
j=1

v
1

N−1
j (x̂j) dx ≤

N∏
j=1

∥∥∥∥v 1
N−1
j

∥∥∥∥
LN−1(RN−1)

= (
N∏

j=1
‖vj‖L1(RN−1))

1
N−1

≤ ( 1
N

N∑
j=1

‖vj‖L1(RN−1))
N

N−1 = ( 1
2N

∫
RN

[
N∑

j=1
|∂ju(x)|] dx)

N
N−1 ≤ ( 1

2
√

N

∫
RN

|∇u| dx)
N

N−1.

Optimal Isoperimetric Inequality

For any measurable subset E ⊂ RN with |E| < ∞ we have

P (E) ≥ Nω
1
N
N |E|

N−1
N ,

where ωN denotes the volume of the unit ball in RN , and the equality occurs if and

only if E is a ball.

Proof of the theorem

Suppose P (E) < ∞, we have 1E ∈ BV (RN). Let E∗ = Br(0), where r is chosen

such that |E| = |E∗|. Then one can show there exists a sequence of sets (En) with
P (En) ≤ P (E) and ‖1En

− 1E∗‖1 → 0. By lower semiconধnuity,

P (E∗) ≤ lim inf
n→∞ P (En) = lim inf

n→∞ Var(1En
,RN) ≤ Var(1E,RN) = P (E).

Moreover,

P (E∗) = volN−1(∂E∗) = NωNrN−1 = Nω
1
N
N |E∗|

N−1
N = Nω

1
N
N |E|

N−1
N .

Coarea Formula for BV functions

Let f ∈ BV (Ω) be a nonnegaধve funcধon, and put

Et := {x ∈ Ω : f (x) > t} for t ≥ 0.

Then

Var(f, Ω) =
∫ ∞

0
P (Et, Ω) dt.

Optimal Functional Isoperimetric Inequality

For f ∈ BV (RN) we have

Var(f,RN) ≥ Nω
1
N
N ‖f‖

L
N

N−1
.

Proof of the theorem

Since

‖f‖
L

N
N−1

≤ ‖f+‖
L

N
N−1

+
∥∥∥f−

∥∥∥
L

N
N−1

,

and one can show that for f ∈ BV (RN),
Var(f,RN) = Var(f+,R) + Var(f−,R).

Hence it suffice to consider the case where f is nonnegaধve. In this case, the Coarea

formula and the isoperimetric inequality yields

Var(f,RN) =
∫ ∞

0
P (Et) dt ≥ Nω

1
N
N

∫ ∞

0
|Et|

N−1
N dt.

We now define

χ : [0, ∞) → R, χ(t) = ‖min{f, t}‖
L

N
N−1

.

Then χ is conধnuous, nondecreasing and hence a.e. differenধable. Moreover, for t, h >
0, we have

0 ≤ χ(t + h) − χ(t) ≤ ‖min{f, t + h} − min{f, t}‖
L

N
N−1

≤ ‖1Et
h‖

L
N

N−1
= h|Et|

N−1
N ,

which implies that χ is locally Lipschitz conধnuous on (0, ∞) with χ′(t) ≤ |Et|
N−1

N for

a.e. t > 0. Hence χ saধsfies the assumpধons of the Fundamental theorem of calculus .

Since 0 = χ(0) = lim
t→0+

χ(t), it follows that

‖f‖
L

N
N−1

= lim
b→∞

[χ(b) − χ(1
b
)] = lim

b→∞

∫ b

1
b

χ′(t) dt ≤
∫ ∞

0
|Et|

N−1
N dt.
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