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Introduction
The core idea in functional analysis is to treat
functions as ’points’ or ’elements’ in some sort
of abstract space, so that instead of working
with individual functions we work with the
structure of the space (as the tradition in
classical analysis), we deal with functions as
points in a space endowed with some kind of
overall structure. This viewpoint, was an
integral step in the process of transferring
familiar concepts in finite-dimensional
Euclidean space to (typically
infinite-dimensional) ’function spaces’.

Basics
We will be concerned with complex Hilbert
spaces. A Hilbert space (H) is defined as a vector
space over C, with an inner product such that it
is complete with respect to the inner product.
Specifically we will be looking at the L2(X, μ),
this is the Hilbert space of the square integrable
functions, with associated measure μ. Note the
norm in L2 is given by:

‖f‖L2 =
∫︁
|f|2dμ

This is the familiar state space of a quantum
particle, contained in a region X.
Let T : X −→ Y be a linear map between
normed linear spaces. T is called a bounded
linear operator if ∃C such that

‖Tx‖Y ≤ C‖x‖X
∀x ∈ X. Now suppose H and K are hilbert
spaces and A : H −→ K a bounded linear
operator. There is always a unique A∗ such that:

〈Ah, k〉K = 〈h,A∗k〉H
A∗ is called the adjoint of A

Bounded Linear operators

In this section we will define spectrum on
bounded linear operators. Let T ∈ B(X) (T : X
bounded), we say λ ∈ C is an eigenvalue, if for
some x we have Tx = λx.
Theorem: If T ∈ B(H ) is self adjoint, then
either ‖T‖ or −‖T‖ is an eigenvalue. Note
‖T‖ = Sup(|〈Tx, y〉| : ‖x‖ = ‖y‖ = 1) . The
eigenvalues are real and the eigenvectors for
distinct eigenvalues are orthogonal.T is said
compact if it is the limit of finite rank operators
Preliminary Spectral Theorem: Let T 6= 0 be a
self-adjoint, compact operator in B(H ), there
exists a finite or countably infinite set of
eigenvectors gn, with corresponding eigenvalues
λn such that

Tx = λn〈x, gn〉gn
When we move from compact operators to
Banach algebras, the concept of eigenvalue gets
generalized to the spectrum.

Figure: functions hn approximating the eigenfunction for
λ = 0.5

Spectrum

Spectrum of T: Let T ∈ B(X) be linear. The set
of complex numbers λ such that T − λI is not
invertible, is called the spectrum.
A bounded linear operator on a Hilbert space is
invertible iff it is bounded below and has a
dense range. So if either (or both) of those two
conditions are not satisfied for T − λI then λ is
in the spectrum. So we have:
Approximate point spectrum σap(x):
{λ : T − λI is not bounded below}, this includes
the eigenvalues.
Compression spectrum (x): {λ : T − I does
not have a dense range}
Spectral mapping theorem: Suppose A is a
unital Banach algebra and A ∈ A and P is a
polynomial. We have

σ(P(A)) = P(σ(A))

Our goal now is to generalize this to all
continuous functions. For this we consider the
set MA of *homomorphisms from A to C (in
B(H ) the * is just the adjoint).

Example:Position operator

Consider the operatorMx, multiplication by x.
Mx ∈ L2[[0, 1]]. Clearly, this operator has no
eigenvalues, but it has approximate point
spectrum σap = [0, 1]. A key idea about
λ ∈ σap(Mx) is that (Mx − λI)hn→ 0 for some
sequence of normalized functions hn. An
example of such a sequence is :

hn =

√︃
n

π
e−n(x−λ)

2

(If this did have a limit, it would be the delta
function)

Gelfand Transform
If A is a commutative unital Banach algebra,
then we can define a map:

 : A −→ C(MA )

Theorem:If A is also a C∗ algebra then  is a
isometric-∗isomorphism. Although we are
limited by the commutativity requirement in the
last theorem, we can generate a commutative
C∗ algebra, with {A,A∗, I} for any A ∈ A . The
next result will be the central result of this
poster, there is an isomorphism from A (which
is a mysterious object) to C(σ(A)) (which are
just continuous complex functions).
Theorem:Suppose A is some singly generated,
commutative, unital C∗ algebra with
A = C∗(A) for some A which is necessarily
normal. Then there is a unique ∗ isomorphism
between A and C(σ(A)), and maps A to the
identity function on σ(A).

Continuous spectral mapping

Theorem: Given a normal operator A as above,
we have

σ(f(A)) = f(σ(A))

This theorem gives constraints on the spectra of
operators based on their algebraic properties.
•A∗ = A iff σ(A) ⊂ R
•A∗ = A−1 iff σ(A) ⊂ ∂D
•A2 = A iff σ(A) ⊂ {0, 1}
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Introduction
Representation Theory is a branch of mathematics that links Group Theory, Linear Algebra and Abstract 

Algebra. It was born in 1896 in the work of German mathematician F.G. Frobenius. Throughout the program 
we have been examining what it means to be a representation, sub representation, irreducible 

representation, and more
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Figure 1: Intertwiners of a 
representation/ between 

representations 

Objective
We want to “build” everything out of irreducible representations, but to do this we need the help of Maschke’s Theorem.
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Maschke’s Theorem:
Let G be a finite* group and let k be a field whose characteristic does not divide |G|. Then:

(i) The algebra k[G] is semisimple
(ii) There is an isomorphism of algebras φ:k[G]→ꚚᵢEndVᵢ defined by g→Ꚛᵢg|vᵢ where Vᵢ are irreducible representations of G. In particular, this 
is an isomorphism of representation of G. In particular, this is an isomorphism of representations of G (where G acts on both sides by left 
multiplication). Hence, the regular representation k[G]decomposes into irreducibles as Ꚛᵢ dim(Vᵢ)Vᵢ, and one has the “sum of the squares 
formula”

|G|=∑ dim(Vᵢ)²
*note: it is important that G is a finite group because if G were infinite, we would have an infinite sum for |G|

Importance:
Through this theorem, we can take any finite dimensional group representation and decompose it into a direct sum of irreducible representations. In conclusion, 
Maschke’s theorem shows how to generate semisimple Artinian rings. 

Conclusion
While there is still much to learn in this field, we have touched base on some of the main building blocks of Representation Theory. This subject is important 

because it reduces problems in Abstract Algebra to Linear Algebra. The purpose of Representation Theory is to understand how a group G operates on a vector 
space V. Because of this, we have furthered our understanding of related topics including Group Theory and Linear Algebra. Group theory is applied to subjects such 

as, Mathematical Physics, Engineering, and Mathematical Chemistry. 

We start by introducing the concept of an Associative Algebra, which can be defined as a vector space V, where 
multiplication is defined by a,b→ab , a,b ∈ V, and there is an identity element such that 1∗a=a for all a ∈ V

Next we can define a Representation of an associative algebra is a vector space with a homomorphism 
ρ→EndV (a linear map preserving multiplication and unit)

A map ρ: A→EndV
ρ(a+b)=ρ(a)+ρ(b)
ρ(ab)=ρ(a)ρ(b)
ρ(c∗a)=c∗ρ(a), where c is a scalar

• Subrepresentations: of V is a subspace U ⊂ V which is invariant under all the operators ρ(a) : V→V,  a∈A
• A representation is irreducible if it has not proper subrepresentations

• Every representation has an irreducible subrepresentation

A map between representations is an intertwiner (Figure 1). It can be thought of as a linear map that 
commutes under the group operation. If both representations are irreducible, then an intertwiner only exists if 
the two representations are equivalent, which brings us to Schur’s Lemma.

Schur's Lemma: Let V₁, V₂ be representations of an algebra A over any field F 
(which need not be algebraically closed)
Let 𝛟 : V₁,→V₂ be a non zero homomorphism of representations. then:

(i) if V₁ is irreducible, 𝛟 is injective
(ii) if V₂ is irreducible, 𝛟 is surjective

Thus, if both V₁ and V₂ are irreducible, 𝛟 is an isomorphism.

If we had a representation where every intertwiner was invertible, then it would 
be an irreducible representation.

Proof: 
(i) The Kernel of 𝛟 is a subrepresentation of  V₁. Since 𝛟 ≠ 0, the 
subrepresentation cannot be V₁.  So  be irreducibility of V₁, we have Kernel=0
(ii) The image of 𝛟 is a subrepresentation of V₂. Since 𝛟 ≠ 0, the 
subrepresentation cannot be 0.  So  be irreducibility of V₂,  we have Image=V₂

Examples: 
● D₂n- {symmetries of a n-gon} (groups representations model symmetries of 

space) (Figure 2)
● ℤ rep on ℂ²
● Group Algebra: The group algebra A=k[G] of a group G is an example of 

algebras over k, where k is the field. k[G] is the set of all linear combinations 
of elements in G with coefficients in k. The group algebra respects addition, 
multiplication and scalar multiplication.

Completely Decomposable Representations: a semisimple representation of 
A (an algebra) is a direct sum of irreducible representations.
We  can use Schur’s Lemma to classify sub-representations in finite 
dimensional semisimple representations. 

Figure 2:  symmetries of space represented by a 
unit triangle

For some background, we start with the idea of Groups. In representation theory, we are trying to represent topics in abstract 
algebra with linear algebra. This way, it is more easily understood. A representation of a group G on a vector space V 
1) A way for the group to act on a vector space

𝛟 : G ・V → V
(g,v) ↦ g・v
satisfying:
∀v ∈ V, e・v = v;   ∀g ∈ G, ∀v₁,v₂ ∈ V, ∀c ∈ ℂ, g・(cv₁ +v₂) = c・g・v₁+ g・v₂;   ∀g,h ∈ G,∀v ∈ V, g・(h・v) = (g・h)・v

2) A group homomorphism 
⍴: G → GL(v) ; GL(v):{ invertible linear transformations V → V}
⍴(g₁) ・⍴(g₂) = ⍴(g₁,g₂) Examples of Groups:

● S
n

 = { invertible functions from a set of size n} : (1 3) (2 4)
  (1 2 3 4)

● ℤ/nℤ - group {[0],[1],...[n-1]} under addition modulo n



How to put your topological phase on a torus
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Motivation: topological quantum computing

The theoretical background of quantum computation with anyons is
unitary modular tensor category (UMTC) theory and braid group
representations. The theory of quantum computing with bilayer anyons
and defects is given by representations from a unitary G-crossed
braided fusion category (UGxBFC).

Quantum gates generated by exchange of anyons and defects come
from representations of the n-strand braid group Bn.
Bn = 〈σ1, σ2, . . . σn−1 | σiσi+1σi = σi+1σiσi+1, σiσj = σjσi if |i− j| > 2〉

Background

In practice, we work with the algebraic data
{Nab

c ,R
ab
c ,F

abc
d } for a UMTC and{NXY

Z ,RXY
Z ,FXYZ

W , µ, η} for a UGxBFC [1].

a⊗ b =
⊕

c

Nab
c c

a b

c

= Rab
c

c

a b a b
µ

νm

d

c ∑
n

[Fabc
d ](n,α,β);(m,µ,ν)

a b
β

α m

d

c

The modular data of a UMTC
The modular data are the matrices S,T
Sab = 1

D a b , and Tab = θaδab, where θa = 1
da a =

∑
c

dc
da

Raa
c

These matrices satisfy the relations below:
(ST)3 = ΘC (1)

S2 = C (2)
C2 = In (3)

Bare bilayer defect data [3] RX1X1
c�c∗ = θc [FX1X1X1

X1
] = S

Main idea: bilayer defects ”create genus”

The physical interpretation of our result says that braiding 4 bilayer bare
defects is equivalent to modular transformations of the monolayer vacuum
states on a torus.

Quantum gates from braiding bilayer defects

Using the algebraic theory of bilayer defects [3], we compute the matrix representation of B3 on VX⊗3
1

X1

with respect to the basis


X1 X1

c � c∗

X1

X1

.σ1· =
c � c∗

X1

X1 X1X1 X1

= RX1X1
c�c∗

X1 X1

c � c∗

X1

X1

The basis


X1 X1X1

c � c∗

X1


diagonalizes σ2: σ2·

X1 X1X1

c � c∗

X1

=

X1 X1 X1

c � c∗

X1

= RX1X1
c�c∗·

X1 X1X1

c � c∗

X1

Using the F matrix FX1X1X1
X1

as the change of basis, we can write the matrix of σ2 with respect to the
left associated fusion trees as (FX1X1X1

X1
)−1R(FX1X1X1

X1
).

The image of the representation is then given by

ρ(B3) = 〈ρ(σ1), ρ(σ2)〉 ' 〈T, S−1TS〉

Proposition

Let C be a UMTC. The image of the B3 representation VX⊗3
X1

coming from the GxBFC (C� C)×Z2
is

projectively equal to the image of the modular representation of C.

Proof.

It is clear that 〈T, S−1TS〉 ⊂ 〈S,T〉. For the other direction, since (ST)3 = ΘC,we have (STS)(TST) = ΘC
Since C2 = In, multiply C both sides gives us (CSTS)(TST) = ΘIn (1).
Since S2 = C, S−1 = SC = CS. Plug in to (1) we have (S−1TS)(TST) = ΘIn, thus (TST) = Θ(S−1TS)−1.
So we have S = ΘT−1(S−1TS)−1T−1. Thus the two group are projectively equal.
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HYPERBOLIC SURFACES AND THE MODULAR GROUP
Definition (Surface): A surface is 
a metric space X, such that every 
point in X has a neighborhood 
that is homeomorphic to the 
plane.  A surface is nonorientable 
if it contains a mobius band; and 
orientable otherwise.

Surfaces

Definition (Connect Sum):  The connect sum S#F of 
two surfaces S, F is obtained by removing a disk from 
each and identifying the boundaries by the gluing 
construction (below).  A surface of genus g is surface 
from g connected sum operations of the torus. 
Euler Characteristic: Suppose a surface of genus g is 
decomposed into polygons, then faces - edges + 
vertices = 2 - 2g 

Every compact orientable surface is homeomorphic to 
the surface of genus g, for some g.  

Classification

One way of making surfaces is by 
gluing together the sides of a planar 
region, and giving the result the 
quotient topology.  Another way of 
making a surface is taking the quotient 
of a nice (free, properly discontinuous) 
group action on the plane.  This is 
equivalent to the gluing construction 
on a fundamental domain 

Gluings and Group Actions

. 
Definition (Fundamental Domain): If G is a group acting on a space X, a fundamental 
domain for the action of G is a subset of X containing exactly one point of each orbit.  

Definition: E:X -> X’ is called a 
covering map if every point in X 
has a neighborhood that is evenly 
covered, and in X’ is said to be a 
covering space of X. (U is evenly 
covered if the preimage consists 
of a countable disjoint union of 
sets homeomorphic to U)

Covering Spaces

The upper half plane model      , defined to be  
                                .  In this model, the length of a 
curve     is  

ℍ2

{z ∈ ℂ ∣ 𝖨𝗆(z) > 0}
γ

𝖫𝖾𝗇𝗀𝗍𝗁(γ) = ∫γ

ds
y

Definition(Geodesic): The shortest path between 
two points is a geodesic.  The geodesics of the 
upper half plane model are vertical line segments or 
arcs of circles centered on the real axis.

Hyperbolic Space

Hyperbolic Triangles
A (geodesic) polygon is a simple closed 
path made from geodesic segments.  A 
triangle is a geodesic polygon with 3 sides. 

Angle sum and area relation of triangles: 
Let a,b,c be the inner angles of a triangle T, 
then Area(T) = pi - (a+b+c)

An ideal vertex of a hyperbolic triangle lies 
at infinity or on the real axis in this model.  

Isometries
Isometries of Hyperbolic space are given 
by Mobius transformations of the upper 
half plane.  There are three types of 
hyperbolic isometries: elliptic, parabolic 
and hyperbolic. 

Definition:  A Mobius transformation  
                          is a map of the form  
                            with          

The matrix              is associated to the 
Mobius transformation                    . 
Any scalar multiple of this matrix 
represents the same Mobius 
transformation.

f : ̂ℂ → ̂ℂ

f (z) =
az + b
cz + d

a, b, c, d ∈ ℂ
ad − bc ≠ 0

f (z) =
az + b
cz + d

(a b
c d)  

Hyperbolic: 
Has two fixed 
points at 
infinity and/or 
on the 
boundary.

The Modular Group

The Modular Surface
ℍ2/𝖯𝖲𝖫(2,ℤ)

Fundamental Domain for PSL(2,Z)
Half the fundamental domain of this surface can be 
found from the fixed points of S, T, and ST. 
These fixed points are at        i, -½ + i (2)^(⅓)/2. 
After finding these fixed points the fundamental 
domain is the triangle with verticies        , ½ + i 
(2)^(⅓)/2, -½ + i (2)^(⅓)/2 form the fundamental 
domain of the modular surface.  

∞

∞

SL(2,Z) is the group of 2x2 matrices 
with integer entries and determinant 
1.  PSL(2,Z) is the quotient of SL(2,Z) 
by {I,-I}.

Generators: SL(2,Z) is generated by the 
matrices S, T below.

S = (0 −1
1 0 ) T = (1 1

0 1)

Congruence Covers
Definition:  The Principal Congruence of Level N, 
Γ(N),  is defined to be the kernel of 
𝖲𝖫(2,ℤ) → 𝖲𝖫(2,ℤN)

Elliptic: Has one 
fixed point in     
not on the 
boundary.

Parabolic: Has 
one fixed point at 
infinity or on the 
boundary

By the first isomorphism theorem 
that [SL(2,Z):Γ(2)] = |SL(2,Z_2)| = 
6, meaning there are 6 cosets of 
H^2/Γ(2). A choice of 6 cosets 
representatives is  
{I,S,T,TST,TSTS,TS} 

ℍ2

To determine the topology of this surface, we compute the 
Euler characteristic (taking the infinity points to be vertices of 
the triangles).  There are 6 faces, 9 edges, and 5 vertices. 
Then V-E+F= 2, which implies g = 0 so the surface is a sphere 
(with three punctures because of the ideal vertices)

Fundamental domain for 
the action of PSL(2,Z)  (left) 
and its quotient (right). 

The quotient is a  
topological surface, 
homeomorphic to a disk.

But keeping track of the 
hyperbolic geometry, it 
has two cone points.

The area of this triangle is  
(using the formula for 
hyperbolic triangle areas), and 
so the area of the fundamental 
domain is          .

Surfaces with cone 
points are called 
orbifolds, so the 
modular surface is a 
hyperbolic orbifold.

π /6

π /3
Geodesic (orange) and non-geodesic (red)

We construct a 
fundamental domain 
by 6 copies of the 
fundamental domain 
above, corresponding 
to these cosets. 



Quandles
Ziqi Fu, Sherilyn Tamagawa†

Department of Mathematics, UCSB

Introduction
Quandles, introduced by David Joyce in 1982,
are algebraic structures whose axioms encode the
spatial movements of knots. The fundamental
quandle of a classical oriented knot is a complete
invariant up to reflection.

Preliminaries

What are knots?

A knot in R3 is a simple curve with no self-
intersection. Two knots have the same knot type
are ambient isotopic, meaning that one can be con-
tinuously deformed into another. In topological
knot theory, different knots are distinguished up
to ambient isotopy. Knots are studied using knot
diagrams, projection of knots on a plane with bro-
ken understrands. Each knot can be oriented by
assigning it a preferred direction of travel, which
is indicated in the knot diagram using an arrow.

Figure 1: The oriented trefoil knot is ambient isotopic to its inverse

Knot Invariant

The fundamental question in knot theory is to
determine whether two knot diagrams represent
the same knot. Two knots are ambient isotopic if
and only if they can be changed into the other by
a finite sequence of Reidemeister moves.

Figure 2: Reidemeister moves

A knot invariant is a function f : K → X from the
set of all knot diagrams to a set X such that for
each Reidemeister move, f (K1) = f (K2) where
K1 is the preimage of K2.

Example

Tricolorability of a knot is a simple knot invariant.
Each arc in the knot diagram is assigned with
one color from a set of three. A tricoloring is
valid if at every crossing it uses all three colors
the same or all different. The number of valid
triclorings of a knot diagram is an invariant.

Figure 3: A valid tricoloring of a knot

Algebraic Structures

An algebraic structure is non-empty set X
equipped with at least one closed binary
operation ∗ : X× X → X. Let (X, ∗) and (Y, ◦) be
algebraic structures. X and Y are homomorphic if
there exists a homomorphism f : X → Y such that
it preserves all of the operations, i.e.,
f (x ∗ x′) = f (x) ◦ f (x′). A bijective
homomorphism is called an isomorphism.

Quandles
Definition. A quandle is a set X with a binary
operation . : X× X → X satisfying for all
x, y, z ∈ X:

(i) x . x = x,
(ii) fy : X → X defined by fy(x) = x . y is a

bijection,
(iii) (x . y) . z = (x . z) . (y . z).

The inverse of fy(x) is written as x .−1 y.

Figure 4: Axiom i and ii encoding the first two Reidemeister Moves

Fundamental Quandle

The fundamental quandle, or knot quandle, of an
oriented knot is given by a representation with
generators corresponding to arcs and quandle
relations at crossings.

Example

〈a, b, c|a . b = c, b . c = a, c . a = b〉.
Figure 5: Quandle of the oriented trefoil

Quandle Counting Invariant
Given a finite quandle X, we define the counting
invariant ΦZ

X to be the number of quandle
colorings of a knot diagram K. Formally put,

ΦZ
X = |Hom(K(K), X)|,

with each homomorphism representing a valid
quandle coloring of the diagram K. Since the
fundamental quandle K(K) does not depend on
the choice of the diagram of K, the set of all
quandle homomorphisms is an invariant of the
knot K.

Example

Take quandle X = Z4 with x . y = 2y− x. Let K
be the oriented figure-8 whose knot quandle is
〈x, y|y . (y . x) = x . y, x . (x . y) = y . x〉.

Calculation gives that ΦZ
X = 16, meaning that

we have a total of 16 different ways to color the
figure-8 knot using quandle X = Z4.

Figure 6: Operation table of X Figure 7: Oriented figure-8 knot

Virtual Knots
Classical knot theory is the study of the
embeddings of curves in R3. Virtual knot theory,
as a generalization, studies the embeddings of
curves in thickened surfaces of arbitrary genus,
up to the addition or removal of empty handle.
Consider a virtual trefoil knot, which ”almost”
fits in a single hyperplane with a bit of thickness,
it can be projected onto a plane by adding a new
type of crossing called the virtual crossing. Note
that these crossings do no exist because they live
on the bridge, or handle, in the added dimension.

Figure 8: Virtual trefoil knot Figure 9: Trefoil knot on a torus

Another way to understand virtual knots is to
draw them on a torus. The extra dimension
needed by virtual knots is given by the torus’
genus being greater than 0. We think of the
virtual crossings as the result of flattening the
torus onto a plane.
A virtual knot, formally put, is an equivalence
class of virtual knot diagrams under the
equivalence relation generated by classical and
generalized virtual Reidemeister moves.

Figure 10: Generalized Reidemeister moves for virtual knots

References
1 Elhamdadi, M, and Nelson, S. (2015). Quandles: an introduction to the algebra
of knots. Amer. Math. Soc.
2 Kauffman, L.H., et al.. (2014), Unsolved problems in virtual knot theory and
combinatorial knot theory. polish Acad. Sci. Inst. Math.
3 Austin, D. Knot Quandaries Quelled by Quandles. Retrieved from
http://www.ams.org/publicoutreach/feature-column/fc-2016-03

†Graduate mentor



Deep Learning: Image Classification Using Convolutional Neural Networks

Chau Tran, Troy Eggertsen, Nabil Hentabli
Department of Mathematics, University of California, Santa Barbara

Deep Learning: Image Classification Using Convolutional Neural Networks
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Overview

•We use Convolutional Neural Networks (CNNs) to identify what object is in a
given picture.

•By training this network architecture on a large dataset consisting of pre-labeled
images, the network learns to identify objects through pattern recognition.

•Training and testing is done using CIFAR-10.

Neural Networks

Fig. 1: Fully Connected Neural Network Architecture[5]

•Neural Networks are composed of a number of layers:

– The input layer, in our case a three-dimensional tensor encoding an input
image.

– An arbitrarily large number of hidden layers that operate repeatedly on the
outputs of the previous. layers via linear matrix multiplications and non-
linear activation functions.

– The output layer; for image classification problems, we use the softmax func-
tion to produce class confidence scores.

Fig. 2: Convolution [3]

•A CNN differs from standard Neural Network by containing a number of con-
volution layers before fully connected ones.

– Fully connected layers are layers where every node in one layer is connected
to all nodes in the next.

– Convolution layers are better suited than standard layers for identifying infor-
mation in spatial data; they do this by changing the dimensions of matrices
as they go through the model.

Fig. 3: Convolution Neural Network (CNN) [4]

Training

•During training, a model learns by going through each element of training data, evaluating
its own output’s accuracy against ground truth with a loss function, and then back-
propagating changes to its algorithm based on calculated loss.

•Loss Function:

L = −
C∑
i=1

tilog

(
esi∑C
j e

sj

)
C classes total; ti, si are target and class score of class Ci

•Gradient-Based Optimization:
W = W − λ∇L

W are weighs; λ is the learning rate.

Image Classification

Image Classification: the task of assigning an input image one label from a fixed set of
categories.

Fig. 4: Left:The task in Image Classification[5], Right: CIFAR-10 dataset[2]

Network Architectures

Fig. 5: Plain and Residual Network[1]

Residual Network is based on Plain Network with additional shortcut connections. The
building block of the Residual Network is defined as:

y = F (x, {Wi}) + x

Here x and y are the input and output vectors of the layers considered.

Fig. 6: Building Block of Residual Net[1]

Results

Fig. 7: Training on CIFAR-10. DASHED lines denote trainning errors, and BOLD lines denote testing

errors. Top: Plain Networks. Bottom: Residual Networks

Comparison

Network Training Error(%) Testing Error(%)

20-layer ResNet 98.91 91.87
32-layer ResNet 99.28 92.18
44-layer ResNet 99.35 92.51
56-layer ResNet 99.39 92.26
110-layer ResNet 99.41 92.68

20-layer PlainNet 98.05 90.82
32-layer PlainNet 94.25 88.36
44-layer PlainNet 92.73 88.08
56-layer PlainNet 90.24 86.08
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Euclidean and Hyperbolic Space

Given two metric spaces, (X, d) and (X ′, d′), an isometry Φ : X → X ′ is a
bijective function such that

d′(Φ(P ),Φ(Q)) = d(P,Q) for every P,Q ∈ X.

The euclidean plane is the metric space composed of R2 equipped with the metric

d((x, y), (x′, y′)) =

√
(x2 − x′2) + (y2 − y′2).

Hyperbolic space (in the Poincare disk model) is the set B2 = {z ∈ C | |z| < 1}
equipped with the metric

d(z, z′) = inf

{∫ t1

t0

2||γ′(t)||
Im(γ(t))(1− |γ(t)|2)

dt | γ(t0) = z and γ(t1) = z′
}
.

Gluing Maps and Quotient Spaces

One can visualize gluing maps by observing that gluing opposite edges of a square
together (and allowing the paper to stretch and contract as needed) will create a
torus as shown below. To make this kind of construction more rigorous, let (X, d)
be a metric space and X be some partition of X . We say that P,Q ∈ X are glued
together (denoted P ∼ Q) if P and Q are in the same element of X . The elements
of X will be denoted as P where P ∈ P . Next, we would like to define a metric d on
X . To do this, define a discrete walk w between two points P ,Q ∈ X as a finite
sequence of points in X :

P = P1, Q1 ∼ P2, Q2 ∼ P3, . . . Qk−1 ∼ Pk, Qk = Q.

Next, we define the length of w to be the sum

ld(w) =

k∑
i=0

d(Pi, Qi).

Lastly, in order to make (X, d) a metric space, we can define d : X ×X to be

d(P ,Q) = inf{ld(w) | w starts at P and ends at Q}.

Given some arbitrary quotient space, it can be true that d(P ,Q) = 0 when
P 6= Q but in the following examples, it can be proven that this is not the
case. In this way, we obtain the quotient metric space (X, d) of (X, d).

[2] This is how a torus can be seen as a gluing map where the letters show which sides
are glued to which and the arrows show their orientation. What would the surface
look like if you reversed one of the arrows?

A More Visual Example

[1] Using the previous construction, we will produce a quotient space of the interval [0, 2π] which
is isometric to the unit circle S1. Intuitively, as shown below, we can simply ”wrap” the interval
around the unit circle and glue the ends together. To make this rigorous, let our quotient space
be

X = {{P} | P ∈ (0, 2π)} ∪ {{0, 2π}}
and let Φ : X → S1 be such that

Φ(P ) = (sin(P ), cos(P )).

The function Φ is bijective and well defined since Φ(2π) = Φ(0) and the rest of the points
are singletons. All that needs to be checked is that Φ preserves distance. To see this, notice
that the minimum distance on S1 is the minimum of the two possible paths between them.
Similarly, on the quotient, one can either measure the distance between the points in the in-
terval using the discrete walk P = P1, Q1 = Q or using the discrete walk P = P1, Q1 ∼
P2, Q2 = Q where Q1 = P2 = {0, π}. Therefore, the two objects are geometrically the same!

Clearly, the blue path is shorter but without taking the quotient of the space, the longer red
path would represent the distance.

Polygons

A geodesic is a curve γ such that for every P,Q ∈ γ, it is the shortest curve connecting
them. Intuitively, on the euclidean plane, the geodesics are all lines and line segments. In
hyperbolic space, however, the geodesics are either lines which pass through the center of the
disk or segments of circles which meet the boundary of the disk orthogonally.
A polygon X is a region in either B2 or R2 whose boundary is decomposed into finitely many
geodesics E1, E2, . . . En called edges meeting only at their endpoints called vertices.

Glue the Edges of Polygons with Isometries

LetX be a hyperbolic or euclidean polygon. Then, we can pair the edges we want to glue together
as follows: {E1, E2}, {E3, E4}, . . . , {Ek, Ek+1} and specify isometries Φ2i−1 : E2i−1 → E2i
between the two edges in any pair. This is to ensure that the edges being glued together are the
same size. Lastly, we will define X by the following properties:
• if P is in the interior of X , then it is glued to no other point and P = {P};

• if P is in an edge Ei and is not a vertex, then P consists of two points: P and Φi(P ) ∈ Ei±1;

• if P is a vertex, then P consists of P and all the other vertices of the form Φik ◦ Φik−1
◦

· · · ◦ Φi1(P ) where i1, i2, . . . , ik are such that Φii−1
◦ · · · ◦ Φi1 ∈ Eij for all j.

Tessellations

A tessellation of euclidean or hyperbolic space is a family of tiles {Xn}n∈N such
that

• each Xm is a connected Polygon in B2 or R2;

• any two Xn, Xm are isometric;

• the union of all the tiles is the whole space;

• any two Xn and Xm are either disjoint or their intersection only contains edges
and vertices;

• for every point P on the plane, there exists a ε > 0 such that B(P, ε) meets
only finitely many tiles Xm.

Next, given a polygon X and its quotient space X with isometries Φk between pairs
of edges as before, we define the tiling group Γ to be the set of all isometries of
R2 or B2 which can be written as a finite composition Φl ◦ Φl−1 ◦ · · · ◦ Φ1 of edge
isometries. The connection between this group and tessellations is captured in the
following theorem.

Theorem (Tessellation Theorem).Let X be a Hyperbolic or Euclidean connected
Polygon with gluing data as above. Also, suppose that for each vertex P of X,
the angles of X at all vertices glued to P add up to 2π

n for some n ∈ N. Lastly,
assume that X is complete. Then, as Φ ranges over all elements of Γ, Φ(X)
forms a tessellation.

To see this theorem in action, observe that this gluing map is on a hyperbolic oc-
tagon with angles which add up to 2π. Because its quotient is the double torus
which is compact and therefore, complete, the polygon can tessellate the plane using
combinations of the isometries given by the colors in the diagram.
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Lie Groups, Matrix Lie Groups,
Representations, and Lie Algebras

A real Lie group is a group G that is also a finite-
dimensional real smooth manifold whose group op-
erations are smooth maps.
A matrix Lie Group is any closed subgroupH of
GL(n,C). That is, for an arbitrary sequence {An}
of matrices in H ,

{An} → A

where A ∈ H or A is not invertible.
A representation of a group G on a vector space
V is defined as a homomorphism φ : G → GL(V ).
For each g ∈ G, the representation assigns a linear
map ρg : V → V .
A Lie Algebra over a field F is an F -Vector space
L, together with a bilinear map, the Lie bracket [, ] :
L × L → L that satisfies the following conditions:
∀X, Y, Z ∈ L and ∀a, b ∈ F ,
[, ] is anti-symmetric,

[X, Y ] = −[Y,X ] (1)
[, ] is bilinear,

[aX + bY, Z] = a[X,Z] + b[Y, Z] (2)
[, ] satisfies the Jacobi identity,

[X, [Y, Z]] + [Y, [Z,X ]] + [Z, [X, Y ]] = 0 (3)
A Lie Algebra of a matrix Lie group G, de-
noted by g, is the set of all matrices X such that
etX is in G for all real numbers t, accompanied with
a Lie bracket [, ] : g× g→ g.
For the Lie Algebra of a matrix Lie Group, [, ] is
defined to be the commutator of the matrices,

[X, Y ] = XY − Y X (4)
which indeed satisfies the conditions of a Lie bracket.

Matrix Lie Groups in Physics

The Orthogonal and Special Orthogonal Groups

An n× n matrix A is said to be orthogonal if ATA = I, i.e AT = A−1.
Equivalently, the column vectors that make up A are orthonormal:

n∑
i=1

AijAik = δjk (5)

and equivalently, A preserves the inner product:
〈x, y〉 = 〈Ax,Ay〉 (6)

By the orthogonality ofA, det(AT ) = det(A) and so det(A) = ±1. Thus an orthogonal matrix is invertible.
Also by the orthogonality of A, 〈A−1x,A−1y〉 = 〈A(A−1x), A(A−1y)〉 = 〈x, y〉. The inverse of an orthog-
onal matrix is orthogonal.
Lastly, the product of two orthogonal matrices is also orthogonal. Then this set of n × x orthogonal
matrices forms a group called the orthogonal group O(n) which is a subgroup of GL(n,C))
The special orthogonal group SO(n) is defined to be a subgroup of O(n) whose matrices have
determinant 1. This is a matrix Lie group.

The Unitary and Special Unitary Groups

An n× n matrix A is said to be unitary if A†A = I, i.e A† = A−1.
Equivalently, the column vectors are orthonormal:

n∑
i=1

AijAik = δjk (7)

and equivalently, A preserves the inner product:
〈x, y〉 = 〈Ax,Ay〉 (8)

Since A is unitary, det(A†) = det(A) and so |det(A)| = 1. Thus a unitary matrix is invertible.
Also since A is unitary, 〈A−1x,A−1y〉 = 〈A(A−1x), A(A−1y)〉 = 〈x, y〉. The inverse of a unitary matrix is
unitary.
Lastly, the product of two unitary matrices is also unitary. Then this set of n× x unitary matrices forms
a group called the unitary group U(n) which is a subgroup of GL(n,C)
The special unitary group SU(n) is defined to be a subgroup of U(n) whose matrices have determinant
1. This is a matrix Lie group.

Isospin and SU(2)

Let’s study the Isospin symmetry.
First, we define our operators. a†p and a†n are the cre-
ation operators for the proton and neutron respec-
tively, and the corresponding annihilation operators
are ap and an. The possible bilinear products are:

{a†pan, a†nap, a†pap, a†nan} (9)
From these, we may define the following operators:

B = a†pap + a†nan (10)
τ+ = a†pan (11)

τ− = a†nap (12)

τ0 = 1
2
(a†pap − a†nan) (13)

Which satisfy the commutation relations:
[τ0, τ+] = τ+ (14)

[τ0, τ−] = −τ− (15)

[τ+, τ−] = 2τ0 (16)

The operators generate infinitesimal transforma-
tions such as:

ψ′ = {1 + iε(τ+ + τ−)}ψ (17)
These transformations change a proton or neutron
into a linear combination of both states, hence the
transformations occur in a two-dimensional Hilbert
space. Furthermore, they are unitary. The group of
interest is generated by our operators, (10) − (13).
However the unitary transformations generated by
B are trivial. The remaining isospin operators gen-
erate a Lie group... SU(2)!
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Our Problem

The important question we aim to tackle is telling whether two manifolds are the
same or not. One way to do this is to look at the triangulations of the manifold.
In our project, we focus on Lens Spaces. In particular, we work with an invariant
that arises from triangulations of Lens Spaces using groups.

Simplicial Complexes

An n-simplex is simply the n-dimensional analog of a triangulation. In 0 dimen-
sions, this is a point. In 1 dimension, this is a line. In 2 dimensions, this is just the
classical triangle. In 3 dimensions, this is the tetrahedron. The way we construct
these n−simplices is reliant that for each face of our simplex is an n− 1 simplex.
For example, in our traditional triangle, these faces are the line segments.

Fig. 1: 0-simplex, 1-simplex, 2-simplex, 3-simplex

Now what is a triangulation? We essentially map our simplices into our space in
the obvious way. We see it visually.

Fig. 2: Two possible triangulations of the 2-sphere

Pachner Moves

How do triangulations tell us anything about our manifold? Take any manifold M ,
then take any two triangulations, T1, T2, of M . Then T1 and T2 are related up to
a finite number of Pachner moves. For 2−manifolds, we can describe the moves
as follows.

Fig. 3: The possible Pachner moves

If we have one of the configurations in our triangulation, we can change it to
the corresponding configuration on the same vertices. Then in order to have an
invariant of all our possible triangulations, we just need it to be invariant under
Pachner moves. This kind of invariant can distinguish manifolds.

Lens Spaces

The manifold we focus on are Lens Spaces, denoted L(p, q).

Definition 1. L(p, q) for coprime integers p, q is the quotienr of S3 by Z/p−actions. More
precisely considering S3 as the unit sphere in C2. The Z/p−action on S3 generated by the
homeomorphism

(z1, z2) 7→ (e2πi/pz1, e
2πiq/pz2)

is free. The resulting quotient space is the lens space L(p, q).

What we are interested in is when L(p1, q1) and L(p2, q2) are equivalent based on an in-
variant that arises from triangulations. These spaces are nice to work with since they have
already been classified as L(p1, q1) and L(p2, q2) are

1. homotopy equivalent if and only if q1q2 ≡ ±n2 (mod p1) for some n ∈ N

2. homeomorphic if and only if q1 ≡ ±q±12 (mod p1)

Fig. 4: L(5, 1) without twisting

In the picture above, pi are the fifth roots of unity. They rotate by one roots over to each
other. Points with a nonzero y−coordinate also rotate along that axis by exp(2πi/5).
The invariant we work with is called the Dijkgraaf-Witten invariant, which is reliant on a
choice of abelian group G. The idea of how we obtain this invariant begins with a triangula-
tion of the Lens Space. To each edge, we assign an element of G such that the sum of the
elements on the edges of all faces is 0.
For each i ≤ p, we can consider the tetrahedron. For any face, if we know two edges,
this determines the third since the sum of them is 0. The if we know gab, gcd, gb,c the whole
tetrahedron is determined. The label in blue is determined by knowing gc,d and gb,c.

Fig. 5: Tetrahedron with elements

The idea of our invariant is them to take the sum of the product of the faces. Through some
algebraic manipulations, we get that the Dijkgraaf-Witten invariant is

Z(L(p, q)) =
1

|G|
∑
g|gp=0

p−1
j=1ω(g, g

j, gb)

where bq ≡ 1 (mod p) and ω is the cocycle. This cocycle is a condition that allows this to be
an invariant of not only the triangulation but of the topological space because cocycle are
invariant under Pachner moves.

Properties of the invariant

In particular, we work with G = Z/nZ because the cocycle of a, b, c is

ωr(a, b, c) = exp[(2iπ/n2c(a + b− a + b))]

where r = 0, ..., n− 1 and x denotes the integers representing x in {0, ..., n− 1}.
When x + y < N , this is just 1. Otherwise, ωr(a, b, c) = exp(2πirc/n).
In fact, if m = (n, p) and a = rbp

m , we can reduce Z(L(p, q)) to

Z(L(p, q)) =
1

n

m−1∑
k=0

exp(2iπak2/m)

This is the same as the Gauss sum of a and m.
This invariant cannot, unfortunately, distinguish between when two lens spaces
are not homeomorphic, but are homotopic.

Theorem 1. L(p1, q1) and L(p2, q2) with p1 < p2 can be distinguished using the
Dijkgraaf-Witten invariant by Z/p2Z with r = 0.

When r = 0, this formula is essentially the greatest common divisor of pi and p2,
so when p1 6= p2, this is different.

Theorem 2. If p ≡ 3 (mod 4) for a prime p, then

±i√p

depending on whether a is a square of Z/pZ

Theorem 3. L(p, 1) and L(p, 2) are distinguished by Z/pZ with r = 1 for
p ≡ 3 (mod 4).

Further Work

We have calculated the homotopy classes with fixed p and whether they are dis-
tinguished by the invariant for any n, r for up to p = 70. Some interesting results
of this were that sometimes even when p is a prime, we require that r > 1. For
example, the two homotopy classes of p = 25 can be distinguished by n = 25
and r = 5, 10, 15, 20, but not r = 1, 2, 3, 4, 5. A similar problem happens for p = 36
and p = 64.
One conjecture is that for any prime p, there exists r such that Z/pZ distin-
guishes all of the homotopy classes.
Another stronger conjecture is that for any p, there exists an r and n combination
such that Z/nZ distinguishes all the homotopy classes of L(p, q). It is important
to note that n = p does not always distinguish the homotopy classes.
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Goal
Informally speaking, metric spaces are sets where we can measure the
distance between points. We are familiar with the standard euclidean
metric space; however, here we will explore the hyperbolic space and two
of its models: the upper half-plane and the disk model. We will prove that
there is an isometry between the two metric spaces.

Metric Spaces

Definition: A metric space is a pair (X, d) where X is a set and d is a
function d : X × X→ R such that
• d(P,Q) ≥ 0 and d(P, P) = 0 for every P,Q;
• d(P,Q) = 0 if and only if P = Q;
• d(Q, P) = d(P,Q) for every P,Q ∈ X;
• d(P,R) ≤ d(P,Q) + d(Q,R) for every P,Q,R ∈ X

Examples:

• Euclidean Space: (R2, deuc)

R2 = {(x, y); x, y ∈ R}.

• Upper half-plane: The Hyperbolic plane (H2, dhyp)

H2 =
{︀
(x, y) ∈ R2; y > 0

}︀
= {z ∈ C; Im(z) > 0}.

• Disk model for the hyperbolic plane (B2, dB2). Here B2 is the open disk
with radius 1 centered around 0 in the complex plane.

In all these spaces the distance is calculated by finding the infimum of the
lengths of all piecewise differentiable curves between two points. For a
smooth curve γ(t), where t ∈ [a, b], its lengths is∫︁ b

a
‖ γ′(t) ‖ dt

where the norm of the tangent vector γ′(t) at γ(t) is different in, R2,H2 ,
B2:
• Euclidean norm (‖ ~v ‖euc): is the length of a vector ~v = (a, b) in the
euclidean plane

‖ ~v ‖euc=
√︀
a2 + b2.

• Hyperbolic Norm (‖ ~v ‖hyp): is the length of a vector in the hyperbolic
plane based at the point z ∈ H2 ⊂ C

‖ ~v ‖hyp=
1

Im(z)
‖ ~v ‖euc .

• B2-norm (‖ ~v ‖B2 euc): length of a vector in the disk model based at the
point z ∈ B2

‖ ~v ‖B2=
2

1− |z|2
‖ ~v ‖euc .

Isometries
Definition: An isometry between two metric spaces (X, d) and (X′, d′) is
a bijection φ : X→ X′ that respects distances:

d′(φ(P), φ(Q)) = d(P,Q)

for every P,Q ∈ X.
Differentiable map: If U is an open set in R2, P0 ∈ U, and γ is a
parameterized curve in U that passes through P0, then the differentiable
map φ : U→ R2 will yield a new curve φ(γ) in R2, that passes through
φ(P0), and will be tangent to the vector DP0φ(~v).

Proposition: If φ(z) = az+b
cz+d , then

Dz0φ(v) =
ad− bc

(cz0 + d)2
v.

Theorem
The map (z) = −z+iz+i induces an isometry from (H2,dhyp) to (B2,dB2).

Proof
When z ∈ R, |(z)| = 1. This means  sends R ∪ {∞} to the unit circle.
Next,  sendsH2 to either the inside or outside of the unit circle in
C ∪ {∞}. Since (i) = 0, we know (H2) is equivalent to the inside of
the B2 unit circle.
Let Dz : C→ C be the differential of  at z ∈ H2. Then, by definition, a
vector v based at z has B2-norm

‖ Dz(v) ‖B2=
2

1− |(z)|2
‖ Dz(v) ‖euc .

According to the previous proposition, ‖ Dz(v) ‖euc=
⃒⃒⃒⃒⃒⃒
− 2i
(z+i)2v

⃒⃒⃒⃒⃒⃒
euc

because a = −1, b = i, c = 1, and d = i. Thus,

‖ Dz(v) ‖B2 =
2

1− |−z+iz+i |
2

⃒⃒⃒⃒⃒⃒
−

2i

(z+ i)2
v
⃒⃒⃒⃒⃒⃒
euc

=
4

|z+ i|2 − | − z+ i|2
‖ v ‖euc

=
4

(z+ i)(z̄− i) − (−z+ i)(− z̄− i)
‖ v ‖euc

=
2

i(z̄− z)
‖ v ‖euc .

Since i(z̄− z) equals the y coordinate of z = x+ iy, we get

‖ Dz(v) ‖B2=
1

Im(z)
‖ v ‖euc .

Finally, by the definition of the hyperbolic norm,

‖ Dz(v) ‖B2=‖ v ‖hyp .

Therefore,  sends a curve to a curve in B2 such that the lengths are
equivalent in both the upper-half plane and the disk model. Thus, taking
the infimum of these curves, dB2((P),(Q)) = dhyp(P,Q) ∀P,Q ∈ H2.
Which is the definition of an isometry.
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Going back to our dynamical system (X, μ, T), we say that the 
map T is mixing if time evolution scrambles up the space:

This is a fun definition! If a random point x is in A, then this 
tells us about the probability that x is also in B. If T is mixing, 
applying T to x enough times will erase that information: for large 
n, the statements “x is in T^n(A)” and “x is in B” are independent.

You may at first be a bit skeptical of ergodicity. We have given 
you some definitions and told you that they are important, but 
what can they do for you? It turns out they can be useful in a 
variety of applications. The key is the powerful and important

The Big Kahuna

The Ergodic Theorem:
If a map T is ergodic, and f is a μ-integrable function then

Read: “time averages equal space averages”

lim
→

1

𝑛
𝑓(𝑇 𝑥 ) = 

1

μ(X)
𝑓 𝑦 𝑑μ(𝑦)

 

T is mixing
⇔

𝒍𝒊𝒎
𝒏→

𝝁(𝑻𝒏(𝑨) ∩ 𝑩)  = 𝝁(𝑨)𝝁(𝑩)

for all measurable A and B

T is ergodic ⇔ 𝒍𝒊𝒎
𝒏→

𝟏

𝒏
∑ 𝝁(𝑻𝒊(𝑨) ⋂ 𝑩)𝒏 𝟏

𝒊 𝟎 = 𝝁(𝑨)𝝁(𝑩)

T is ergodic
⇔

T-1(A) = A implies
μ(A) = 0 or μ(Ac) = 0

Mixing It Up

Poincaré Recurrence
Using our dynamical system, we say that T is recurrent if time 

evolution brings almost every point near its initial position:

As Poincaré began studying celestial dynamics with measure theory, 
he stumbled upon a miraculous result:

The proof is quite beautiful – you should check it out! (Silva p. 88)

Poincaré Recurrence Theorem:
A measure-preserving transformation T on a finite 

measure space (X, μ) is recurrent!

T is recurrent
⇔

For any measurable set
𝐴 ∈ X,

and almost every 𝑥 ∈ 𝐴,
∃𝑛 > 0: 𝑇 (𝑥) ∈ 𝐴

It’s often too restrictive to require T to be mixing, so it’s useful
to define a larger class of maps: those with an “average
mixing”, or ergodic property.

Equivalently, we can say

Here we applied a common analytical trick to the definition of 
mixing : we replace a sequence with its average values. The old 
sequences still converge, but we gain some new convergent 
sequences too!

What The Heck Is Ergodicity?

Applications

Any subset of the natural numbers with positive upper density 
contains infinitely many arithmetic progressions of length k for all 
positive integers k.

Szemeredi’s Theorem

The Ergodic Theorem has some very powerful applications. 
Furstenberg used the ergodic theorem to produce a remarkably 
efficient proof of Szemeredi's theorem. The Green-Tao theorem 
extends his work in an important way.

Ergodic theory has a miraculous ability to bring about results in 
fields that seem far from the dynamical systems Poincaré first 
considered. We hope that it will continue to spur new knowledge!

We thank the UCSB Math DRP for making this project possible.

[1] C. E. Silva. Invitation to Ergodic Theory. American Mathematical Society. 2007.
[2] https://www.reddit.com/r/math/comments/5mn0ou/expository_a_historical_introduction_to_ergodic/
[3] en.wikipedia.org
[4] https://terrytao.wordpress.com/2008/02/10/254a-lecture-10-the-furstenberg-correspondence-principle/

Green-Tao Theorem
Let 𝜋(𝑁) denote the number of primes ≤ 𝑁. If A is a subset of 

the prime numbers with 𝑙𝑖𝑚𝑠𝑢𝑝
→

| ∩ , |

( )
> 0, the set A 

contains infinitely many arithmetic progressions of length k for 
all positive integers k.

Ergodic Theory was born when Poincaré began addressing the 
motion of celestial bodies with measure-theoretic techniques. The tools 
Poincare developed for this problem have remarkably general 
applications. Although ergodic theory originated in the solution of a 
physical problem, it is now a fully-fledged branch of math with 
applications to many other subfields.

However, let us begin with the humble origins of ergodic theory in 
modelling physical systems. We model a Dynamical System as a triple 
(X, μ, T), where (X, μ) is a finite measure space, and T is a is measure-
preserving transformation: 𝜇 𝑇 𝐴 =  𝜇(𝐴) for measurable A.

T represents the evolution of our system across a small time step:
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PROBLEM
What is the smallest value s such that every

residue class a (mod m) can be represented by a
sum of s kth powers with at least one of the pow-
ers being coprime to m? In other words, given k,
what is the minimum s such that we can write

xk1 + · · ·+ xks ≡ a (mod m)

for each residue class a?
Is it true that limk→∞ Γ(k) = ∞, as conjec-

tured in [1]? It has not even been known if
lim infk→∞ Γ(k) ≥ 4.

PREVIOUS RESULTS
Hardy and Littlewood found the values of Γ

when k is in the following classes:

1. If k = 2α, then Γ(k) = 2α+2.
2. If k = 3 · 2α, then Γ(k) = 2α+2.
3. If k = pβ(p− 1), then Γ(k) = 1

2p
β(p− 1).

4. If k = 1
2p
β(β − 1), then Γ(k) = 1

2 (pβ+1 − 1).
5. If k = p− 1, then Γ(k) = p = k + 1.
6. If k = 1

2 (p− 1), then Γ(k) = 1
2 (p− 1) = k.

Here α > 1, β > 0, and the first four classes take
priority. For k not in these classes, Γ(k) ≤ k They
also showed that for any prime exponent k, Γ(k)
is equal to γ(k, k2) or γ(k, dk + 1) with dk + 1
prime.

COMBINATORICAL BOUND FOR ωnωnωn
Each ωn(k,m) includes ωn−1(k,m). Hence,

γ(k,m) is equal to the smallest n such that
|ωn(k,m)| = m. Γ(k) relates to ωn(k,m) over all
m, but we only need to consider prime m of the
form dk + 1. So, |ω1(k, dk + 1)| = d+ 1.

Analyzing growth of ωn, we find an upper
bound only dependent on n and d. As ωn is
ωn−1 ± ω1, the elements in ωn, but not in ωn−1 are
of the form ±ai1 ± ai2 ± · · · ± ain where ai 6= 0.

The number of distinct sums of this form is at
most 2n times the number of ways we can choose
n numbers from a set of d/2 numbers, allowing
repetition, which is 2n

(
d/2+n−1
d/2−1

)
. Including 0 and

the new elements in each ωj for j < n, we get the

upper bound,

|ωn(k, dk + 1)| ≤ 1 +
n∑
j=1

2j
(
d/2 + j + 1

d/2− 1

)

≤ 1 +
2n

(d/2− 1)!

n∑
j=1

d/2−1∏
i=1

(
d

2
+ j − i)

≤ 1 +
2n

(d/2− 1)!

[
nd/2

d/2
+ g(d)h(n, d)

]
=: f(n, d)

where the function g(d) is a polynomial in d and
h(n, d) is a polynomial in n of degree d/2 − 1. So
their product, g(d)h(n, d), is o((d/2− 1)!).
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FUTURE RESEARCH

What is Γ(k) where k is not in one of the known
classes, such as k = 1

4 (p − 1)? Given d, can we
find bounds for γ(k, dk+1) where dk+1 is prime?

How fast does Γ(k) increase? Letting G(k) de-
note the generalized Γ(k), it is conjectured that
G(k) = max{Γ(k), k + 1}.
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CONCLUSIONS

Since |ωn(k,m)| ≤ m, it holds that dk + 1 ≤
f(n, d). So d → ∞, i.e. m → ∞, f(n, d) → ∞ also.
Notice if n is fixed, f(n, d)→ 1. Thus, n must tend
toward∞.

Given M > 0, there are only finitely many
primes p1, . . . pl satisfying Γ(pi) < M . Also,
Γ(pr) ≥ M for r ≥ M − 1. So, all k such that
Γ(k) < M are of the form k = pα1

1 pα2
2 · · · p

αl

l with
0 ≤ αi ≤ M − 2. Hence, there are only finitely
many such k where Γ(k) < M .

Since γ(k, dk + 1) is the minimum n such that
|ωn(k, dk + 1)| = dk + 1, each n has only finitely
many pairs d, k satisfying |ωn(k, dk+ 1)| = dk+ 1.
For each n ≤ M , there are only finite number of k
satisfying f(n, d) ≥ dk + 1.

Taking k large enough, we find ωn(k, dk+ 1) <
dk + 1 for all n < M and all d ∈ 2N. This im-
plies that for large enough k and dk + 1 prime,
γ(k, dk + 1) > M .

As Γ(k) ≥ γ(k, dk + 1), we conclude

lim
k→∞

Γ(k) =∞.

¸

The graph above is of log(f(n, d)), showing
how n must continue to increase to allow f(n, d)
to increase.

NOTATION AND PROPERTIES
• Let p be a prime and k,m, d be natural num-

bers with d even.

• Define γ(k,m) as the smallest value s such
that every residue class modulo m can be
represented by a sum of s kth powers with
at least one of the powers coprime to m.

• Let Γ(k) be the smallest value s such that
for every m, every residue class modulo m
can be represented by a sum of s kth powers,
that is,

Γ(k) := max
m∈N

γ(k,m).

• If k = xy, then Γ(k) ≥ Γ(x).

• For r ∈ N, Γ(pr) ≥ r + 1.

• Let ωn(k,m) denote the set of residue
classes ai modulom that can be represented
as the sum of n kth powers.

• If dk + 1 is prime, then powers of k satisfy
xd ≡ 0 or 1 modulo dk+1. Moreover, xd ≡ 0
has one solution and xd ≡ 1 had d solutions.

TRENDS FOR γ(k,m)γ(k,m)γ(k,m)
Consider modulo classes of the formm = dk+

1. If we fix d, we can computationally determine
γ(k, dk + 1) for a finite set of primes k.

 
   

 

d 4

d 6

d 8

d 10

d 12

d 14

Because Γ(kk′) ≥ Γ(k), we only need to con-
sider prime k to find a lower bound for Γ(k). Fre-
quently Γ(k) is determined by the γ(k, p) where
p is the first smallest prime number of the form
dk+ 1. For many primes k, 4k+ 1 is also prime. If
not, 6k + 1 is often prime. Observe Γ(k) appears
to be increasing.
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What is the Hyperbolic Plane?

The hyperbolic plane , defined as the upper half plane, is

H2 = {(x, y) ∈ R2|y > 0}
= {z ∈ C|Im(z) > 0}

with metric (ds)2 =
(dx)2+(dy)2

y2 . An important characteristic of the Hyperbolic plane

is that distance is preserved but looks different from Euclidean distance (explored
below). As one gets closer to the x axis, perceived distance from the Euclidean
standpoint looks increasingly smaller.

Metric on H2

In order to determine a distance function, we may look at the two types of geodesics
that exist in this space. First, we can consider two vertically co-linear points z1 =
x + iy1 and z2 = x + iy2, where γ(t) = ((x(t), y(t)), t ∈ [a, b]. The hyperbolic
length of γ according to the hyperbolic metric is

l(γ) =

∫ b

a

√
x′(t)2 + y′(t)2

y(t)
dt or

∫ b

a
||γ′(t)||dt

Through calculation we can see then that γ(t) = log(y2) − log(y1). Thus we
know that a line connecting two vertically colinear points will be a geodesic. Fur-
ther, we may define distance as the distance between two points, a, b ∈ H2

as inf{l(γ)|γ is a path from a to b}. We define a path to be, for points a,b
∈ H2, γ is a map such that [0, 1] −→ H2 such that γ is continuous, γ(0) =
a, and γ(1) = b.
We may verify that this is a metric because the following are satisfied:
• d(a, b) ≥ 0

• d(a, b) = 0 ⇐⇒ a = b

• d(a, b) = d(b, a); d(a, b) ≤ d(x, z) + d(z, y).
A geodesic is a path which minimizes the distance between two points. In H2

geodesics are vertical lines or half circles centered on the real axis.

Isometries

An isometry of H2 is a bijective map from H2 −→ H2 that preserves the metric.
The special linear group, SL2(R), acts on H2 by isometries, given by

A · z =
az + b

cz + d

where A =

(
a b
c d

)
∈ SL2R

We will name this map a fractional linear transformation or a Möbius
tranformation fA : z −→ az+b

cz+d, where a, b, c, d ∈ R and ad− bc = 1. We can see
that for any matrix A and its negative −A, the action of fA and f−A are the same.
It turns out that we can identify the orientation preserving isometries with the pro-
jective special linear group

Isom+H2 ∼= SL2(R)/± Id
∼= PSL2(R).

Classification

Now we turn to the task of classifying these orientation preserving isometries. Orientation
preserving isometries fall into three categories: elliptic, parabolic, and hyperbolic which
will be explored in the next several sections. Their isometries can be categorized based on the
number of points that they fix and their associated trace value (we will see how these are related).
We know that for any a, b ∈ H2 , there exists an isometry that maps a to b, and that isometries

preserve geodesics. We note that for the matrix X =

[(
a b
c d

)]
, the “absolute value” of the

trace of X denoted |Tr(X)| = |a + d|. Thus, orientation preserving isometries for H2 fall into
the three following categories:

• Elliptic: One point is fixed on H2, equivalently |Tr(X)| < 2

• Parabolic: One point is fixed on the boundary of H2, equivalently |Tr(X)| = 2

• Hyperbolic: Two points are fixed on the boundary of H2, equivalently |Tr(X)| > 2

Elliptic

Consider a fixed point z ∈ H2, and a geodesic γ passing through it. Let f (γ) also pass through z
with respect to some angle α with γ. Then, because f preserves angles, it will take any geodesic
passing through z to another unique geodesic that preserves the angle α.
Thus, this is similar to a rotation in Euclidean Space, where its action on point z is based on
the angle α that is created. As previously mentioned, |Tr(X)| = |a + d| < 2 in this case,
corresponding to some λ = eiα for some α ∈ R. Why is this the case? If we take i to be our
fixed point, then we can see that X(i) = ai+b

ci+d = i. Through further calculation, we can see that

ad−bc = a2 +b2 = 1, which is precisely true when a = cos(α), b = sin(α) for some α ∈ [0, 2π).
The elliptic isometry fixing i and rotating by α is then

X =

[(
cos(α) sin(α)
−sin(α) cos(α)

)]
.

Figure 1. Elliptic isometry fixing the point (0,1), or z = i [Cite: 3]
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Parabolic

For this situation, we will consider one fixed point on the ideal boundary R∪{∞}
(meaning no points are fixed in the hyperbolic plane). In other words, parabolic
transformations are similar to elliptic ones, except in this case the angle α that was
previously preserved is lost as a distinct invariant. Parabolic isometries can also be
referred to as translations γ : z −→ z+ s. Why does |Tr(x)| = 2 in this case? If the

fixed point is at infinity, we will denote this as z =∞, and A(z) = az+b
cz+d = z, which

implies that c = 0, otherwise a
c 6=∞. Thus, z can be re-written as z = b

d−a, where
then d = a for z =∞. In other words, the matrix for parabolic transformations can
be considered

X =

(
1 s
0 1

)
.

Figure 2. Parabolic isometry fixing z =∞ [Cite:3]

Hyperbolic

In this case, we will fix two points w1, w2 at the ideal boundary, where without loss of
generality, we will consider w1 < w2. As previously mentioned, |Tr(x)| : |a+d| < 2,
but why does the number of fixed points correspond this trace value? If we let
w1 = 0, w2 =∞, then by plugging into our Möbius transformation, we can see that
since c = 0, b = 0, and our matrix representation of hyperbolic transformations is(

a 0
0 d

)
or

(
a 0

0 a−1

)
since |det(X)| = ad = 1.

Since in this case our points w1, w2 are fixed, and we know that there is a unique
geodesic that takes on point to the other, f acts as a translation along this curve at
some fixed distance, where the geodesic γ is the only geodesic invariant under this
transformation.

Figure 3.
Hyperbolic isometry fixing z = 0 and z =∞ [Cite: 3].
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Background of Knot Theory

Knot Theory was originally created to tabulate distinguishable knots. Our goal is
to be able to show there exists other knots distinguishable from the unknot. Knot
Theory has applications in biology, chemistry, and physics including DNA and
synthesis of knotted molecules. [See [1] for more details]

• A knot is a circle imbedded in R3.

• A link is a set of knotted loops tangled together.

• A strand is a piece of the link that goes from one undercrossing to another with
only an overcrossing in between.

• A knot can be deformed to different projections. Two knots are said to be the
same knot if one can be de-tangled to be a projection of the other.

• A knot invariant is a quantity defined for each knot which is the same for
equivalent knots. This enables us to distinguish knots from one another.

• In this presentation, we provide a brief overview of knot invariants and their
importance.

Reidemeister moves

• Different knot projections can be obtained through a series of the three Reide-
meister moves

• Example: The figure 8 knot is equivalent to its mirror image.

• There is not a limit on the number of Reidemeister moves it can take to get from
one knot projection to another, which makes it an ineffective way to determine
whether two knots are distinct.

Tricolorability

• Tricolorability enables us to determine that there exists other knots that are not equivalent
to the unknot.

• A projection of a knot is tricolorable if each strand in the projection can be colored one
of three colors, so that at each crossing, either three different colors come together or three
of the same color come together. At minimum two colors must be used in the coloring.

Fig. 1: Coloring of the Unknot, Trefoil knot, and Figure eight knot

• Tricolorability fails to show that knots that are tricolorable (resp. non-tricolorable) are
distinct. We seek for another invariant that provides stronger results.

Bracket Polynomials

• The goal is to be able to associate a polynomial to a knot, so that when the polynomial is
computed, any two projections of a knot yield the same polynomial.

• The Bracket polynomial is obtained from the following rules, where 〈 K〉 denotes the
bracket polynomial for knot K.

1. 〈 〉 = 1

2. 〈L ∪ 〉 = (−A2 − A−2)〈L〉
3. 〈 〉 = A 〈 〉 + A−1 〈 〉

• The bracket polynomial is not invariant under reidemeister move 1.

• Example: The bracket polynomial for the Hopf link is computed below.

Jones Polynomial

• To obtain the Jones Polynomial we must first create the X polynomial that is
invariant under all Reidemeister moves defined below:

X 〈 L〉 = (−A3)−w(L) 〈 L〉
Where the writhe is the sum of +1′s or −1′s given to a crossing once an orien-
tation is placed.

• The jones polynomial is obtained from the X polynomial by replacing each A
with t−1/4

• Example: We find the X polynomial for the trefoil knot:

– First we find the writhe of the trefoil knot, which is 3. The bracket polyno-
mial is

(A−7 − A−3 − A5)

Therefore the X polynomial is

X 〈 L〉 = (−A3)−3(A−7 − A−3 − A5)

= A−4 + A−12 − A−16.

and the corresponding Jones Polynomial is

−t4 + t3 + t1
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The Study of Topology

Topology in some sense generalizes the properties in metric space. In the abstraction
of concepts in analysis, we are allowed to talk about open sets, limits, convergence or
other concepts in some spaces which might not be a metric space. In particular, one
property we focus on in this poster is compactness.

Topological Space and Open Sets

Definition. Suppose X is a set. Then J is a topology on X if and only if J is a
collection of subsets of X such that
1. ∅ ∈ J ,
2. X ∈ J ,
3. if U, V ∈ J , then U ∩ V ∈ J , and
4. if {Uα}α∈Ω is any collection of elements of J , then

⋃
α∈Ω

Uα ∈ J .

Definition. A topological space is an ordered pair (X,J ) such that X is a set
and J is a Topology on X .
Definition. A set U ⊂ X is called an open set in (X,J ) if and only if U ∈ J .

Fig. 1: Four examples which are Topologies and two which are not on the set 1,2,3

Another example of Topological space would be (Rn,Rnstd) for Rnstd is the set of open
sets in Rn in the real analysis sense i.e. for every E ∈ Rnstd and every x ∈ E, x is an
interior point of E. We also say Rnstd is the standard topology of Rn.

Basis and Subbasis of a Topology

Similar to the idea of basis of a vector space, every elements of J is a union of elements
in β if β is a basis of J . Furthermore, if collection of all finite intersections of a set
S is a basis, then S is a subbasis.
One example would be {(a.b) : a, b ∈ R} and {(a,∞) : a ∈ R}∪ {(−∞, b) : b ∈ R}
which are basis and subbaiss of (R,Rstd) respectively.

Compactness in Topological Space

With the topological definition of open sets, we hence have our topological definition
of compact sets.
Definition. A set E ⊂ X is compact in (X,J ) if and only if every open cover of
E has a finite cover.

Product Topology

With definition of topology given before, it is natural to induce the product topology of Cartesian
product of topological spaces in the following way.
Definition. Suppose X and Y are topological spaces. The product topology of X × Y is
the topology whose basis is all sets of the form U × V such that U is open in X and V is open
in Y .

Fig. 2: An open set U × V in X × Y

With all needed definitions introduced, we may finally see how powerful the topological approach
to compactness is.

Alexander Subbasis Theorem

Theorem. Let S be a subbasis of X . Then X is compact if and only if every subbasic open
cover has a finite cover.
Outline. Suppose the contradiction and use Zorn’s lemma to find a maximal open cover Ω.Note
that S ∩ Ω is not an open cover and hence use maximality of Ω to construct a finite cover of Ω.
Proof. We will only prove the converse in this part. Assume that every subbasic cover has
a finite cover and suppose the contradiction that X is not compact. Then by Zorn’s lemma,
there exists a maximal open cover Ω with no finite cover. Noticed that Ω ∩ S cannot cover X
by our assumption about subbasic cover. Let x ∈ X −

⋃
A∈Ω∩S

A. This follows that x ∈ U

for some U ∈ Ω − S and there exists S1, .., Sn ∈ S such that x ∈
n⋂
i=1

Si ⊂ U . It is clear

that Si /∈ Ω. By maximal property of Ω, for every Si, there exists Ci1, ..., C
i
ki
∈ Ω such that

{Si, Ci1, ..., C
i
ki
} covers X. This follows that {Cij}

n
i=1

ki
j=1 ∪ {

n⋂
i=1

Si} is a finite cover of X. This

implies that {Cij}
n
i=1

ki
j=1 ∪ {U} also covers X which is a contradiction.

Tychonoff’s Theorem

Theorem. Any product of compact set is compact.
Proof. Let X =

∏
α∈Ω

Xα be a product of compact sets Xα. Let Oα,A = {f (α) ∈ A}. Noticed

that S = {Oα,A : {f (α) : α ∈ Ω ,A is open in Xα}. Suppose the contradiction that there exists
a subbaic cover {Oα,A}α∈J,A∈X(α) of X with no finite cover for J ⊂ Ω and X(α) a collection

of open sets in Xα. Note that for every α, {A}A∈X(α) cannot cover Xα otherwise we will

{A1, .., An} ⊂ X(α) covering Xα which implies that {Oα,A1
}ni=1 covers X . This follows that

βα =
⋂

A∈X(α)

Ac is not empty. By axiom of choice, there exists f ∈ X such that f ∈
∏
α∈J

βα.

By the construction, f /∈ {Oα,A}α∈J,A∈X(α) which is a contradiction.

Application

One result we may obtain from Tychonoff’s Theorem is that for any a, b ∈ R, [a, b]∞

is a compact set which is hard to prove using analysis approach. Another interesting
result is that it simplifies the proof of Arzelà–Ascoli theorem.
Arzelà–Ascoli theorem. If F is a uniformly bounded and equicontinuous family
of continuous real valued functions on E ⊂ Rn, then every sequence {fn} in F has
a subsequence converging uniformly to f ∈ C(E,R).
Proof. Note that F ⊂

∏
x∈D

[−M,M ] for some M <∞ as F is uniformly bounded.

By Tychonoff’s Theorem,
∏
x∈D

[−M,M ] is compact! This implies that a subsequence

fnk must converge to f ∈
∏
x∈D

[−M,M ] pointwise. Then by equicontinity of F we

may conclude that fnk converge to f uniformly.

Remarks

Noticed the compactness implied by Tychonoff’s Theorem is based on the product
topology. We apply it directly in previous part as product topology of R∞ is exactly
R∞std. In other situation, one has to first figure out the relation between the product
topology and specific topology of the product space.
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Fundamental Theorem of Algebra

Every real polynomial can be expressed as the
product of real linear and real quadratic fac-
tors.

This implies that every real, odd degree polyno-
mial has at least one real linear factor, and there-
fore, at least one real root.

Groups

Definition: A group G is a set of elements to-
gether with a binary operation, ·, (called the group
operation), that satisfy the following:
• Closure: If a, b ∈ G, then the product a · b ∈ G.
• Associativity: For all a, b, c ∈ G,

(a · b) · c = a · (b · c)
• Identity: There exists an element e ∈ G such that

e · a = a · e = a for all a ∈ G.
• Inverses: For all a ∈ G, there exists an element
a−1 ∈ G such that

a · a−1 = a−1 · a = e.

Examples of Groups:
• The integers Z = {. . . ,−2,−1, 0, 1, 2, . . .} form a

group under addition.
• The nonzero integers modulo 5, Z5 = {1̄, 2̄, 3̄, 4̄}

form a group under multiplication.
• The dihedral group D3 is the symmetry group of

the triangle and forms a group under
composition.

• The general linear group forms a group under
matrix multiplication

GL(2,R) =



a b
c d

 : ad− bc 6= 0


Group Actions

Definition: A group G is said to act on a set X when there is a map . : G × X → X such that the
following conditions hold for all x ∈ X : (1) Let e ∈ G be the identity. Then e.x = x. (2) For all g, h ∈ G,
g.(h.x) = (gh).x

Examples of a Matrix Action: Consider the matrix A =

cos(π/2) −sin(π/2)
sin(π/2) cos(π/2)

. Applying A to

1
0



would map it to

0
1

. Applying A to

2
3

 would then map it to

−3
2

.

Eigenvalues, Eigenvectors,
Eigenspaces

Definition: Let A be a linear transformation rep-
resented by a matrix A. If there is a vector X ∈
Rn 6= 0 such that Ax = λx for some scalar λ, then
λ is called the eigenvalue of A with the correspond-
ing eigenvector X . The union of the zero vector and
the set of all eigenvectors corresponding to eigenval-
ues λ is a subspace of Rn known as the eigenspace
of λ

Finding Eigenstuff: A =

−1 2
0 −1



Ax = λx→ Ax− λx = 0→ (A− Iλ)x = 0

det(A− λI) = det


−1− λ 2

0 −1− λ



= (λ + 1)2, λ = −1

−1− (−1) 2

0 −1− (−1)

 ∗

x
y

 ==

0 2
0 0

 ∗

x
y

 =

0
0



x = x, y = 0

span = x




1
0





Eigenvalue: λ = −1, Eigenvector:

1
0



Eigenspace:

1
0

.

Invariant Subspace

Definition: Suppose that T : V → V is a linear
transformation and W is a subspace of V . Then
suppose T (w) ∈ W for every w ∈ W . Then W is
an invariant subspace of V relative to T .

Take the matrix A =

−1 2
0 −1

. If we apply the ma-

trix to

−4
0

 (a scalar multiple of an eigenvector

1
0

 of

matrix A), we get

4
0

, which is also a scalar multiple

of the eigenvector

1
0

. This means that the vector

1
0

 is the invarient subspace of matrix A, which cor-
responds with the eigenspace of matrix A.

Question: Can you move a vector in R3 via a
matrix action such that you have no
invariant subspace?

Argument

No. One cannot move a vector in R3 via a ma-
trix action such that there is no invariant subspace.
Thus, there must exist at least one real invariant
subspace, which implies there must be an eigenvec-
tor and eigenvalue that correspond to that invariant
subspace. Since there exists a at least one eigen-
value, that means the the characteristic polynomial
for the matrix action must have at least one real
root.
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Overview

Given a topological space X, one often wants to understand its fundamental group. The
Seifert-van Kampen theorem provides a method for computing or understanding the fundamental
group of X in terms of the fundamental groups of simpler pieces. The combinatorial group the-
ory involved here leads to two notions - that of an amalgamated free product, and that of an
HNN extension. These two constructions are generalized by the idea of a graph of groups, due to Serre.

Moreover, the theory of covering spaces gives a connection between fundamental groups and
group actions. In particular, the fundamental group acts nicely on the universal cover of X.

Abstracting just to the setting of a group G acting on a simply connected space, we would
like an analog of the Seifert-van Kampen theorem, so we can understand the relationship between
the group action and the combinatorial decomposition mentioned above. The following combination
theorems may be seen as generalizations of the Seifert-van Kampen theorem.

The Ping Pong Lemma for Free Groups

In [1], the Ping Pong Lemma for Free Groups (of rank 2) is given as follows:

Suppose a and b generate a group G that acts on a set X. If:

1. X has disjoint nonempty subsets Xa and Xb, and
2. ak(Xb) ⊂ Xa and bk(Xa) ⊂ Xb for all nonzero powers k.

then G = 〈a, b〉 is isomorphic to a free group of rank 2.

We also note that this lemma can easily be extended to free groups of higher rank.

Amalgamated Free Products

We now consider a slight generalization of the free product, known as a free product
with amalgamation. An amalgamated free product is similar to a free product,
however there is some “mixing” allowed between the two groups being combined. As
in [2], we define the amalgamated free product as follows:

Let G1,G2 and H be groups. Then fix injective homomorphisms ιG1
: H −→ G1

and ιG2
: H −→ G2. Now, let N be the minimal normal subgroup of G1 ? G2

generated by all elements of the form ιG1
(h)ιG2

(h)−1 for h ∈ H. Then, the free
product of G1 and G2 amalgamated along H is

G1 ?H G2 = (G1 ? G2)/N

Moreover, we can describe the amalgamated free product G1 ?H G2 via group
presentations: If G1

∼= 〈SG1
|RG1

〉 and G2
∼= 〈SG2

|RG2
〉, then

G1 ?H G2
∼= 〈SG1

t SG2
|RG1

tRG2
∪ {iG1

(h)iG2
(h)−1|h ∈ H}〉.

In other words, the free product with amalgamation can be thought of as the group
obtained by “gluing” two groups along a subgroup of each. As such there is a natural
connection between amalgamated free products and the Seifert-van Kampen theorem,
which gives instructions for computing the fundamental group of a space obtained by
“gluing” two spaces along a subspace in each.

The Ping Pong Lemma for Amalgamated Free
Products

Suppose groups G1 and G2 each act faithfully on a set X and let φi : Gi −→ Aut(X) be
the corresponding action map. If:

1. For a group H, there exist injections ιi : H −→ Gi such that
φ1ι1 = φ2ι2

2. There exist disjoint, non-empty subsets X1, X2 ⊆ X such that g1(X2) ⊆ X1,
∀g1 ∈ G1 \ ι1(H) and g2(X1) ⊆ X2, ∀g2 ∈ G2 \ ι2(H)

3. H is not of index 2 in either G1 or G2 (ie: [G1 : H ] 6= 2 or [G2 : H ] 6= 2)

Then the group generated by φ1(G1) and φ2(G2) is isomorphic to the free product of
G1 and G2 amalgamated along H. In other words, 〈φ1(G1), φ2(G2)〉 = G1 ?H G2.

Fig. 1: Ping Pong in action

The proof is as follows:

Let φ : G1 ?H G2 −→ Aut(X) where φ|Gi = φi. First, note that 〈φ1(G1), φ2(G2)〉 ∼=
φ(G1?HG2), which is simply the copy in Aut(X) of the free product of G1 and G2 amalgamated
along H . Now, we want to show that the kernel of φ is trivial, so that we can then apply the
first isomorphism theorem to show that 〈φ1(G1), φ2(G2)〉 ∼= G1 ?H G2.

We first note that no element g of 〈G1, G2〉 of the form g = g
(1)
1 ∗g

(2)
1 ∗g

(1)
2 ∗· · ·∗g

(2)
k ∗g

(1)
k+1, for

g
(i)
j ∈ Gi \ ιi(H), is the identity since g(X2) ⊆ X1. In other words, for all such g, g 6= 1). We

now note that every element of G1 ?H G2 is conjugate to one of the above form (this is ensured
by premise 3). As such, we observe that given any nontrivial, reduced word w ∈ G1 ?H G2,
∃z ∈ G1 ?H G2 which conjugates w to the form described above.

Thus, sinceG1 andG2 act faithfully, we have shown that no nontrivial reduced words inG1?HG2
equal the identity. Moreover, since φ is a homomorphism, we know that no nontrivial reduced
words in 〈φ1(G1), φ2(G2)〉 equal the identity. In other words, the kernel of φ is trivial (kerφ =
1). Thus via the first isomorphism theorem, G1 ?H G2/{1} ∼= 〈φ1(G1), φ2(G2)〉. Hence,
G1 ?HG2

∼= 〈φ1(G1), φ2(G2)〉. As a result, we have proven that the group generated by φ1(G1)
and φ2(G2) is isomorphic to the free product of G1 and G2 amalgamated along H .

HNN Extensions

The counter-notion of the Amalgamated Free Product is the HNN Extension, which
we define as follows:

Let H and G be groups. Then fix injective homomorphisms ι1 : H −→ G,
ι2 : H −→ G. Now, let 〈t〉 ∼= Z. We then define N to be the minimal normal
subgroup of G ? 〈t〉 generated by {tι1(h)t−1ι2(h)−1|h ∈ H}. Then the HNN
Extension of G relative to H is

G?H = (G ? 〈t〉)/N

As before, we can describe the HNN Extension of G relative to H via group presen-
tations: If G ∼= 〈SG|RG〉, then

G?H
∼= 〈SG, t|RG, tι1(h)t−1 = ι2(h)〉.

We also note that a combination theorem similar to those described above can be
given for HNN extensions (ie: the Ping Pong Lemma for HNN Extensions).

Furthermore, we end by recalling the Seifert-van Kampen theorem and noting
the relation between amalgamated free products and separating subspaces (where,
as we noted earlier, we are essentially “gluing” two spaces along a shared subspace).
Likewise, there is a similar relation between HNN extensions and non-separating
subspaces.

Fig. 2: Example of both a separating and a non-separating cut on a double torus
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Background

•An affine space An is a set such that for
a = (a1, ...., an) ∈ An, ai ∈ k a field. For
simplicity, we will usually let k= C.

•An affine variety is a closed set V ⊂ An that is
the solution set to a set of polynomials {fα}.

•An irreducible variety is an affine variety X
such that X 6= X1 ∪X2, where X1, X2 are closed
proper subsets of X .

•A normal variety X is an irreducible affine
variety where k[X ] is integrally closed.

•The spectrum of a ring Spec(R) is the set
of all prime ideals in R. [1]

Figure 1: Left: This is the affine curve V (y2−x3−x2). Right:
This is the parallelogram P0 that shows opposite sides are con-
gruent modulo L, the lattice.

The Complex Torus

A fundamental object in the study of Toric Varieties
is the complex n- torus Tn = (C∗)n, constructed as
follows: [2]
•Define a lattice L = {Zω1 + Zω2}, where
ω1, ω2 ∈ C are linearly independent over R.

•Let X = C/L. π : C→ X is a continuous, open
mapping.

•Let Pz = {z + λ1ω1 + λ2ω2|λi ∈ [0, 1]} ⊂ X .
Each Pz is a compact and connected set.

•We find charts, φz to finalize the construction to
show that this map is a complex manifold.

•Pz allows us to show that opposite sides are
congruent modulo L, connecting this construction
to the standard torus.

Toric Varieties

Toric Varieties and Properties

A Toric Variety is a normal variety X that contains a torus T as an open dense subset, together with
an action T x X → X of T on X that extends the natural action of T on itself. [3]

We can also describe toric variety by their fans. A fan ∆ is a set of rational strongly convex polyhedral cones
σ in NR such that 1) Each face of a cone in is also a cone in ∆, and 2) The intersection of two cones in ∆ is
a face of each.
We can construct a toric variety X(∆) by gluing together disjoint affine toric varieties, irreducible affine
varieties Uσ = Spec(C[Sσ]), where Sσ = σ∧ ∩M . [4]

Figure 2: In the diagram above, each σi is a affine toric variety. Together, they create X(∆).

Properties

Let XΣ be the toric variety determined by a fan Σ in R. Then:
•XΣ is complete ⇐⇒ Σ is complete.
•XΣ is smooth ⇐⇒ every σ ∈ Σ is a smooth cone.
•XΣ is Cohen-Macaulay
•XΣ has at worst rational singularities. [4]

Major Theorems

Using theorems from algebraic geometry, some sig-
nificant results have been made in toric varieties:
•Riemann-Roch Theorem
•Serre-Duality Theorem
•Stanley’s Theorem

Tropical Geometry

Since polyhedral geometry plays a significant role in
toric variety theory, toric varieties have a close re-
lationship with Tropical Geometry, a new field
in algebraic geometry that focuses on the tropical
semi-ring. The following is the tropicalization of a
toric variety:
•Definition: Let Σ be a rational polyhedral fan
in NR. For each cone σ ∈ Σ, we consider the
(n− dim(σ))−dimensional vector space
N(σ) = NR/span(σ). As a set, the tropical toric
variety X trop

Σ is the disjoint union
X trop

Σ = tN(σ).
We define a topology on X trop

Σ by associating each
σ ∈ Σ, the space U trop

σ = Hom(σ∧ ∩M,R) of
semigroup homomorphisms from (σ∧ ∩M,R)to
(R,�). [5]
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Abstract
Thousands years ago, people started to think about Diophantine equation like x2 + y2 = z2. To solve different

kinds of Diophantine equation, the number theory developed quickly. In this paper, we try to review the technique
to solve Diophantine equations, and some advanced math topics motivated those techniques.

Introduction
What kind of Diophantine equation is easy to solve? Apparently, equations like x2 = y3 are easy to
find all integer solutions. As we can see, equations without addition are always friendly. For those
equations, the unique factorization in Z makes sure that we can do prime decomposition.
When we meet a more complicated Diophantine equation, we have two ideas to solve it - to find a
smaller ring in Z, or to embed Z to a larger ring. The first is usually to consider the surjective ho-
momorphism Z � Z/nZ. For example, we can solve x2 + 1 = 3y by consider Z/3Z. For a general
homogeous quatric equation aX2 + bY 2 = cZ2, we have the Hasse Principle. We will talk about it
later. For the second way, we need find a larger ring, and there are plenty of choices.

Ring Embedding
For the Mordell curve y2 + 2 = x3, Fermat changed it to (y +

√
−2)(y −

√
−2) = x3 and considered

the embedding Z ↪→ Z[
√
−2]. Now we change the original equation to a equation without addition,

and the ring is still a UFD! It is not hard to conclude y +
√
−2 = p3 and y −

√
−2 = q3, for some

p, q ∈ Z[
√
−2]. Then we solve the problem. Many mathematicians, like Euler, Gauss, Dirchlet, and

Kummer all tried to use this idea to prove Fermat’s last theorem - the insolubility in integer of the
equation xn + yn = zn. We actually only need to consider xp + yp = zp for odd prime p. It seems
promising because the equation above is exactly

(x + y)(x + ζy)(x + ζ2y)...(x + ζp−1y) = zp

where ζ is the pth root of unity. Thus, if Z[ζ ] is a UFD, it will be very profitable to help prove the
Fermat’s last theorem. (See [4]p.7-8).
However, it is not true that Z[ζ ] is always a UFD. When p = 23, it is not a UFD. (See [4]p.8.27) Years
later, mathematicians like Dedekind, Kronecker, and Lasker try to find some generalization of unique
factorization. Dedekind noticed that two principle ideals coincide if and only if their generators are
associated, and the unique factorization is also unique up to unit multiples. He defined Dedekind
domain (Noetherian normal domain of dimension 1). This kind of ring has unique factorization of
ideals into prime ideals.
Around the same time, Kronecker took a different generalization. He is the first one to consider the
polynomial ring k[x]/f (x). Then the root of f (x) = 0 is the image of x in this ring. The research
on zeros of polynomial developed into one of the most important fields of modern math - algebraic
geometry, and it is closely related to number theory.

Quadratic Case - Hasse Principle
x2 + 1 = 3y has no solution in the subring Z/3Z, and x2 + 2 = y2 + 8y has no solution in the subring
Z/8Z, so we can solve these Diophantine equations. Hasse Principle is a generalization of it. It states
as below:
Hasse Principle, also global-local principle: A homogeneous quadratic equation in several variables
is solvable by integers, not all zero, if and only if it is solvable in real numbers and in p-adic numbers
for each prime p.
p-adics and reals are both completion of Q, so a global solution yields local solutions at each prime.
The Hasse Principle asserts that the reverse can be done. Hasse Principle works well for quadratic
forms, but in other cases it will fail. For example, the Mordell curve y2 = x3 − 51, Lind’s equation
x4 − 17y4 = 2z2, and Selmer’s famous homogeneous counterexample 3x3 + 4y3 + 5z3 = 0. (See
[1],[3] ) So people become interested in equations of higher degree.

Cubic case - Elliptic curve over Q
For any cubic f (u, v) = 0, there is a birational equivalence between the cubic and a Weierstrass form,
i.e. y2 = x3 +ax2 + bx+ c in the projective plane[See [6]p.17-18 ]It is the elementary definition of an
elliptic curve. How is the elliptic curve related to Diophantine equations? We give a fact here, that the
Diophantine equation x3 + y3 = 7z3 has an integer solution (x, y, z) = (4381019, 9226981, 4989780).
It is easy to check, but how do we construct it? It is directly related to the elliptic curve and the group
law on it.

Figure 1: The group law

For points on the elliptic curve, we define a group law as above. Given the specific coordinates of P
and Q, by using Vita’s formula, it is not hard for us to calculate the coordinates of P + Q.
Back to the previous question, in order to find some peculiar rational solution of x3 + y3 = 7, we
change it to the Weierstrass normal form y2 = x3− 21168. Then we notice that P = (x, y) = (4

3,
5
3) is

a solution, so we can calculate points 2P , 3P , etc. Then we can get many unusual solutions. However,
the sequence {nP}∞n=1 does not ensure that we have infinitely many solution. It is possible that the
sequence will end somewhere. In other words, the P can be a torsion point. Thus, the research on
torsion points will give us a lot of information.

Torsion Points
We are curious about two questions in general. The first is the easier one: given an elliptic curve, how
do we find all of the torsion points. The second is for which n, there will be torsion points of order n
for some elliptic curve?
The Nagell-Lutz Theorem answered the first question, and it is not hard to prove.
Nagell-Lutz Theorem: Let y2 = f (x) = x3 + ax2 + bx+ c be a non-singular cubic curve with integer
coefficients a, b, c and letD be the discriminant of the cubic polynomial, if P = (x, y) be a rational
point of finite order. Then x and y are integers, and either y = 0, in which case P has order two, or
else y divides D.
y|D means we only check finitely many y. In some unfriendly cases the D will be large and it takes
some time.
The second question is hard, and it takes many great mathematicians tens of years to solve it. Billing
and Mahler [3] proved in 1940 that no elliptic curve has torision points of order 11. Thirty year later,
Mazur finally found all 15 possible torsion groups. They are Z/nZ, where 1 ≤ n ≤ 10 or n = 12; and
Z/2Z× Z/2nZ, where 1 ≤ n ≤ 4.

Mordell Theorem and Heights
Mordell theorem states that the rational points on an elliptic curve is a finitely generated abelian group.
The proof needs a very important technique called height. The definition is simple: for x = m

n ∈ Q,
define its height H(x) = max{|m|, |n|}. Roughly speaking, it is a way to measure the complexity of
rationals. The proof of Mordell theorem(See [6]p.65-88) is too long to present here, but we can use a
simple example to see how useful it is. Consider a special case of Fermat last theorem x4 + y4 = z4,

if y 6= 0, the equation can be rewritten as (
x2z

y3
)2 = (

z2

y2
)3 − z2

y2
, so we only need to show that any

rational point (x, y) of the elliptic curve y2 = x3 − x has y = 0. The proof goes like this: if we
have a point x0, y0 with y0 6= 0, we can assume x0 > 1 (since (−1/x0, y0/x

2
0) is also a solution). Let

x′0 = x0+1
x0−1, then (x′0, 2y0/(x0 − 1)2) is another solution with y-coordinate 6= 0. It is not hard to show

H(x′0) < H(x0). However, infinite descent on H is apparently not possible, so we finish the proof.

Conclusion and Further development
The modern definition of the elliptic curve is a pair (E,O), where E is a nonsingular curve of genus
one and O ∈ E. For example, the elliptic curve over C is C/Λ for some lattice Λ.

Figure 2: Elliptic curve over C

Riemann-Roch theorem can show that every elliptic curve in this definition can be written as a plane
cubic, and conversely every smooth Weierstrass plane cubic curve is an elliptic curve.(See [7]p.59 )
Now let C be a non-singular algebraic curve of genus g over Q.
When g = 0, it is a conic section. It is very easy to show that the number of rational points of C is 0
or infinity.
When g = 1, as we discussed above, the rational points form a finitely generated abelian group, i.e.
C(Q) = Zr ⊕ T , and by Mazur’s theorem, the structure of the torsion group T is very limited.
When g > 2, in 1983, one of the greatest mathematicians Gerd Faltings proved that C has only a finite
number of rational points. His proof involves a large amount of advanced math techniques, especially
from the modern algebraic geometry.
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